SPECIAL ISSUE ON tDCS

Physics of Transcranial Direct Current Stimulation
Devices and Their History

Dennis Q. Truong, MS and Marom Bikson, PhD

Transcranial direct current stimulation (tDCS) devices apply direct current
through electrodes on the scalp with the intention to modulate brain func-
tion for experimental or clinical purposes. All tDCS devices include a cur-
rent controlled stimulator, electrodes that include a disposable electrolyte,
and headgear to position the electrodes on the scalp. Transcranial direct
current stimulation dose can be defined by the size and position of elec-
trodes and the duration and intensity of current applied across electrodes.
Electrode design and preparation are important for reproducibility and toler-
ability. High-definition tDCS uses smaller electrodes that can be arranged in
arrays to optimize brain current flow. When intended to be used at home,
tDCS devices require specific device design considerations. Computational
models of current flow have been validated and support optimization and hy-
pothesis testing. Consensus on the safety and tolerability of tDCS is protocol
specific, but medical-grade tDCS devices minimize risk.
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HISTORICAL DEVELOPMENT OF tDCS DEVICES

This history of electrical stimulation dates to the discovery of
electrical phenomena, and static voltage sources are among the
earliest examples of electrical technology,' although with unclear
relation to modern transcranial direct current stimulation (tDCS)
dose. There have been a continuous history of transcranial electri-
cal stimulation technology development and testing, much of it on
non-DC waveforms such as pulsed stimulation.>* Human trial in-
vestigated tDCS for neuropsychiatric disorders continued through
the middle of the 20th century, typically with current intensities
lower and durations longer than modern tDCS.> The importance
of canonical trials circa 2000 (showing tDCS is a polarity-specific
modulator of brain excitability) is evidenced by these trials estab-
lishing modern tDCS dose: 1 mA applied over tens of minutes
with relatively large electrodes.®” Subsequent pilot trials insti-
tuted a 2-mA intensity for therapeutic interventions®'® main-
tained for almost all subsequent clinical evaluation.''~'® These
developments established contemporary tDCS dose and hence
the specification of modern tDCS devices (Fig. 1). Iontophoresis
devices were adopted for some tDCS trials as an off-label medical
device, although they may not provide a steady output.'”'8

Ongoing refinements in dose (eg, use of 1.5 mA in cognitive
neuroscience'®), electrodes (eg, HD-tDCS?°), integration with im-
aging (eg, functional magnetic resonance imaging”'), and home
use (eg, remote supervised®?) are reflected in specific tDCS device
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features. Usability device features such as enhanced programming
(microcontroller), control systems (eg, response to impedance
changes), rechargeable batteries, disposable electrodes, enhanced
headgear materials, wireless connectivity, or integration of moni-
toring technology? reflect general progress in available technolo-
gies but maintain tDCS dose.

BASICS OF tDCS DEVICES AND POLARITY

Al tDCS devices include a battery-powered current-controlled
stimulator that generates the stimulation waveform: a sustained direct
current of several mA for up to tens of minutes, with a ramp up/down
at the beginning/end. This current is applied through wires (leads)
to electrodes. All tDCS devices have a minimum of 2 electrodes,
with at least 1 electrode placed on the scalp. At an anode electrode,
current enters the body, and at a cathode electrode, current exits the
body.>* There must be at least 1 anode and 1 cathode; such tDCS
devices with only 2 electrodes have 1 anode and 1 cathode. When
there are more than 2 electrodes, the summed current across anode
electrodes must equal the summed current across the cathode elec-
trodes®>; that is because the total current entering the body must
equal the total current exiting the body. A majority of tDCS inter-
ventions, and thus devices, are limited to 2 mA, which historically
is the highest amplitude tested (safety), but protocols, and devices,
with higher (3-4 mA) current limits are explored,”*?” which re-
main within accepted safety limits.'>%

The polarity of each electrode can be described by anode or
cathode. Because an anode and cathode are always present, the
terms anodal or cathodal tDCS refer to a hypothesis that neurophys-
iological or behavioral changes reflect stimulation of brain regions
near the anode or cathode, respectively.>*>! Similarly, the term refer-
ence or return electrode refers to a hypothesis that brain regions near
these electrodes are not central in any neurophysiological or behav-
ioral changes.>'**> However, dun'n% tDCS, current passes through all
brain regions between electrodes.”*>33* “Extracephalic electrode”
indicates a position on or below the neck, which does not cancel
the effect this electrode can produce (changes in exitability) on the
ventral surface of the brain and in deep brain structures. >

tDCS ELECTRODES

The traditional electrodes used for tDCS are each made from
a conductive rubber or metal plate separated from the skin by a
saline-soaked sponge or paste.>! Note that in electrochemistry
the conductive rubber or plate would be the electrode, whereas
the saline, gel, or paste would be the electrolyte,>* but in tDCS lit-
erature, the entire assembly is called the electrode. Therefore, in
tDCS, when electrode size is described (eg, 5 x 5 cm?), it is the
interface between the skin and the electrolyte. Nonetheless, the
configuration of all electrode component dimensions and mate-
rials is important to control and document as this affects
tolerability.>!**3° The thickness of the sponge or paste effectively
controls the minimum distance between the conductible rubber or
metal and the skin. Contact of conductive rubber or metal with
skin during tDCS is avoided as this decreases tolerability and in-
troduces risk of lasting skin irritation.
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FIGURE 1. Timeline of tDCS innovations: technology and regulatory milestones. CE mark indicates Conformité Européene Marking; FDA QS,
Food and Drug Administration Quality Systems; fMRI, functional magnetic resonance imaging; HD, high definition/density.

