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Background: Neuropsychiatric disorders are a leading source of disability and require novel treatments
that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit
activity, neuromodulation approaches are of increasing interest given their potential for manipulating
circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial
direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation,
tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities.
Objective: This report seeks to promote the science, technology and effective clinical applications of
these modalities, identify research challenges, and suggest approaches for addressing these needs in
order to achieve rigorous, reproducible findings that can advance clinical treatment.
Methods: The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that
brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices,
and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies
and technical strategies for optimizing stimulation protocols, and the state of the science with respect to
therapeutic applications and trial designs.
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Results: Advances in understanding mechanisms, methodological and technological improvements
(e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs
are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of
challenges were identified and meeting participants made recommendations made to address them.
Conclusions: These recommendations align with requirements in NIMH funding opportunity announce-
ments to, among other needs, define dosimetry, demonstrate dose/response relationships, implement
rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement
when testing stimulation-based interventions for the treatment of mental disorders.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Neuropsychiatric disorders are a leading source of disability that
require novel treatments targeting mechanisms of disease. Histor-
ically, the predominant focus in psychiatry has been psychophar-
macology and psychosocial treatments. As the pathophysiology of
mental disorders is poorly understood, clinical trials were often
pragmatic comparisons of new therapeutic interventions vs. pla-
cebo. By virtue of their design, clinical trials, particularly failed
trials, yielded little knowledge of mechanisms of disease. Accord-
ingly, the National Institute of Mental Health (NIMH) recently
adopted an experimental medicine approach to clinical trials that
uses interventions as probes of specific therapeutic targets and
disease mechanisms. NIMH funded trials now require an explicit
target, dose optimization, and demonstration of adequate target
engagement, as specified in go/no-go criteria, prior to testing
clinical efficacy [1]. This phased approach is expected to help
validate or invalidate the targets being tested and ensure that both
positive and negative trials are scientifically informative.

Disordered circuitry has been increasingly implicated in the
pathoetiology of neuropsychiatric disorders. This has increased
interest in neurostimulation approaches, given their potential for
manipulating circuits directly, either alone or by enhancing the
effects of other interventions [2]. Extending the experimental
medicine approach to these modalities has raised issues of how
best to define and optimize dose, demonstrate target engagement,
and achieve rigorous design.

In recent years, a dramatic increase in the number of studies
employing transcranial direct current stimulation (tDCS) to alter
brain excitability and behavior [3] has stimulated interest in
developing therapeutic applications of these techniques. tDCS is of
particular interest given its high level of safety and tolerability [4],
low cost, and portability. Because of an increased recognition of the
involvement of neural oscillations in cognition and behavioral
states [5], transcranial alternating current stimulation (tACS) has
attracted interest as an approach for manipulating oscillations and
synchronizing neural activity underlying cognition [6]. Ensuring
the reproducibility and veracity of research findings involving these
techniques is essential to their development for therapeutic
application [7].

To promote the development of these approaches, NIMH spon-
sored a workshop “Transcranial Electrical Stimulation (tES):
Mechanisms, Technologies and Therapeutic Applications” held on
September 29e30, 2016 at the NIH in Bethesda, Maryland. The
primary focus was on contemporary forms of low intensity elec-
trical stimulation used in research and clinical applications over the
last decadedspecifically, tDCS and tACS. The agenda was organized
around NIMH's strategic research priorities which include the
development of novel interventions for reducing the burden of
mental illness and furthering an understanding of mechanisms
through which these interventions impact behavior. An organizing
committee comprised of NIMH staff and tES experts was formed
and input fromprogramofficials in NIMH's divisions of translational
and basic research solicited to develop a list of speakers and major
themes for theworkshop. Experts in basic and clinical neuroscience,
noninvasive brain stimulation technologies, and clinical trials met
in a public forum to examine the physiological mechanisms of tDCS/
tACS, the technologies and technical strategies for optimizing
treatment protocols, and the state of the science with respect to
therapeutic applications and trial designs.

Each section of the workshop included several presentations
followed by discussion sessions during which issues raised by both
speakers and a broad audience were considered. Questions and
comments were solicited during the discussion session following
each panel from those attending in person and online via publicly
accessible videowebcast. Following this, each speakerwas invited to
submit a brief writeup reflecting his/her presentation and its dis-
cussion for consolidation into a workshop report. Discussions
focused on identifying research gaps, obstacles and opportunities,
and establishing rigor and reproducibility. A draft report was
reviewed by all authors. Issues raised went back to the larger group
of authors in an iterative process until the group reached concur-
rence on the version that was submitted for publication. This report
represents the state-of-the-science in the areas considered, iden-
tifies research challenges, and suggests avenues for addressing them.

Physiological mechanisms

The two common modalities of transcranial electrical stimula-
tion (tES) are constant current (tDCS) or charge-balanced, alter-
nating currents (tACS). The mechanisms of actions of these
modalities are likely different. tDCS is thought to affect neuronal
excitability [7,8] and the main outstanding question is how effects
extend beyond the period of stimulation, perhaps via synaptic
plasticity. tACS is thought to interact acutely with ongoing oscilla-
tory activity in the brain and the main research question is how the
stimulation parameters should be chosen to achieve optimal
efficacy and ensure that changes in oscillations persist after stim-
ulation [5,6].

Effects of tDCS on synaptic plasticity

Long term effects of tDCS have often been attributed to synaptic
plasticity. A number of human and animal studies provide support
for this hypothesis [7,9,10], but the underlying cellular mechanisms
have yet to be established. In animal studies, direct current stim-
ulation (DCS) has been shown to modulate long-term potentiation
(LTP) and long-term depression (LTD) effects on synaptic efficacy,
either by boosting ongoing plasticity (e.g., produced with specific
pulsed stimulation protocols) [11,12] or, in some reports, de novo
induction of LTP/LTD, even when applied to inactive brain slices
(10,13). What is not clear is whether such de novo non-specific ef-
fects can explain the apparently specific effects of tDCS reported in
behavioral and clinical studies [14]. tDCS can also modulate the
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efficacy of LTP when applied either concurrent with or before (pre)
the specific pulsed stimulation protocols [15e17]. However, in
these paradigms where tDCS preceded LTP induction, it is not clear
how this priming effect operates. One hypothesis is that tDCS in-
creases slow-acting brain-derived neurotrophic factor (BDNF)
release [12,16,17]. The effects on LTP may also be mediated by glial
function [18]. Some DCS effects depend on the N-methyl-D-aspar-
tate (NMDA) receptor in the case of LTP [11,12,17,19] and on the
metabotropic glutamate (mGlu) receptor in the case of LTD [13]. A
similar dependence on NMDA receptor has been found for LTD-like
plasticity observed in human studies (e.g., [10,20]) although one
should be careful not to over-interpret these similarities. The net
effects of stimulation in humans are likely to have more complex
causes than what is observed in reduced animal experiments. MR
spectroscopy has documented polarity-sensitive effects of tDCS on
gamma-aminobutyric acid (GABA) such that anodal tDCS reduces
GABA locally, while cathodal stimulation reduces glutamatergic
activity [21]. In total, while the involvement of various signaling
pathways has been demonstrated, it is not clear exactly how elec-
tric stimulation engages synaptic signaling.

One detailed mechanistic hypothesis posits that tDCS polarizes
the cellular membrane [22], affecting LTP through the voltage-
dependent NMDA channel. Consistent with this, even brief pair-
ing of DCS with concurrent pulsed stimulation protocols can affect
LTP and LTD, with the polarity of the effect depending on the
specific neuronal compartment and stimulation protocol [11].
Contrary to some previous work (above), here tDCS was not able to
act alone, but required plasticity induction. Additional in vitro and
in vivo experiments are needed, along with computational
modeling to reconcile the apparent conflicts in the current litera-
ture and to elaborate detailed mechanistic hypotheses at the
cellular and network level. Based on the available data, the effect of
tDCS in humans is postulated to be task specific because of the need
for activation in the targeted pathway to produce synaptic modu-
lation. Thus, it is expected that the most effective tDCS in-
terventions in humans will be those that pair stimulation with a
concurrent adaptation or learning protocol.

Interaction of tACS with ongoing brain rhythms

tACS employs sine-wave stimulation waveforms motivated by
the rhythmic structure of endogenous brain activity [5,23e25]. The
resulting periodic modulation of the neuronal membrane voltage is
hypothesized to synergistically interact with the rhythmic depo-
larization associated with network oscillations in the brain. Thus,
the strongest enhancement of brain rhythms is expected for tACS
waveforms that match the frequency of the targeted endogenous
oscillation. As a corollary to this presumed mechanism of action,
tACS offers a degree of specificity in terms of target engagement by
choice of the stimulation frequency that tDCS inherently lacks.
Dynamical systems theory provides support for this mechanism of
action since it suggests that even weak time-locked periodic
stimulation can affect the rhythmic behavior of the targeted system
[26]. Indeed, animal model studies support such interaction be-
tween weak periodic fields and endogenous oscillations (e.g.,
[24,25,27]). Specifically, the so-called “Arnold tongue” [23,28,29]
predicts that if the frequencies of the endogenous activity and the
stimulation input are similar, very low stimulation amplitudes can
achieve synchronization of the system with the applied perturba-
tion [5,30]. Many tACS studies are implicitly based on this model by
using (individual) peak EEG frequencies as the stimulation fre-
quency. It is noteworthy that the Arnold tongue has yet to be
confirmed as the target engagement mechanism of tACS in exper-
imental studies in animal models and human participants [6]. Of
note, low-amplitude periodic stimulation can also enhance
oscillations at the intrinsic oscillation frequency (in addition or
instead of synchronization of the stimulation frequency). This
suggests that mechanisms other than the Arnold tongue are
involved in shaping target engagement of network oscillations by
tACS. Most importantly, the effects of stimulation are state
dependent [31,32]; in particular, the presence of a strong endoge-
nous oscillation may alter or even limit the effect of stimulation
[31e34]. Furthermore, the timing of firing of individual action po-
tentials and the modulation of rhythms coupled to the targeted
oscillation have also been observed in reduced animal preparations
[5,29].

Methods and technology

Reproducibility

Reproducibility is critical to research. Several common technical
issues can undermine the reproducibility of tDCS effects within and
across studies, including: 1) variability in electrode location and
placement, 2) inconsistencies in electrode preparation, 3) insuffi-
cient operator training, and 4) insufficient protocol reporting. For a
comprehensive technical guide to tES, please seeWoods et al., 2016
[35]. Examples of reporting sheets for tES have been proposed
([36]; http://www.neurologie.uni-goettingen.de/downloads.html).