Single-use electrodes are advantageous. In any case, the electro-
lyte is not reused (as it dehydrates, its properties will change). Elec-
trodes typically positioned based on the electroencephalography
(EEG) 10/10 system (eg, anode of F3) through customized placement
based on neuronavigated,*®** functional,** nonneuronavigated,**
or image-based approaches (eg, EEG reciprocity®>***%) have
been developed. Either the headgear is designed to support the de-
termination electrodes positions (eg, a cap or marked straps*>*?),
or the headgear is generic (eg, rubber bands’"), and independent
measurement is used to position the electrodes.

HD-tDCS ELECTRODES AND MONTAGES

In transcranial electrical stimulation, smaller electrodes are
called high-definition (HD) electrodes®* and typically are made
from small circular Ag/AgCl electrode separated from the skin by
a gel contained in a plastic cylinder.>® The plastic cylinder controls
the distance between the electrode and the skin. Because they are
smaller, use of HD electrodes for tDCS allows more precision in
electrode position®* and the option to use more electrodes.?>>>7

The 4 x 1 HD-tDCS montage uses 1 center electrode sur-
rounded by 4 electrodes (Fig. 2) of the opposite polarity, with
the intention to target cortical regions.?**%~%* Bipolar HD-tDCS
montages (1 anode and 1 cathode) when electrodes are positioned
closely can be used to probe the role of current direction across the
cortex>* and when electrodes are positioned across the head to
maximize brain current flow.?> Increasing the number of HD elec-
trodes can support multifocal stimulation.®>7-64-67

tDCS DOSE AND CURRENT FLOW MODELING

Electrode size and position on the scalp along with the cur-
rent applied to each electrode conventionally define tDCS dose.®®
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Transcranial direct current stimulation dose, along with head anat-
omy, determines the resulting current flow (intensity and pattern)
in the brain and in turn affects resulting neurophysiological and
behavioral changes.69 Indeed, the canonical studies establishing
the neuromodulation actions of tDCS did so by showing dose
(electrode montage)-specific effects.® Yet, systematic ongoing
studies have characterized additional factors beyond electrode mon-
tage such as brain state,”®”! interindividual differences,”>747+7
and nonmonotonic (eg, “more is not always better”’*’®) dose re-
sponse. This complexity of tDCS dose-response is in line with other
forms of brain stimulation,”® ®! whereas the sensitivity to brain state
is consistent with hypothesized mechanisms of actions.®> Notably,
in contrast to other common forms of clinical brain stimulation (re-
petitive transcranial magnetic stimulation, electroconvulsive ther-
apy, deep brain stimulation, etc), tDCS is not typically titrated on
subject-specific basis; ongoing research on methods to individual-
ize tDCS dose is warranted. %383

For a given dose and anatomy, computational models predict
the resulting current flow (electric field distribution) in the brain
(Fig. 2). Computational models have been developed*-2>-3457-86-89
and repeatedly validated®>°°* over a decade. It is important not to
conflate established montage-specific effects (eg, “shaping” the
outcomes of stimulation’*) with demonstration of focality (eg, cur-
rent delivery to 1 region of interest). Rather, models of conventional
tDCS and HD-tDCS support testing hypothesis linking brain re-
gions to neurophysiologic or behavioral changes.” This includes
registering results from current flow models with imaging data.’®

tDCS BIOPHYSICS

Although there are open questions about the mechanisms
and efficacy of tDCS for varied indications and the biophysics
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CURRENT SPREAD THROUGH TISSUES DURING TDCS

(1) J spreads & shunts through skin. Colored lines represent
flow within the selected tissue

e

i e
(2) J dives & spreads through fat  (3) J dives through skull
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Current density (J) spreads and shunts throughout superficial
tissues before a fraction reaches the cortex. Current flow during a

4x1 HD-tDCS montage is demonstrated by streamlines tracing J.