Electrode location and placement. Variation in location of
electrodes can result in significant differences in where and how
much current is delivered to the brain [37e40]. Nitsche and Paulus
(2000) demonstrated that differences in electrode placement
determined whether or not tDCS affected transcranial magnetic
stimulation (TMS)-generated motor-evoked potentials (MEPs) [40].
Numerous modeling studies have demonstrated that electrode
placement determines where stimulation occurs with results vary-
ing from stimulation of the whole brain (including brain stem and
subcortical structures) to more selective stimulation of particular
areas of cortex [37e39]. In some cases, as little as 1 cm of change in
electrode position significantly altered the distribution of predicted
current flow in the brain, as well as the intensity of stimulation in
specific brain regions [39]. Thus, careful selection of electrode sites
and stable placement of the electrodes throughout the stimulation
session is central to reproducibility of tDCS effects [35]. For repeated
studies within subjects, careful placement will help maintain con-
sistency of stimulation across time. However, the current delivered
to the scalp does not provide sufficient information about the
electric fields generated in the brain nor does careful placement of
scalp electrodes, e.g., via the 10e20 system, guarantee consistency
in the electric fields generated across subjects. (See section on
Computational models and tES dose optimization below.)

The proportional International Electrode Placement system [41]
provides a quick method for consistent placement of electrodes
across different head sizes and shapes and serves as a current
standard for placement of recording electrodes on the scalp. This
method uses a series of measurements taken from common
anatomical locations (e.g., inion, nasion, intraocular notch), applies
percentage values of the measured distance between these land-
marks (e.g., 5, 10, or 20%), and uses subsequent measurements
along a grid to identify specific locations on the head (e.g., F3, F4,
etc.). This method can take as little as a few minutes to identify a
pair of desired locations on the head.

Once these locations are identified, the electrode assemblymust
be affixed to the head for delivery of current. For tES using sponge-
covered electrodes, elastic straps are the most commonly used
head-gear for electrode placement [42]. If these straps are under- or
over-tightened, electrodes tend to move over the course of a tDCS
session. Thus, the distribution of current delivery can change over
the duration of a tDCS session [39]. This directly undermines tDCS
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replicability. Furthermore, if electrode straps are over-tightened,
there is an increased probability of evacuation of saline from the
electrode sponges [35] which may affect both efficacy and tolera-
bility [43].

Electrode preparation. Saline is the most commonly used con-
ducting contact medium (electrolyte) for delivering current to the
scalp through an electrode, typically a sponge-based electrode.
Oversaturation of the sponge, one of the most common mistakes in
tES electrode preparation, significantly undermines the reproduc-
ibility of tES application and effects [35]. When sponges are over-
saturated, saline is evacuated from the sponge and covers an area
of the scalp outside of the electrode-sponge surface area. Rather
than delivering current through a specified surface area on the scalp
under the electrode (e.g., 5� 5 cm), the area of current delivery now
encompasses the entire area of the scalp that is covered in saline.
This creates an unreproducible amorphous area of current delivery
within and between subjects. This can be avoided with careful
measurement and application of saline using a plastic disposable
syringewithmL/ccmeasurements present on the syringe. Using this
method, an exact amount of saline can be delivered to the electrode
sponge and calibrated to optimize impedance but avoid evacuation
of saline from the sponge. This exact measure of saline should be
reported in manuscripts to improve reproducibility across labora-
tories [35]. Attention to the headgear used (e.g., designed for tES
rather than ad hoc straps) also helps control this phenomenon. The
use of a thick electrode conductance paste (e.g., Ten20 paste)
applied directly to the biocarbon electrodes is an alternative prep-
aration approach that avoids issues associated with saline and
oversaturation. Thickness of the application of paste should be
sufficient to not allow the electrode to directly contact the skin,
which could result in skin burns. Impedance levels�1 kOhm can be
obtained consistently and maintained over several hours. However,
unlike saline, paste must be placed on the skin approximately ½
hour prior to stimulation delivery, as paste requires a longer period
of time to saturate the skin and reach appropriately low impedance
levels. Practically, High Definition (HD) approaches have been
shown to offer comparable or superior tolerability [44e47] with
unique features for sham control [48]. With regard to reproduc-
ibility, issues such as position-drift, saline-leak, and atypical skin
irritation [35,39] can also be mitigated by precise positioning of and
use of gel with HD electrodes in specialized caps equipped with
electrode holders. Ultimately, selection of contact medium and
electrode type (sponge-encased vs. HD) depends on the desired
goals and treatment targets of the study or trial, as well as the design
limitations inherent within a given application. Regardless, the ap-
proaches described above provide important considerations for
rigorous electrode preparation.

Operator training. Although tES is, in principle, a simple tech-
nique and the operation of the device is relatively easy, developing
skills to administer tES requires comprehensive, multiple-step
training. As tES has not yet been integrated into routine medical
practice, it is not included in medical graduate or postgraduate
education. Well-trained tES personnel should be proficient in the
following aspects of tES application i) the theoretical background of
tES, ii) principles and rationale of tES use in specific populations, iii)
dose, target, and stimulation protocol determination, iv) selection
of subjects, v) safety evidence and safety precautions pertaining to
tES delivery, vi) preparation and positioning of the electrodes,
preparation and operation of the tES unit, vii) outcome monitoring
and recording, including recording and reporting adverse events.
Exposing subjects to tES delivered by personnel lacking sufficient
practice and training would not be in keeping with best practices
and may significantly hinder replicability [4,35].

Protocol reporting. Insufficient reporting of protocol parame-
ters and procedures in the methods of published tES studies is
unfortunately common, reducing the potential for study replica-
tion. For studies to be reproducible across labs, authorsmust report,
at a minimum, key features of dose [49] and electrode preparation:
number of electrodes, location of electrodes and method of place-
ment, electrode size, contact medium type, amount of contact
medium applied, duration of stimulation, intensity of stimulation,
stimulation frequency/waveform, current ramp up/down period,
subject's activity during stimulation (engaged in activity vs. at rest),
and the timing of outcome assessment relative to tES [35].

Masking

Masking (aka ‘blinding’) refers to the techniques used to keep
participants and study personnel unaware of the intervention
administered. Masking is critical for avoiding observer bias and
resultant exaggeration of treatment effects. Just as placebo-
controlled trials are fundamental for proving drug effectiveness in
pharmacological research, masking both experimenters and sub-
jects to tES condition is important for establishing study validity
and preventing false positive conclusions regarding the efficacy of
tES. For tDCS/tACS interventions, placebo control generally consists
of sham stimulation inwhich an electrical current that can be felt is
applied (ramping up and down) at the beginning of a session. Due
to sensory adaptation and other unknown factors, this approach is
thought to be effective in maintaining the mask since participants
may be less likely to distinguish the active treatment from a sham
condition in which no current is delivered and no attempts at
mimicking scalp sensations are present.

A reviewwas conducted to determine the frequency with which
masking is reported in the tDCS intervention literature. Relying
upon reporting guidelines available through the Enhancing the
Quality and Transparency Of Health Research (EQUATOR) Network,
the Cochrane Collaboration tool for assessing Risk Of Bias [50], and
guidelines from the tDCS community (e.g., [35,51,52]), the review
focused on the following: utilization of a sham or other control
condition and masking of participants, tDCS administrators, as-
sessors, and raters. Binary coding (reported¼ 1, not reported¼ 0)
was used, and when a study reported upon one of the areas of
interest, details were recorded to allow for adequate description.

Of the 206 articles (published at the time of this submission)
reviewed, 84% (N¼ 173) reported using a sham or other masking
condition. Of those 173 articles, 84% reported use of the approach
suggested by Gandiga, Hummel, & Cohen [53] - an initial brief
presentation of the experimental current, though occurrence and
parameters for ramping were inconsistently reported. Other
approaches involved different combinations of duration (initial,
partial, full, intermittent), current level, opposite polarity, and/or
off-target locations or were not specified. Administrator-level
masking was reported for 39% of this study subset via device
characteristics (e.g., built-in sham capability) or low-/no-tech ap-
proaches (e.g., covering device screen). Effectiveness of these
masking approaches was assessed in 25% and 1.2% of studies at the
participant- and administrator-level, respectively. There was min-
imal reporting of masking of assessors (8%) and raters (3.4%).
Finally, despite repeated recommendations in the tDCS community
to record sensations and adverse events (AEs), only 33% of the
studies reviewed reported collection of these variables.

There remains inconsistency in the protocols used for the sham
arm including the use of one ramp up-down (e.g., 10e30 s linear
current ramp to the target intensity immediately followed by a
10e30 s linear current ramp down) at the start of stimulation, two
ramp up-downs at the start and end, or ramp up-downs random-
ized during the session [54e57]. The rate of ramp slope, peak ramp
value, and current used during the sham off-phase (which cannot
be zero if impedance is monitored and in some cases, is
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intentionally not minimized) should be reported and carefully
considered. Design and preparation of electrodes (see above) de-
termines sensation in the active and sham arms such that control
and reporting electrode details is needed for reproducibility of trial
outcomes.

We recommend the use of a masking checklist in study design,
reporting, and assessment of study validity. The checklist should
include the following items: rationale for and description of sham
condition; participant characteristics relevant to sham effective-
ness (i.e., naive/experienced, old/young); description of masking
procedures for participants, administrators, assessors, and raters;
and procedures for monitoring masking/unmasking, followed by a
report of when and for whom unmasking occurred and why. We
reiterate various EQUATOR recommendations and discourage
authors from using the uninformative terms “single blind” and
“double blind” without providing details about which individuals
were masked and how the masking was implemented. Given the
limited effectiveness of sham conditions at higher currents deliv-
ered through single electrodes, further encouraged is the devel-
opment of sham and experimental conditions that leverage high-
definition (HD)-tDCS capabilities, where the smaller electrodes
may reduce sensations and activate overall fewer receptive fields
(e.g., [58,59]), and reducing intensity delivered through these
electrodes corresponds to reductions in sensations [48]. Modeling
demonstrates that total current can be delivered across functional
sets [48,56,60,61], still delivering the intended current to brain
areas of interest while effectively reducing the voltage through a
single electrode and resultant scalp sensations. While it may not be
possible or feasible to incorporate all recommendations, this re-
view suggests that maskingmethods can be improved substantially
and that the reporting of masking efforts should increase in infor-
mation and precision. It should be noted that this is particularly
critical in single-session, crossover designs where the same subject
will be exposed to both active and sham stimulations [54,62].