FIGURE 2. lllustration of current spreading and shunting through superficial tissues. Streamlines seeded under the electrodes trace current
density as it loops from anode to cathode. Line diameter is logarithmic with intensity. Insets (1) through (5) isolate and desaturate current
outside the tissue of interest. Only a fraction of the current delivered during tDCS reaches the cortex. In the 4 x 1 HD-tDCS example, the center
anode and surround cathodes (or vice versa) are in close proximity on the scalp surface. Much of the current shunts through skin but a
fraction of the current spreads into deeper tissues and eventually into the cortex.

of tDCS related to current delivery to the brain, the resulting po-
larization of neuronal membranes is well established.””*® Cur-
rent that is passed through tDCS electrodes takes a path
through the head determined by the head anatomy and the resis-
tivity of each tissue type. A fraction of the current never crosses
the resistive cranium, instead shunting across the relativity-
conducive (low resistivity) scalp.”! Of the current fraction that
crosses the skull, a further portion is shunted by the high-
conductivity cerebrospinal fluid. The current component that
reaches the brain crosses the gray and then white matter. As cur-
rent crosses brain tissue, it generates an electric field on the lo-
cal tissue. Neurons are exposed to and so stimulated by local
electric field. The current intensity is not uniform across the
brain, and so the electric field intensity is also distributed. The
peak electric field in the brain during 2-mA tDCS is 0.5 to 1 V/m
based on intracranial recording in subjects validating current flow
models.***>% For conventional tDCS, this peak may be in a brain
region between electrodes.

The direction of current flow across the gray matter can be
radial inward (from the pial surface toward gray/white matter
boundary), radial outward, or tangential (along the gray matter).”
Current flow will polarize neuron in a compartment-specific man-
ner (ie, the soma, dendrites, axon of a single neuron may be polar-
ized differently'°*!°"). The magnitude and direction of the electric
field generated in the graz matter determine the polarization of
neuronal compartments.'®* Radial inward current will depolarize
the somas of cortical pyramidal neurons ~0.2 mV per V/m of elec-
tric field, whereas radial outward current will hyperpolarize the
cortical pyramidal neurons somas by —0.2 mV per V/m.'% Radial
inward/outward current is expected to increase/decrease the firing
rate of these neurons because of somatic polarization.!*!% Each
neuronal compartment will be polarized, depending on the mor-
phology of the neuron.!%%1%7 Electric field will polarize axon ter-
minals (synapses) oriented parallel to the field direction ~1 mV
per V/m,"®® which can then influence synaptic function,'?”-'9%-11!

© 2018 Wolters Kluwer Health, Inc. All rights reserved.

The neurophysiological and so behavioral consequences of
tDCS will depend on how this polarization influences excitability
and plasticity.!'? Because tDCS produces only incremental mem-
brane polarization, the cellular effects of tDCS on brain function
will depend on ongoing activity.?*!'*~1!> These effects may then
be amplified over time (tens of minutes''®~''¥). The organization
of neurons in active networks with emergent properties such as os-
cillations will influence the aggregate effects of tDCS."'*!'? The
ultimate consequences of tDCS on macroscopic measures of neu-
rophysiology (eg, transcranial magnetic stimulation) and behavior
(eg, therapy) will be complex,>*!2%-123 but ongoing research about
such changes should not be confused with debate about the bio-
physics of current flow and resulting membrane polarization.

SAFETY AND TOLERABILITY OF tDCS DEVICES

The tolerability of any intervention depends not simply on
the device and dose, but on protocol including the subject's demo-
graphic and clinical characteristics (ie, inclusion/exclusion criteria
[eg, age, preexisting condition], operator training and certification,
ongoing monitoring, and parallel interventions). Therefore, the sci-
entific consensus that tDCS is safe and tolerated'>!>1:1247126 jg ex
plicitly limited to those protocols tested. Human trials of tDCS in
the United States are almost always considered nonsignificant risk
(risk comparable to daily activities). But this risk designation—
whether made by the Food and Drug Administration or by an insti-
tutional review board—must be made on a protocol-specific basis,
emphasizing that recommendation on safety and tolerability cannot
be made on any device, but must also specify the methods of use.

Transcranial direct current stimulation device design may be
considered to minimize risk to the extent they reliably control dose
and allow consistent electrode setup, when used within the limits
of established protocols. Medical-grade tDCS devices and accesso-
ries, which are designed and manufactured to internationally recog-
nized medical standards, regardless of region specific approval for
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treatment,'>?3!27 provide the highest standard of control in regard
to reliability.

HOME-BASED tDCS DEVICES

A theoretical advantage of tDCS is deployability. Factors
such as cost, portability, safety, and ease of use allow tDCS to
be used in a wide range of clinical environments and at home.'?®
However, devices designed for use by certified operators at re-
search or clinical centers may not be suitable across deployed con-
ditions. To address this concern, standards for remote-supervised
tDCS have been developed'?® and validated.'?"'** The principle
of remote-supervised tDCS is, under continuous medical or re-
search supervision, to control compliance, proper dose control,
and risk. Features of suitable device include mechanisms to limit
dose (eg, one 2-mA, 20-minute session per day) and simple and
robust method to prepare and apply electrodes (eg, single-use
presaturated snap electrodes and single-position headgear). While
the ethics and merits of self-administered tDCS (outside medical
or research supervision) are discussed,'>'™'3* specifications for
tDCS devices that minimize risk have been developed.?®
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