Computational models and tES dose optimization

Computational models of tESdincluding tDCS, tACS, and elec-
troconvulsive therapy (ECT),dcan help to address two key issues for
rigor and reproducibility, namely spatial targeting and individuali-
zation of dosing. Regarding spatial targeting of specific brain re-
gions, tES is often rationalized based onmodulating the activity of a
specific brain region implicated in the illness, with the assumption
that stimulating this brain region will bring about desired benefits.
A majority of tES studies approach this challenge by placing a large
(compared to the brain region) electrode on a scalp location broadly
“over” the brain target. The second issue aided by computational
models is the individualization of electrode placement. A majority
of tDCS/tACS do not vary stimulation dose with the subject/patient,
which may result in varied target modulation [63]. Electroconvul-
sive therapy (ECT) typically individualizes dosage by varying the
duration and frequency of the stimulus train. However, the ECT
pulse current amplitude and pulse widthdkey determinants of the
induced stimulation strength in the braindremain fixed across
individuals. The fixed stimulus current amplitude results in differ-
ential dosing in the brain, potentially contributing to variability in
outcome [64].Without consistentmodulation of clinical targets, the
efficacy and reproducibility of tES trials may be suboptimal.

The strategies for addressing these limitations are both
doctrinal and practical. The continued use of large electrodes
placed on opposite sides of the head, which may result in current
flow through extensive volumes of the cortex and deep brain
[65,66] is encouraged by experience (e.g., positive outcomes from
prior trials) and the simplicity of using two-electrode devices (e.g.
sponges positioned with rubber straps for tDCS, or large steel disc
electrodes for ECT [35]). Relatively few studies adopt High-
Definition (HD) montages wherein arrays of smaller electrodes
can steer current during tDCS [46,67e70] and tACS [71,72] for
presumed increased focality [73]. Even with two large electrodes,
there is significant sophistication in the use and optimization of
approaches using two large electrodes either to intentionally
engage a broad network [74,75] or maximally stimulate a given
brain region without necessarily optimized focality [76e80].
Nonetheless, computational models are important to rationalize
and quantify the stated hypothesis of a tES trial. Given this ubiq-
uitous need, access to robust and simple-to-use modeling soft-
ware, including software that can automatically process imaging
data in a manner that is suited for current flow modeling, repre-
sents a gap, in contrast to the ready availability of conventional
image segmentation tools.

Over a decade, significant progress has been made in translating
computational models to practice [81,82]. With regard to model
validation, numerous studies [73,83e85] have confirmed the
general model predictions illustrated in Fig. 1–that large electrodes
produce diffuse current flow, while small electrode arrays may
yield categorical increases in focality. Notably, intracranial re-
cordings in humans demonstrate that models are fairly accurate in
predicting distribution of electric fields across the brain (with
correlation of predicted and measured fields around r¼ 0.81) [86].
Neurophysiological studies have also confirmed that individual
differences can be predicted and controlled through the use of
models [73]. In pediatric studies, computational models have sug-
gested a need for reduced stimulation intensity [38,87]. Computa-
tional models have been used to design montages to direct current
flow through lesioned brains following stroke [60]. Ongoing efforts
to increase access to computational models include basic graphical-
user interfaces (GUI) [88], packaged engineering tools [89,90], the
development of standards [91], and importantly, algorithms that
will reduce the computational burden [78] and automate image
processing for individual electric field modeling [92,93].

There are straightforward strategies for addressing remaining
gaps in translating computational models into practice: educate the
scientific community (e.g., journal and grant reviewers) regarding
the role of computational models in hypothesis-driven tES research,
support initiatives to create new tools, and promote the use of
enhanced methodology. Failure to leverage computational models
in tES research for pragmatic reasons can be addressed by providing
and enhancing access to easy-to-use computational models that can
design individualized and optimized montages for a given target
region. Continued use of ad hoc electrode montages can be justified,
for example, based on prior empirical success with a givenmontage,
but claims that prior outcomes reflect modulation of a specific brain
region may be hard to justify. “Functional targeting” [14] allows for
modulation of an active network without targeted brain current
flow, but the selection of stimulation dose should always be ratio-
nalized. Additional important innovations relate to computational
neurostimulation, where models of current flow are linked to
neuronal and, ultimately, behavioral models [94,95], and new
algorithms link neurophysiological data with stimulation strategies
(e.g., EEG-guided tES) [91,96e98]. Rising concerns about rigor and
reproducibility render the adoption of computational models
imperative, supporting consideration of when the use of conven-
tional pad or HD montages are appropriate. Uninformed and
misguided electric fields are one of the many possible causes of
variability in tDCS/tACS research [99e103] that can be readily con-
strained with the use of computational models. Importantly,
recognizing that computational models are an evolving tool to
support rational hypothesis-driven experimentation (not ends in
themselves) makes these models pivotal in enhancing the rigor and
reproducibility of tES research.



Fig. 1. Common tDCS/tACS montages and corresponding simulated electric field distribution. A. M1-SO configuration: Sponge electrodes, one over left primary motor cortex,
one over the contralateral supraorbital ridge. B. Bilateral dorsolateral prefrontal cortex configuration: Sponge electrodes over the F3 and F4 EEG sites. C. 4� 1 HD-tDCS M1
configuration: High-definition electrodes, one over M1, four return electrodes surrounding the center electrode. The electric field was simulated with a current amplitude of 1mA.
Electric field simulation was performed using SimNIBS 2.0.1 [191].
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Important questions remain about the utility of models either for
montage design for a trial or individualizing current per subject
[104]; however, these unknowns are not an excuse to not use
models to the extent practical. For example, an important challenge
is relating regional brain current flow with resulting changes in
neuronal information processing and ultimately behavior. Efforts
to bridge dose to behavior, also called computational neuro-
stimulation, are ongoing. At the moment, the (implicit) assumption
across applications using models is that brain regions respond in a
monotonic/linear fashion with local current flow (electric field) in-
tensity [105], such that increasing current delivered to a given brain
region increases efficacy regardless of brain state and disregarding
connectivity with other brain regions. Although this assumption is
increasingly challenged by dose-response studies [106,107], at a
more basic level one can assume brain regions receiving little cur-
rent flow are spared direct effects of stimulation. For all these open
questions on how to leveragemodels, they remain readily accessible
and useful tools to support hypothesis-driven trials and indeed
address questions on dose-response.
Remotely-supervised tDCS: at-home use for clinical trials

A growing number of potential clinical applications of tDCS are
under investigation. To guide optimal clinical use, trials with
repeated administration over multiple sessions are needed to un-
derstand tDCS behavioral effects. To enable trial designs with larger
sample sizes and extended treatment sessions, a protocol for
remotely-supervised or “RS” tDCS administration has been devel-
oped to meet pre-established guidelines for home use [108]. This
RS-tDCS protocol [109] provides treatment to participants at home
using real-time monitoring through videoconferencing. Procedures
include baseline screening and tolerabilty testing, followed by
training in device operation. Participants are then sent home with
study equipment for remote operation. Headgear is designed for
easy and uniform placement (currently, dorsolateral prefrontal
cortexmontage)withmarkers to guide consistent electrode location
custom-designed for self-administration. tDCS devices are pre-
programmed to deliver a preset “session” of a specific current
“dose” (or sham), activated with a one-time use code that is pro-
vided by the study technician. Extensive safety and stop criteria are
followed to prevent any adverse events or misuse, and safety and
tolerability are measured before, during, and after each session.
Stimulation can be paired with tele-rehabilitation such as cognitive
remediation via computer or other cognitive or physical exercises.
Discontinuation criteria include the experience of pain or adverse
events above a predefined intensity (e.g., seven out of 10) at any
point.

The RS-tDCS protocol has been validated for use in individuals
with mutliple sclerosis (MS) [110] and Parkinson's disease (PD)
across a wide range of ages (18e73 years) and levels of neurologic
disability, incuding those who are wheelchair-dependent, and with
the use of a caregiver-proxy for headset placement and device
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operation. In total, 624 sessions have been completed using the
RS-tDCS protocol. No session has been discontinued. Across studies,
three participants have been discontinued and one has voluntarily
withdrawn from the study resulting in an overall completion rate of
93%. The RS-tDCS protocol is safe and tolerable in both MS and PD
participants, at both 1.5 and 2.0mA stimulation intensity, and
including sham. The most common side effects reported are skin
tingling and itching.

A challenge to the uniformity of the set-up and reliance on self-
placement is the potential for slight variance in electrode location
across individuals. Further precision for electrode placement
within individuals across uses is also needed to ensure reproducible
behavioral effects. In addition, neuroimaging-based modeling of
current flow is important to inform further headset design and
checks to guide ensure location accuracy across individuals.

Remote supervision may be appropriate for clinical study of
tDCS across central nervous system disorders for varying symp-
toms, as well as for pairing with telerehabilitation. It allows for a
larger number of tDCS treatments to be administered in a study and
offers overall scalability to answer key questions concerning
appropriate and effective use. Future clinical trials may utilize this
approach to increase the rate of recruitment with faster trial
completion. Adapting the RS-tDCS protocol for use across a range of
conditions (e.g., different montages, alternate activities during or
following stimulation) will be important.

Neuroimaging in neuromodulation studies

Functional neuroimaging can be used to enhance the effec-
tiveness of stimulation and to gain new information useful for
inferring its mechanisms of action, both of which are needed to
enhance rigor and reproducibility in tES research. As described
below, the effectiveness of stimulation has been enhanced by
identifying candidate regions and networks that are involved with
specific behavioral effects and targeting these areas with tES. It has
also been suggested that imaging may be useful for addressing
individual differences in brain anatomy and function. Various
neuroimaging methods exist that can be used to examine hemo-
dynamic, electromagnetic or neurochemical changes associated
with neurostimulation at different levels of spatial and temporal
precision.

Electrical activity can be measured using electroencephalog-
raphy (EEG) and magnetic activity measured using magnetoen-
cephalography (MEG). Both are direct measures of brain activity
with sub-millisecond temporal resolution [111]. As some examples,
EEG has been used to assess changes in neural activity during the
administration of tDCS [112] and following administration of tDCS
[33,103]. tDCS modified the strength of specific event-related po-
tential (ERP) components, suggesting a change in neuro-cognitive
responses to stimuli. More in-depth comparison is needed to un-
derstand the relationship between tES effects, changes in ERPs, and
related changes in cognition.

Successful measurement of brain activity with EEG during the
application of tACS is a contentious subject with widely different
opinions. The main problem is that the signal of interest, the brain-
derived electric field measured by the EEG, is orders of magnitude
smaller than electrical artifact resulting from the stimulation. Al-
gorithms of various complexity have been devised and successfully
tested in simulations, head phantoms, and different human data-
sets [1]. Yet, none of these approaches can directly prove that the
artifact and only the artifact is removed by this process, since the
ground truth is inherently unknown. Some recent studies argue
that successful artifact removal is not feasible with the current
methods due to nonlinearities introduced by the stimulation
hardware and other biological processes such as the heartbeat [2].
Final resolution of these conflicting perspectives has not yet been
reached.

Other studies have recorded EEG before and after the adminis-
tration of tDCS [35,113], avoiding the potential problem of artifacts
induced by simultaneous tES and EEG. Findings include that stim-
ulation of the medial frontal cortex modulates EEG indices of error
monitoring [114] and that tDCS can modulate slow EEG activity
(<3Hz) [115]. EEG has also been used to optimize tDCS protocols,
such as electrode placement for tinnitus [116] and for matching
individual alpha frequencies with tACS [117]. MEG has been used to
localize tDCS effects [118] and to show changes in network acti-
vation during rest [119] and task [120] and changes in EEG fre-
quency during tACS [121]. The combination of transcranial
magnetic stimulation (TMS) with EEG has been utilized to probe
immediate and long-term effects of tDCS on TMS-evoked potentials
(TEPs) and brain oscillations. The TMS-EEG approach can be used to
shed light on the neurophysiological processes underlying behav-
ioral changes induced by tDCS [122].

Magnetic resonance imaging (MRI) and positron emission to-
mography (PET) can provide information on structural, hemody-
namic and chemical changes associated with stimulation. For
example, tDCS over motor cortex has been found to alter fractional
anisotropy (FA) [123], which correlates with scores of motor func-
tion. Resting-state functional MRI (fMRI) in schizophrenia patients
receiving tDCS showed reduced connectivity of the left temporo-
parietal junction and the left anterior insula that correlated with
reductions in hallucinations [124]. A series of studies [125e127]
used results from fMRI to predict the effects of tDCS. These studies
identified the magnitude of change in BOLD fMRI responses asso-
ciated with learning to detect target objects in complex images and
then applied anodal or cathodal tDCS to regions showing the greater
changes in a separate group of participants. It was found that
applying anodal tDCS to brain regions that showed an increase in
BOLD fMRI response after training led to an acceleration of learning,
while targeting regions that reduced their response or showed no
significant changes had no effect relative to sham control stimula-
tion. Conversely, applying cathodal tDCS over regions that showed a
significantly reduced BOLD response after training also accelerated
learning on this task. When taken together, these studies suggest
that changes in BOLD fMRI associatedwith learningmay be useful in
optimizing protocols to enhance tDCS effects on learning rate and
guiding electrode placements to accelerate learning. FMRI has also
been used to show changes in the stimulated region concurrently
with tDCS [128e130]. Magnetic resonance spectroscopy (MRS) with
tDCS has been performed [21,131e133] and demonstrated a variety
of neurochemical effects using different tDCS protocols. Such
neurochemical changes were also correlated with changes in
network connectivity when tES was performed in between imaging
sessions [134].

Another means by which neuroimaging could be made useful for
enhancing the effects of tDCS is by using imaging as indicators of
target engagement [1,2,30]. Examples of this include imaging changes
in EEG [30] and event related potentials [1] induced by tES that are
associated with specific cognitive effects. Another example are
newly-described methods using MRI to image current flow induced
by tES [2,3]. Given that noise and other issues inherent in these
methods can be overcome, these methods may be useful for quanti-
fying the magnitude of field effects in specific anatomical regions.

While methods for applying neuroimaging to benefit stimula-
tion such as quantifying target engagement are still being devel-
oped, this should not be used as a reason to avoid their combined
use at present. Uncertainty regarding the relationship between
neuroimaging measures and specific neural or cognitive processes
are present to some extent for all neuroimaging studies. Even given
this uncertainty, neuroimaging is useful for gaining a more
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complete understanding of the effects of stimulation on neuro-
cognitive processes. There are a variety of ways that neuroimaging
can be applied to examine the effects and mechanisms of tES and
other forms of neurostimulation. Ultimately this could lead to safer
and more effective treatments for mental illnesses.

Clinical trial design and implementation

TES has been applied at rest (without engagement in a behav-
ioral task) as amonotherapy, during tasks to augment performance,
and combined with behavioral therapies. In addition, patients may
be on concurrent pharmacotherapies whose effects on tDCS are not
known. The first approach has been applied primarily in depres-
sion, following the establishment of repetitive transcranial mag-
netic stimulation (rTMS) as a therapy for treatment-resistant
depression, also generally applied at rest. The lessons learned from
the considerable work in depression apply broadly to trials focused
on other conditions, as well as to applications of tDCS in conjunc-
tion with tasks and other therapies.

tDCS depression trials: design considerations

Neuroimaging studies have identified altered activity in brain
networks in major depressive disorder that are linked to key nodes
in prefrontal cortex [135]. A growing body of evidence suggests that
tDCS with the anode applied over the left dorsolateral prefrontal
cortex has antidepressant effects, but the overall effect size from
randomized controlled trials to date is small to moderate, with
variable findings across studies [136]. While small sample sizes
partly account for this variability, other important contributory
factors, which should be closely examined tomore accurately gauge
the efficacy of tDCS and improve the treatment approach, are pa-
tient variability, differences in tDCS treatment methods, and dif-
ferences in clinical trial design.

Patients have typically been selected for trials based on a DSM-
defined diagnosis such as major depressive disorder. While this
confers a structured evaluation of the illness being treated, the DSM
diagnostic categories, based on clusters of symptoms, are hetero-
geneous, encompassing a mix of phenotypes (e.g., for depression–
melancholic, psychotic, anxious) and genotypes. Precise charac-
terization of the individual patients and/or selection of more bio-
logically homogeneous samples would likely reduce the variability
of treatment response. For example, tDCS response may be
contingent on biological factors such as inflammatory status, level
of neuroplasticity, genetic risk (evaluated by family history or even
genotype) or, as recently found in depression, pre-treatment fron-
tal-dependent neuropsychological function [137]. Failure to ac-
count for these factors may obscure the overall treatment effect of
tDCS. Adopting a standardized approach to patient evaluation
across different centers would facilitate meta-analyses based on
individual patient data, allowing for more precise understanding of
the efficacy of tDCS in different subtypes of depression or other
disorders, identification of those patients most likely to respond,
and, perhaps, customizing the tDCS treatment approach to the in-
dividual patient.

Lastly, trial design and methodology are important factors
which can result in apparent contradictions in findings between
studies. Several trial designs can be employed to verify tDCS effects.
Open label (uncontrolled) trials are often employed in pilot studies
to test the effects of novel tDCS montages [138] or effects in
different patient populations (e.g., bipolar depression) [139,140].
Controlled trials usually employ a parallel [54] or cross-over [141]
design to compare active vs. sham tDCS. Although cross-over de-
signs are more efficient than parallel designs, they risk carry-over
effects from the active to sham condition during the trial, as well
as the risk of unmasking, and, therefore, this design should be used
with caution.

Other designs permit combining tDCS with another pharma-
cological or non-pharmacological intervention. In a factorial trial,
for instance, tDCS can be compared or combined with a pharma-
cological treatment [142]. Finally, a non-inferiority trial is the
preferred design for determining whether tDCS is at least as effi-
cacious as a standard pharmacological intervention with respect to
a specified endpoint [62]. For designs comparing tDCS vs. drugs, it is
crucial to use a double-dummy approach, i.e., participants should
receive both active interventions alongwith an appropriate placebo
for each (e.g., drug and placebo, tDCS and sham) to maintain
masking. In fact, a recent non-inferiority trial using this approach
[143] showed that tDCS was not non-inferior to the antidepressant
drug escitalopram. Secondary analyses demonstrated that escita-
lopramwas superior to tDCS and placebo and tDCS was superior to
placebo. This reflects the clinical importance of comparing tDCS not
only to a placebo but also to an active comparator.

Attrition, the premature discontinuation of participation in a
trial, is an important issue in tDCS clinical trials, as subjects may
need to return daily to the research setting to receive tDCS. Attrition
can be minimized by using flexible schedules and conceding a few
missed visits, which can be replaced after the treatment acute
phase [144]. A “run in” period can also be employed. In this
approach, participants receive a short period (one to two weeks) of
sham stimulation before the trial onset. This allows placebo-
responders and non-adherent participants to be excluded. How-
ever, the run-in approach also has some disadvantages, such as
deception (participants do not know they will receive placebo
before trial onset) and higher costs. Statistical approaches for
handling attrition include “per-protocol” (PP) and intention-to-
treat (ITT) analyses. Other approaches are “modified ITT” that
include in the analyses only participants who complete a pre-
determined number of sessions and/or the first post-baseline
assessment or those with no more than one missing, incomplete
or rescheduled visit, as used in pivotal rTMS trials (e.g., [145]).

Clinical outcomes are usually measured with standard rating
scales such as, in the case of depression, the Hamilton (HDRS) and
the Montgomery-Åsberg scales (MADRS). Clinical response is
defined as a �50% improvement from baseline to endpoint;
although remission definition has varied across studies [136]. To
ensure standardization across depression studies, cut-off points of
�10 or �7 for MADRS and HDRS scales, respectively, are recom-
mended. Safety outcomes include acceptability (number of drop-
outs) [146] and presence of treatment-emergent mania
(preferentially assessed by an accepted clinical scale) [32]. Defini-
tions of treatment response will vary for other conditions, and thus
standardization or reporting outcomes as continuous or quantita-
tive may provide data with which to better understand and
improve treatment effects.

Another consideration is that there is growing evidence that
tDCS effects may take several weeks to fully manifest, as seen with
other treatments for depression. In some previous randomized
trials for depression, tDCS had significantly greater efficacy over
placebo only several weeks after the acute treatment phase, with
null or modest effects immediately after this phase [142,147]. Use of
the end of treatment or follow up score as the primary endpoint
may also account for some of the discrepancy between meta-
analyses which did [134,148] and did not [149,150] show efficacy
of tDCS. Moreover, meta-analyses of depression scores immediately
after the end of stimulation sessions did not show any efficacy of
tDCS [151,152], in contrast to those that evaluated them at the study
endpoint [136,153]. Furthermore, the placebo effects might be
greater in the initial study phase, when patients return to the clinic
and interact with the staff daily. Thus, future tDCS trials should
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transcranial direct current stimulation, and; rehabilitation, cognitive behavioral
therapy, cognitive training, physical therapy, occupational therapy, speech therapy,
motor practice, task training, balance.
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include clinical assessments in the post-acute treatment phase to
enhance the detection of a tDCS versus placebo signal and to test
the durability and time course of treatment response.

Thus, it is recommended that further trials give careful attention
to patient and illness characterization, evaluation of biological
substrates which have been implicated in depressive pathophysi-
ology, stimulation parameters, and overall treatment approach, as
well as clinical trial methods, in both the design and reporting of
trials. Greater precision and consistency across researchers in these
aspects of methodology will enable the field to move beyond the
first phase of mostly small trials which overall indicate a positive
signal to fully exploring the potential of tDCS as an antidepressant
treatment.

tDCS augmentation trials

Whereas experimental and therapeutic non-invasive neuro-
modulation of the brain has historically been given at rest (without
the brain engaged in a goal-oriented manner), there has been an
increasing shift toward applying tDCS in conjunction with a task or
as a supplement to a behavioral therapy in order to augment
learning or the effects of the behavioral therapy. The distinction
here is that the use of a task provides a specific learning or behav-
ioral performance context, but is not in itself a therapy. Adminis-
trating tDCS in conjunctionwith a task is a strategy that can be used
to probe effects on relevant circuits, identify neurophysiological
correlates of behavioral effects, and identify target engagement
measures and biomarkers. Combining tDCS with a therapy seeks to
enhance the benefits of learning-based therapies, e.g., cognitive,
motor.

Task-based studies. tDCS has the potential to increase cortical
plasticity [12], which, in turn, may improve learning and the ability
of patients [154] to benefit from targeted remediation approaches.
As noted above under Mechanisms, the effects of tDCS in humans
may be task specific because of the requirement for activation of
the targeted pathway to produce synaptic modulation. However,
generalization to untrained tasks could occur [155] and requires
future investigation. Thus, the most specific and effective tDCS in-
terventions in humans may be those that pair stimulation with a
concurrent learning task. Use of a task in conjunction with stimu-
lation allows one to assess the effects on behavior and learning
[156]. Neuromodulatory effects seen on learning tasks may help
formulate clinically relevant hypotheses designed to enhance
training-based neurorehabilitation. This paradigm also provides a
basis for identifying objective neurophysiological/neuroimaging
correlates of behavioral effects, thus facilitating the identification of
mechanisms, biomarkers, and target engagement measures in
general and for clinical trials in particular, and may ultimately
provide a basis for optimizing protocols and improving treatments.

Studies of motor learning provide an exemplar of such an
approach. The serial reaction time task (SRTT) is a classic paradigm
involving the learning of complex motor sequences, which has
been used to studymechanisms of motor learning and one inwhich
the behavioral effects of tDCS have been well characterized [157].
This task is known to be affected by tDCS, albeit with mild to
moderate effect sizes [158]. The motor system physiological sig-
natures known as the Bereitschaftspotential and Motor Potential
[159] are well characterized in the EEG. The study of the power
changes of EEG oscillatory activity associated with motor activity
has also characterized these components in the frequency domain
with clearly observable signatures within the 12 Hze24Hz fre-
quency band. A variant of SRTT in which the participant is required
to follow a series of visually-cued key presses [160] necessitates the
cooperative engagement of the motor and visual systems. As such,
this variant allows investigation of the functional interactions
between motor cortex, the supplementary motor area (SMA), and
visual regions. This, in turn, provides the opportunity to study how
stimulation of one task-relevant cortical region might modulate the
activity of another functionally engaged region and their dynamic
interaction.

The SRTT has documented limitations as a behavioral model of
motor learning that have been addressed using more sophisticated
tasks like visuomotor learning. Limitations of task-based ap-
proaches used in clinical trials might include insufficient use of
double-blind designs (only 25 out of 60 published studies of tDCS
effects on motor learning in healthy adults in a recent review uti-
lized double-blind designs) [161] and failure to include positive
controls (i.e., active stimulation of control cortical regions).

Other strengths of such task-based paradigms are that they also
provide a platform for elucidating the differential neural substrates
underlying different forms of learning (i.e., use-dependent, error-
based, reinforcement, strategic learning) [149]. Such paradigms also
allow for the investigation of potential selective influences of tDCS
on specific stages of learning (online, offline, retention, consolida-
tion, reconsolidation [150]). They also provide a platform to inves-
tigate, at a cortical network-level interaction, if implementation of
multifocal tES would provide specific beneficial effects, and if so,
how. Understanding which specific stages of learning are affected
will help determine when to assess learning/behavioral outcomes
and ultimately when to assess clinical effects [148]. Thus, an
improved understanding of motor (or other) learning processes and
the tasks used to assess them, as well as generalization to untrained
tasks, is critical to determining whether tDCS can or cannot
modulate learning [162] in daily living in healthy subjects or patient
populations. Establishing predictive links from physiological
markers to behavioralmarkers and ultimately to clinical effectsmay
allow early signals to serve as surrogates.

Combined, multimodal therapies. Combined therapies are
defined here as those in which a behavioral intervention (i.e., not
drug therapy, surgery, or other neuromodulation intervention) is
the principal therapy that when combined with a second therapy
(i.e., an established tDCS protocol [4]) is expected to augment its
effects. The behavioral intervention's practice of goal-directed, re-
petitive behavior, known to endogenously activate functional
neural circuits over time, leads to sustained behavioral improve-
ment or symptom reduction, putatively augmented by the second
therapy (e.g., tDCS), which typically has transient modest effects
alone. The logic is ill-defined in the literature; however, the ratio-
nale appears to be that adaptive behavioral consequences and
reduced symptoms from each intervention alonewill be synergistic
when combined and thus provide a stronger clinical effect [163].
There is some momentum with this combined approach, indicated
by an increasing number of registered clinical trials2 and published
studies where brain stimulation is intentionally given with tem-
poral proximity to a behavioral therapy, such as cognitive-
behavioral therapy (CBT) in depression [164], working memory
training in schizophrenia [165], cognitive training in Alzheimer's
disease [166], speech/language therapy in post-stroke aphasia
[167], and physical therapies in post-stroke hemiparesis [168e171].

The notion of a simple additive effect is challenged by a number
of studies indicating an interaction effect when non-invasive neu-
romodulation (tDCS/rTMS) is followed, preceded or concurrent
with brain activation through volition or a separate neuro-
modulation protocol. For example, Siebner and colleagues showed

http://clinicaltrials.gov
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that excitatory tDCS priming (anode overM1) of 1Hz rTMS, reduced
MEP amplitude relative to baseline, while sham tDCS prior to 1Hz
rTMS showed no change in MEP amplitude. Conversely, inhibitory
tDCS priming (cathode over M1) reversed the effect, with an MEP
amplitude increase post-1Hz rTMS [172]. Giacobbe et al. reported
that tDCS can modify a motor practice effect (in hemiparesis) only
when preceding (not when given concurrently) and that the effect
was not magnified or reduced, but rather the practice effect was
transformed to a different clinically relevant effect than occurred
with practice alone [173]. Lezzi and colleagues [174] showed that
priming neuromodulation with voluntary muscle activity can
reverse the effects of both inhibitory and excitatory theta-burst
stimulation. These studies are examples of diverse lines of evi-
dence pointing toward interaction effects of cortical neuro-
modulation with synaptic cortical activity subserving behavior,
whereby both physiological and behavioral data show effect
modification. This is not an exhaustive account of the literature in
the area, but raises the possibility that interaction effects of com-
bined therapies could be accessed for superior clinical benefit, such
as greatermagnitude effect, more sustained effect, or need for fewer
treatment sessions, and thus provides an exciting and worthwhile
pursuit of optimization. These examples also indicate that effects
are not always predictable. Depending on the circumstances, the
observed effects could be increased, decreased, unchanged or
transformed. The example of Giacobbe et al. [173] also illustrates
that change may occur in unpredicted variables and may or not be
clinically advantageous. Thus, sampling a range of clinically relevant
variables would be important in systematic optimization trials.

In order to systematically approach the scientific evaluation of
combination therapies, the working space should be defined. This
would include well-defined stimulation parameters [49], a well-
defined and reproducible behavioral intervention, and a well-
characterized and (ideally) homogenous patient group. The details
of the relationship of neuromodulation to the behavioral therapy
should also be considered in the experimental design and reported
[175]. Given that inter-individual variability in response to neuro-
modulation is a clear issue [176,177], it is possible that mean group
differences may not show an effect, but that careful patient char-
acterization may identify predictors (e.g. genotype, clinical history,
prior neuromodulation exposure, brain-state, clinical status), and a
host of currently unknown features that will become evident with
more study. It is also becoming clearer that approaches and results
derived from the healthy brain may not translate to disease states.

Despite knowledge of poor tDCS targeting to date, uncontrolled
environmental and state-dependency factors, and a limited
understanding of all the sources of individual differences, avail-
able evidence indicates some effectiveness for tDCS (for reviews
in Neurology; https://paperpile.com/c/QniLBm/QanOþUbpw
[178,179]) and Psychiatry [180]. While there are likely insuffi-
cient data available for reasonable meta-analyses of combined
therapies or an evaluation of the relative merits of combined in-
terventions versus those employing independent treatments, the
early studies of combined therapies look promising.

Future aims include reduced publication bias, publication of
negative results of well-designed studies, reproduction of study
findings where possible, mechanistic studies and rationale based
on underlying circuitry abnormality, use of imaging and compu-
tational models to select the optimal targets, and investigations of
treatment response per disease state and conditions. With further
refinements, goals are (1) to establish predictive biomarkers of
treatment response such that prescriptive treatment algorithms
can be developed and (2) to optimize protocols for greater indi-
vidual andmore consistent effects (less inter-individual variability).
As the effects of tDCS are harnessed to augment behavioral thera-
pies, vigilance in monitoring, interpreting, and reporting potential
maladaptive plasticity effects (e.g., migraine, dystonia, spasticity) is
needed in addition to general adverse event reporting.

tACS trials: targeting brain oscillations

In contrast to the case of tDCS, only a few clinical trials studying
tACS have been performed. The rationale for the use of tACS to
achieve therapeutic benefits derives from the growing under-
standing of how specific changes in (cortical) network oscillations
relate to disorders such as schizophrenia and depression [181]. The
vast literature of electroencephalography (EEG) and, to a smaller
extent, also magnetoencephalography (MEG) delineate treatment
targets, where “target” is defined as a specific temporal activity
structure, commonly a change in oscillatory power or frequency at
a specific location or a change in functional interaction between
two sites. tACS therefore may have the potential to transform our
body of knowledge about brain dynamics in disease states into an
actionable map of treatment targets. Yet, it is not known if and how
pathologically altered networks respond to stimulation, since the
study of mechanism has almost exclusively focused on “intact”
networks and healthy control participants.

As with tDCS, for tACS to become a clinically useful therapy, it
needs to induce sustained changes. Likely, some type of treatment
schedule with multiple treatments and perhaps additional main-
tenance sessions may be required. Despite some evidence for out-
lasting effects of tACS on the order of magnitude of minutes and
hours [182], longer-lasting changes have yet to be studied. For the
case of tACS to directly target cortical networks, no results are
available based on reports in clinicaltrials.org (at the time of this
submission). Several ongoing studies in the group of one of the
authors (FF) aim to demonstrate target engagement in psychiatric
patient populations and improvements in symptoms, including in
patients with major depressive disorder (NCT02339285) and
schizophrenia (NCT02360228).2 Importantly, these studies are
randomized clinical trials for which the stimulation condition is
masked for all participants, study personnel, and investigators. As
with tDCS, these studies include a placebo arm (“sham stimula-
tion”), which consists of a brief epoch of stimulation to mimic the
initial skin sensation during stimulation, Yet, it is unclear if masking
of tACS is successful, in particular for electrode montages that
include frontal electrodes that tend to trigger phosphenes via
stimulation of the optic nerve.

It can be expected that the number of tACS clinical trials will
rapidly grow, particularly in the domain of psychiatric illnesses
given the limitations ofmedication therapies. It will be crucial to (1)
advance in parallel mechanistic work to further refine the currently
very basic target engagement strategies, (2) advance the develop-
ment of the next generation of tACS that will employ feedback
based on EEG signals to provide personalized and adaptive stimu-
lation [183], and (3) develop and disseminate device technology
that enables high-quality double-blind trials to ensure the field
avoids some of the typical pitfalls of a rapidly growing field.

Transparency

Several common practices limit transparency. There is an under-
reporting of negative effect studies [161] due to publication bias
[153,184]. Failure to distinguish exploratory (hypothesis-gener-
ating) versus confirmatory (hypothesis-driven) research can result
in inappropriate claims. Exploratory studies suggest trends and
provide data for prospective power analyses. Hypothesis-driven,
confirmatory research, strengthened by preregistration [185], per-
mits conclusions regarding particular effects. Few studies prereg-
ister their hypotheses, design, data analyses, and power analyses,
although NIMH now requires all clinical trials to be preregistered at

https://paperpile.com/c/QniLBm/QanO+Ubpw
https://paperpile.com/c/QniLBm/QanO+Ubpw
http://clinicaltrials.org
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clinicaltrials.gov (please see NIMH Support of Clinical Trials section
below for further details). It would be important that future studies
state in their Methods sections the exploratory (hypothesis-
generating) or hypothesis-driven (confirmatory) characteristics of
the methodology and design. More emphasis should be placed on a
detailed description of methods (encompassing all relevant infor-
mation to enable experimental replication, which includes
computational modeling of induced currents in the target, in non-
target regions, and the target-to-nontarget ratio which is a measure
of focality of the stimulation). To ease reporting and reviewing, as
well as to improve efforts to evaluate reproducibility, reporting
checklists might be encouraged.

The field could improve substantially with the use of post-
publication open data repositories. Data sharing can help provide
a more complete record of parameters used in data acquisition,
provide data for secondary analyses that add value to publications
resulting from primary analyses, and allow for re-analyses using
novel or alternate analytic tools. Data sharing may allow data to be
combined or more directly compared across projects, thus clari-
fying how robust or reproducible findings are across platforms.
Sources of disparate or variable findings might be examined across
or within datasets.

The NIMH Data Archive (https://data-archive.nimh.nih.gov) is
one such resource available to support data sharing [186]. Current
expectations are that all NIMH-supported clinical research studies
(not only clinical trials) will deposit and share data through this
resource. The National Institutes of Health (NIH) espouses the
sharing and reporting of the results of clinical trials [187] and
several NIH initiatives (e.g., Brain Research through Advancing
Innovative Neurotechnologies, BRAIN) have focused on data stan-
dards and sharing. The recent passage by Congress of the 21st
Century Cures Act allows the NIH Director to require that data from
NIH-supported research be shared [188]. While the sociology of
science has at times resisted data sharing efforts, a culture-shift
seems to be occurring with the development of bioinformatics
and “big data” initiatives and emerging shared databases [189].

NIMH support of clinical trials

NIMH supports human device research ranging from exploratory
biomarker discovery studies to the pivotal device trials required for
Food and Drug Administration (FDA) approval. The requirements
and goals of recently-issued NIMH funding opportunity announce-
ments are based on an experimental medicine approach to clinical
trials and address the need for clearly defined targets, dosimetry,
and measures of target engagement. Applications must include a
complete description of the delivered dose based on computational
modeling of the electric-field (for example, Fig. 1). Additionally, the
spatial and temporal parameters, as well as the context of dose
delivery (context here means brain state at the time of stimulation,
which may be resting or may involve active engagement with a
cognitive task or psychosocial intervention), must be specified and a
thorough description of the sham condition (demonstrating both its
plausibility and its biological inactivity) included. These re-
quirements will focus research on both stimulation-dependent and
network-activity-dependent aspects of delivered dosage. Ulti-
mately, the goal is to achieve rigorous, reproducible, and informative
findings that support impactful device-based interventions.

NIH has recently begun to enforce a wider definition of clinical
trials: “A research study in which one or more human subjects are
prospectively assigned to one or more interventions (which may
include placebo or other control) to evaluate the effects of those
interventions on health-related biomedical or behavioral out-
comes.” Many (if not most) studies with human subjects that were
not previously considered clinical trials will now be so classified.
Applicants are encouraged to explore material online (https://
grants.nih.gov/policy/clinical-trials/definition.htm) and highly
encouraged to reach out to program staff to determine the nature of
their study. As part of this of this oversight, clinical trials will be
required to register at clinicaltrials.gov. This will enforce pre-
registration of study details which will encourage the publication
of null results [190] and increase reproducibility.

Conclusions

Clinical applications of tES remain at an early stage of devel-
opment. Advances in understanding mechanisms, biomarkers of
responsiveness, and technology (electronics, montages supported
by computational models) are helping to inform protocols and
therapeutic applications, but many needs remain.

Therapeutic use must be grounded in an improved under-
standing of physiological mechanisms at multiple levels. A broad
approach spanning model systems to computer simulations to
in vivo human trials is needed for rational design, target identifi-
cation, and engagement to validation. Individual variability in
response needs to be understood at multiple levels, including
anatomy, physiology, and genetic heterogeneity. Methods are
needed for individualized dosing, particularly in the absence of a
motor threshold, as available in TMS. Improved masking and
monitoring of masking of subjects and staff are needed, as are
validation of sham interventions as biologically inactive. Tools for
selectingmontages and stimulation parameters and for more direct
measurement of currents in the brain are needed. As stimulation is
increasingly combined with cognitive or behavioral interventions,
guidelines for determining the optimal timing in multimodal in-
terventions (e.g., online, offline, pre-priming, etc.) would be
helpful. Well-rationalized outcome measures should span the
levels of physiology, behavior and clinical effects. Optimal measures
of target engagement must be defined for various applications.

Reporting standards for publications are needed to provide the
level of reporting needed to achieve reproducibility. Transparency
can be achieved by prospective registration of trials, including data
analytic plans, and providing access to raw individual-level data
through data repositories. Progress in these areas promises to
advance therapeutic applications of these methods.

Financial disclosures

Lucas Parra and Marom Bikson are co-founders of Soterix
Medical Inc. and co-inventors in patents held by the City College of
New York (CCNY). The goal of these efforts is to make High-
Definition tDCS broadly available. Flavio Frohlich is the founder,
majority owner, and chief scientific officer of Pulvinar Neuro LLC,
which markets devices for tDCS/tACS research. The University of
North Carolina has filed several patents based on his inventions.
Andre Russowsky Brunoni receives a CAPES-Humboldt research
fellowship for experienced researchers. Colleen Loo received tDCS
equipment from Soterix for conducting independent, investigator-
initiated clinical trials. Zhi-De Deng and Sarah H. Lisanby are
co-inventors on TMS technology, unrelated to the topics presented
here. Drs. Charvet, Clark, Cohen, Dmochowski, Edwards, Kappen-
man, Lim, Mantovani, McMullen, Richardson, Rumsey, Sehatpour,
Sommers, Wassermann and Woods, Ms. Unal, and Ms. Pearson
report no conflicts.

Disclaimer

The views expressed herein do not necessarily represent
the official views of the National Institute of Mental Health, the

http://clinicaltrials.gov
https://data-archive.nimh.nih.gov
https://grantsgrants.nih.gov/policy/clinical-trials/definition.htm
https://grantsgrants.nih.gov/policy/clinical-trials/definition.htm
http://clinicaltrials.gov


M. Bikson et al. / Brain Stimulation 11 (2018) 465e480476
National Institutes of Health, the US Department of Health and
Human Services, or any other agency of the US Government.
Acknowledgments

This work was supported in part by grants P20GM109089 from
the National Institute of General Medical Medical Sciences to JDR
and by R01HD069776 from the National Institute of Child Health
and Human Development to DJE.
References

[1] Insel TR, Gogtay N. National Institute of Mental Health clinical trials: new
opportunities, new expectations. JAMA Psychiatry 2014;71:745e6. https://
doi.org/10.1001/jamapsychiatry.2014.426.

[2] Krystal JH, State MW. Psychiatric disorders: diagnosis to therapy. Cell
2014;157:201e14. https://doi.org/10.1016/j.cell.2014.02.042.

[3] Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current
stimulation for understanding brain function. Trends Neurosci 2014;37:
742e53. https://doi.org/10.1016/j.tins.2014.08.003.

[4] Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of
transcranial direct current stimulation: evidence based update. Brain Stim-
ulat 2016;9:641e61. https://doi.org/10.1016/j.brs.2016.06.004.

[5] Reato D, Rahman A, Bikson M, Parra LC. Effects of weak transcranial alter-
nating current stimulation on brain activityda review of known mecha-
nisms from animal studies. Front Hum Neurosci 2013;7:687. https://doi.org/
10.3389/fnhum.2013.00687.

[6] Fr€ohlich F. Experiments and models of cortical oscillations as a target for
noninvasive brain stimulation. Prog Brain Res 2015;222:41e73. https://
doi.org/10.1016/bs.pbr.2015.07.025.

[7] Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current
stimulation. Neuroscientist 2011;17:37e53. https://doi.org/10.1177/
1073858410386614.

[8] Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev PS, Martin D, et al. In-
crease in PAS-induced neuroplasticity after a treatment course of trans-
cranial direct current stimulation for depression. J Affect Disord 2014;167:
140e7. https://doi.org/10.1016/j.jad.2014.05.063.

[9] Jackson MP, Rahman A, Lafon B, Kronberg G, Ling D, Parra LC, et al. Animal
models of transcranial direct current stimulation: methods and mechanisms.
Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2016;127:3425e54.
https://doi.org/10.1016/j.clinph.2016.08.016.

[10] Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to
the mechanisms of transcranial DC-stimulation-induced after-effects of
human motor cortex excitability. Brain 2002;125:2238e47.

[11] Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation
modulates LTP and LTD: activity dependence and dendritic effects. Brain
Stimulat 2017;10:51e8. https://doi.org/10.1016/j.brs.2016.10.001.

[12] Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct
current stimulation promotes BDNF-dependent synaptic plasticity: potential
implications for motor learning. Neuron 2010;66:198e204. https://doi.org/
10.1016/j.neuron.2010.03.035.

[13] Sun Y, Lipton JO, Boyle LM, Madsen JR, Goldenberg MC, Pascual-Leone A,
et al. Direct current stimulation induces mGluR5-dependent neocortical
plasticity. Ann Neurol 2016;80:233e46. https://doi.org/10.1002/ana.24708.

[14] Bikson M, Name A, Rahman A. Origins of specificity during tDCS: anatomical,
activity-selective, and input-bias mechanisms. Front Hum Neurosci 2013;7:
688. https://doi.org/10.3389/fnhum.2013.00688.

[15] M�arquez-Ruiz J, Leal-Campanario R, S�anchez-Campusano R, Molaee-
Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current
stimulation modulates synaptic mechanisms involved in associative
learning in behaving rabbits. Proc Natl Acad Sci U S A 2012;109:6710e5.
https://doi.org/10.1073/pnas.1121147109.

[16] Podda MV, Cocco S, Mastrodonato A, Fusco S, Leone L, Barbati SA, et al.
Anodal transcranial direct current stimulation boosts synaptic plasticity and
memory in mice via epigenetic regulation of Bdnf expression. Sci Rep
2016;6:22180. https://doi.org/10.1038/srep22180.

[17] Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P, et al.
Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current
stimulation. J Neurophysiol 2012;107:1866e80. https://doi.org/10.1152/
jn.00319.2011.

[18] Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, et al. Calcium imaging
reveals glial involvement in transcranial direct current stimulation-induced
plasticity in mouse brain. Nat Commun 2016;7:11100. https://doi.org/
10.1038/ncomms11100.

[19] Rohan JG, Carhuatanta KA, McInturf SM, Miklasevich MK, Jankord R.
Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci
Off J Soc Neurosci 2015;35:12824e32. https://doi.org/10.1523/JNEUR-
OSCI.2376-15.2015.

[20] Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al.
Pharmacological modulation of cortical excitability shifts induced by
transcranial direct current stimulation in humans. J Physiol 2003;553:
293e301. https://doi.org/10.1113/jphysiol.2003.049916.

[21] Stagg CJ, Best JG, Stephenson MC, O'Shea J, Wylezinska M, Kincses ZT, et al.
Polarity-sensitive modulation of cortical neurotransmitters by transcranial
stimulation. J Neurosci Off J Soc Neurosci 2009;29:5202e6. https://doi.org/
10.1523/JNEUROSCI.4432-08.2009.

[22] Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and
morphology in subthreshold and suprathreshold uniform electric field
stimulation in vitro. Brain Sci 2009;2(215e28). 228 e1e3.

[23] Ali MM, Sellers KK, Fr€ohlich F. Transcranial alternating current stimulation
modulates large-scale cortical network activity by network resonance.
J Neurosci 2013;33:11262e75. https://doi.org/10.1523/JNEUROSCI.5867-
12.2013.

[24] Fr€ohlich F, McCormick DA. Endogenous electric fields may guide neocortical
network activity. Neuron 2010;67:129e43. https://doi.org/10.1016/
j.neuron.2010.06.005.

[25] Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Trans-
cranial electric stimulation entrains cortical neuronal populations in rats.
J Neurosci 2010;30:11476e85. https://doi.org/10.1523/JNEUROSCI.5252-
09.2010.

[26] Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in
nonlinear sciences, xix. Cambridge: Cambridge University Press; 2001.

[27] Deans JK, Powell AD, Jefferys JG. Sensitivity of coherent oscillations in rat
hippocampus to AC electric fields. J Physiol 2007;583:555e65.

[28] Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J. Shaping intrinsic
neural oscillations with periodic stimulation. J Neurosci 2016;36:5328e37.
https://doi.org/10.1523/JNEUROSCI.0236-16.2016.

[29] Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation
affects network dynamics by modulating population rate and spike timing.
J Neurosci 2010;30:15067e79.

[30] Thut G, Schyns PG, Gross J. Entrainment of perceptually relevant brain
oscillations by non-invasive rhythmic stimulation of the human brain. Front
Psychol 2011;2:170. https://doi.org/10.3389/fpsyg.2011.00170.

[31] Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained
after-effects of transcranial alternating current stimulation depend upon brain
states. FrontHumNeurosci 2013;7. https://doi.org/10.3389/fnhum.2013.00161.

[32] Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW, Frӧhlich F. Modulation
of cortical oscillations by low-frequency direct cortical stimulation is state-
dependent. PLoS Biol 2016;14, e1002424. https://doi.org/10.1371/
journal.pbio.1002424.

[33] Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Fr€ohlich F. Endogenous
cortical oscillations constrain neuromodulation by weak electric fields. Brain
Stimulat 2014;7:878e89. https://doi.org/10.1016/j.brs.2014.07.033.

[34] Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity
with weak direct current stimulation. J Neurophysiol 2015;113:1334e41.
https://doi.org/10.1152/jn.00208.2014.

[35] Woods AJ, Antal A, BiksonM, Boggio PS, Brunoni AR, Celnik P, et al. A technical
guide to tDCS, and related non-invasive brain stimulation tools. Clin Neuro-
physiol 2016:1031e48. https://doi.org/10.1016/j.clinph.2015.11.012.

[36] Antal A, Alekseichuk I, Bikson M, Brockm€oller J, Brunoni AR, Chen R, et al.
Low intensity transcranial electric stimulation: safety, ethical, legal regula-
tory and application guidelines. Clin Neurophysiol Off J Int Fed Clin Neuro-
physiol 2017;128:1774e809. https://doi.org/10.1016/j.clinph.2017.06.001.

[37] Minhas P, Bikson M, Woods AJ, Rosen AR, Kessler SK. Transcranial direct
current stimulation in pediatric brain: a computational modeling study. Conf
Proc IEEE Eng Med Biol Soc 2012;2012:859e62. https://doi.org/10.1109/
EMBC.2012.6346067.

[38] Kessler SK, Minhas P, Woods AJ, Rosen A, Gorman C, Bikson M. Dosage
considerations for transcranial direct current stimulation in children: a
computational modeling study. PLos One 2013;8:e76112. https://doi.org/
10.1371/journal.pone.0076112.

[39] Woods AJ, Bryant V, Sacchetti D, Gervits F, Hamilton R. Effects of electrode
drift in transcranial direct current stimulation. Brain Stimulat 2015;8:515e9.
https://doi.org/10.1016/j.brs.2014.12.007.

[40] Nitsche MA, Paulus W. Excitability changes induced in the human motor
cortex by weak transcranial direct current stimulation. J Physiol 2000;527(Pt
3):633e9. doi:PHY_1055 [pii].

[41] Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of
the international federation. The international federation of clinical neuro-
physiology. Electroencephalogr Clin Neurophysiol Suppl 1999;52:3e6.

[42] DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage
in transcranial direct current stimulation. J Vis Exp JoVE 2011. https://
doi.org/10.3791/2744.

[43] Kronberg G, Bikson M. Electrode assembly design for transcranial Direct Cur-
rent Stimulation: a FEMmodeling study. 2012. Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. EMBC 2012:891e5. https://doi.org/10.1109/EMBC.2012.6346075.

[44] Shen B, Yin Y, Wang J, Zhou X, McClure SM, Li J. High-definition tDCS alters
impulsivity in a baseline-dependent manner. Neuroimage 2016;143:
343e52. https://doi.org/10.1016/j.neuroimage.2016.09.006.

[45] G€ozenman F, Berryhill ME. Working memory capacity differentially in-
fluences responses to tDCS and HD-tDCS in a retro-cue task. Neurosci Lett
2016;629:105e9. https://doi.org/10.1016/j.neulet.2016.06.056.

[46] Kuo H-I, Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F, et al. Comparing
cortical plasticity induced by conventional and high-definition 4 � 1 ring

https://doi.org/10.1001/jamapsychiatry.2014.426
https://doi.org/10.1001/jamapsychiatry.2014.426
https://doi.org/10.1016/j.cell.2014.02.042
https://doi.org/10.1016/j.tins.2014.08.003
https://doi.org/10.1016/j.brs.2016.06.004
https://doi.org/10.3389/fnhum.2013.00687
https://doi.org/10.3389/fnhum.2013.00687
https://doi.org/10.1016/bs.pbr.2015.07.025
https://doi.org/10.1016/bs.pbr.2015.07.025
https://doi.org/10.1177/1073858410386614
https://doi.org/10.1177/1073858410386614
https://doi.org/10.1016/j.jad.2014.05.063
https://doi.org/10.1016/j.clinph.2016.08.016
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref10
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref10
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref10
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref10
https://doi.org/10.1016/j.brs.2016.10.001
https://doi.org/10.1016/j.neuron.2010.03.035
https://doi.org/10.1016/j.neuron.2010.03.035
https://doi.org/10.1002/ana.24708
https://doi.org/10.3389/fnhum.2013.00688
https://doi.org/10.1073/pnas.1121147109
https://doi.org/10.1038/srep22180
https://doi.org/10.1152/jn.00319.2011
https://doi.org/10.1152/jn.00319.2011
https://doi.org/10.1038/ncomms11100
https://doi.org/10.1038/ncomms11100
https://doi.org/10.1523/JNEUROSCI.2376-15.2015
https://doi.org/10.1523/JNEUROSCI.2376-15.2015
https://doi.org/10.1113/jphysiol.2003.049916
https://doi.org/10.1523/JNEUROSCI.4432-08.2009
https://doi.org/10.1523/JNEUROSCI.4432-08.2009
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref22
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref22
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref22
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref22
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref22
https://doi.org/10.1523/JNEUROSCI.5867-12.2013
https://doi.org/10.1523/JNEUROSCI.5867-12.2013
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1016/j.neuron.2010.06.005
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
https://doi.org/10.1523/JNEUROSCI.5252-09.2010
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref26
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref26
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref27
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref27
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref27
https://doi.org/10.1523/JNEUROSCI.0236-16.2016
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref29
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref29
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref29
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref29
https://doi.org/10.3389/fpsyg.2011.00170
https://doi.org/10.3389/fnhum.2013.00161
https://doi.org/10.1371/journal.pbio.1002424
https://doi.org/10.1371/journal.pbio.1002424
https://doi.org/10.1016/j.brs.2014.07.033
https://doi.org/10.1152/jn.00208.2014
https://doi.org/10.1016/j.clinph.2015.11.012
https://doi.org/10.1016/j.clinph.2017.06.001
https://doi.org/10.1109/EMBC.2012.6346067
https://doi.org/10.1109/EMBC.2012.6346067
https://doi.org/10.1371/journal.pone.0076112
https://doi.org/10.1371/journal.pone.0076112
https://doi.org/10.1016/j.brs.2014.12.007
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref40
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref40
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref40
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref40
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref41
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref41
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref41
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref41
https://doi.org/10.3791/2744
https://doi.org/10.3791/2744
https://doi.org/10.1109/EMBC.2012.6346075
https://doi.org/10.1016/j.neuroimage.2016.09.006
https://doi.org/10.1016/j.neulet.2016.06.056


M. Bikson et al. / Brain Stimulation 11 (2018) 465e480 477
tDCS: a neurophysiological study. Brain Stimulat 2013;6:644e8. https://
doi.org/10.1016/j.brs.2012.09.010.

[47] Zito GA, Senti T, Cazzoli D, Müri RM, Mosimann UP, Nyffeler T, et al. Cathodal
HD-tDCS on the right V5 improves motion perception in humans. Front
Behav Neurosci 2015;9:257. https://doi.org/10.3389/fnbeh.2015.00257.

[48] Richardson JD, Fillmore P, Datta A, Truong D, Bikson M, Fridriksson J. Toward
development of sham protocols for high-definition transcranial direct cur-
rent stimulation (HD-tDCS). Neuromodulation 2014;1:62. https://doi.org/
10.15540/nr.1.1.62.

[49] Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH,
et al. Fundamentals of transcranial electric and magnetic stimulation dose:
definition, selection, and reporting practices. Brain Stimulat 2012;5:435e53.
https://doi.org/10.1016/j.brs.2011.10.001.

[50] Higgins J, Green S, editors. Cochrane handbook for systematic reviews of
interventions version 5.1.0; 2011 [updated March 2011] Available from:
http://handbook.cochrane.org.

[51] Brunoni AR, Fregni F. Clinical trial design in non-invasive brain stimulation
psychiatric research. Int J Meth Psychiatr Res 2011;20:e19e30. https://
doi.org/10.1002/mpr.338.

[52] Horvath JC, Carter O, Forte JD. Transcranial direct current stimulation: five
important issues we aren't discussing (but probably should be). Front Syst
Neurosci 2014;8:2. https://doi.org/10.3389/fnsys.2014.00002.

[53] Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a
tool for double-blind sham-controlled clinical studies in brain stimulation.
Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2006;117:845e50. https://
doi.org/10.1016/j.clinph.2005.12.003.

[54] Alonzo A, Aaronson S, Bikson M, Husain M, Lisanby S, Martin D, et al. Study
design and methodology for a multicentre, randomised controlled trial of
transcranial direct current stimulation as a treatment for unipolar and bi-
polar depression. Contemp Clin Trials 2016;51:65e71. https://doi.org/
10.1016/j.cct.2016.10.002.

[55] Wallace D, Cooper NR, Paulmann S, Fitzgerald PB, Russo R. Perceived comfort
and blinding efficacy in randomised sham-controlled transcranial direct
current stimulation (tDCS) trials at 2 mA in young and older healthy adults.
PLos One 2016;11, e0149703. https://doi.org/10.1371/journal.pone.0149703.

[56] Garnett EO, den Ouden D-B. Validating a sham condition for use in high
definition transcranial direct current stimulation. Brain Stimulat 2015;8:
551e4. https://doi.org/10.1016/j.brs.2015.01.399.

[57] Bruny�e TT, Cantelon J, Holmes A, Taylor HA, Mahoney CR. Mitigating cuta-
neous sensation differences during tDCS: comparing sham versus low
intensity control conditions. Brain Stimulat 2014;7:832e5. https://doi.org/
10.1016/j.brs.2014.09.015.

[58] Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial
electric stimulation? Safety, sensations and secondary induced effects. Clin
Neurophysiol Off J Int Fed Clin Neurophysiol 2015;126:2181e8. https://
doi.org/10.1016/j.clinph.2015.03.015.

[59] Turi Z, Ambrus GG, Ho K-A, Sengupta T, Paulus W, Antal A. When size
matters: large electrodes induce greater stimulation-related cutaneous
discomfort than smaller electrodes at equivalent current density. Brain
Stimulat 2014;7:460e7. https://doi.org/10.1016/j.brs.2014.01.059.

[60] Dmochowski JP, Datta A, Huang Y, Richardson JD, Bikson M, Fridriksson J,
et al. Targeted transcranial direct current stimulation for rehabilitation after
stroke. Neuroimage 2013;75:12e9. https://doi.org/10.1016/
j.neuroimage.2013.02.049.

[61] Richardson J, Datta A, Dmochowski J, Parra LC, Fridriksson J. Feasibility of
using high-definition transcranial direct current stimulation (HD-tDCS) to
enhance treatment outcomes in persons with aphasia. NeuroRehabilitation
2015;36:115e26. https://doi.org/10.3233/NRE-141199.

[62] Brunoni AR, Sampaio-Junior B, Moffa AH, Borrione L, Nogueira BS,
Aparício LVM, et al. The Escitalopram versus Electric Current Therapy for
Treating Depression Clinical Study (ELECT-TDCS): rationale and study design
of a non-inferiority, triple-arm, placebo-controlled clinical trial. Sao Paulo
Med J Rev Paul Med 2015;133:252e63. https://doi.org/10.1590/1516-
3180.2014.00351712.

[63] Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation
during transcranial direct current stimulation and normalization of dose
using MRI-derived computational models. Front Psychiatry Front Res Found
2012;3:91. https://doi.org/10.3389/fpsyt.2012.00091.

[64] Deng Z-D, Lisanby SH, Peterchev A. Effect of anatomical variability on electric
field characteristics of electroconvulsive therapy and magnetic seizure
therapy: a parametric modeling study. IEEE Trans Neural Syst Rehabil Eng
2015;23:22e31. https://doi.org/10.1109/TNSRE.2014.2339014. Early Access
Online.

[65] Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model
of transcranial direct current stimulation: improved spatial focality using a
ring electrode versus conventional rectangular pad. Brain Stimulat 2009;2:
201e7. 207.e1.

[66] Deng Z-D, Lisanby SH, Peterchev AV. Controlling stimulation strength and
focality in electroconvulsive therapy via current amplitude and electrode
size and spacing: comparison with magnetic seizure therapy. J ECT 2013;29:
325e35. https://doi.org/10.1097/YCT.10.1097/YCT.0b013e3182a4b4a7.

[67] Borckardt JJ, Bikson M, Frohman H, Reeves ST, Datta A, Bansal V, et al. A pilot
study of the tolerability and effects of high-definition transcranial direct
current stimulation (HD-tDCS) on pain perception. J Pain Off J Am Pain Soc
2012;13:112e20. https://doi.org/10.1016/j.jpain.2011.07.001.
[68] Caparelli-Daquer EM, Zimmermann TJ, Mooshagian E, Parra LC, Rice JK,
Datta A, et al. A pilot study on effects of 4x1 High-Definition tDCS on motor
cortex excitability. 2012 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012:
735e8. https://doi.org/10.1109/EMBC.2012.6346036.

[69] Heimrath K, Breitling C, Krauel K, Heinze H-J, Zaehle T. Modulation of pre-
attentive spectro-temporal feature processing in the human auditory sys-
tem by HD-tDCS. Eur J Neurosci 2015;41:1580e6. https://doi.org/10.1111/
ejn.12908.

[70] Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. Focalised stimulation using high
definition transcranial direct current stimulation (HD-tDCS) to investigate
declarative verbal learning and memory functioning. Neuroimage 2015;117:
11e9. https://doi.org/10.1016/j.neuroimage.2015.05.019.

[71] Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, et al. Se-
lective modulation of interhemispheric functional connectivity by HD-tACS
shapes perception. PLoS Biol 2014;12, e1002031. https://doi.org/10.1371/
journal.pbio.1002031.

[72] Heise K-F, Kortzorg N, Saturnino GB, Fujiyama H, Cuypers K, Thielscher A,
et al. Evaluation of a modified high-definition electrode montage for trans-
cranial alternating current stimulation (tACS) of pre-central areas. Brain
Stimulat 2016;9:700e4. https://doi.org/10.1016/j.brs.2016.04.009.

[73] Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M.
Physiological and modeling evidence for focal transcranial electrical brain
stimulation in humans: a basis for high-definition tDCS. Neuroimage
2013;74:266e75. https://doi.org/10.1016/j.neuroimage.2013.01.042.

[74] Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of
multifocal transcranial current stimulation for weighted cortical pattern
targeting from realistic modeling of electric fields. Neuroimage 2014;89:
216e25. https://doi.org/10.1016/j.neuroimage.2013.12.002.

[75] Bai S, G�alvez V, Dokos S, Martin D, Bikson M, Loo C. Computational models of
Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimula-
tion of brain regions associated with efficacy and cognitive side effects. Eur
Psychiatry J Assoc Eur Psychiatr 2017;41:21e9. https://doi.org/10.1016/
j.eurpsy.2016.09.005.

[76] Ho K-A, Taylor JL, Chew T, G�alvez V, Alonzo A, Bai S, et al. The effect of trans-
cranial direct current stimulation (tDCS) electrode size and current intensity on
motor cortical excitability: evidence from single and repeated sessions. Brain
Stimulat 2016;9:1e7. https://doi.org/10.1016/j.brs.2015.08.003.

[77] Seibt O, Brunoni AR, Huang Y, Bikson M. The pursuit of DLPFC: non-
neuronavigated methods to target the left dorsolateral pre-frontal cortex
with symmetric bicephalic transcranial direct current stimulation (tDCS).
Brain Stimulat 2015;8:590e602. https://doi.org/10.1016/j.brs.2015.01.401.

[78] Dmochowski JP, Datta A, Bikson M, Su Y, Parra LC. Optimized multi-electrode
stimulation increases focality and intensity at target. J Neural Eng 2011;8,
046011. https://doi.org/10.1088/1741-2560/8/4/046011.

[79] Im CH, Jung HH, Choi JD, Lee SY, Jung KY. Determination of optimal electrode
positions for transcranial direct current stimulation (tDCS). Phys Med Biol
2008;53:N219e25.

[80] Teichmann M, Lesoil C, Godard J, Vernet M, Bertrand A, Levy R, et al. Direct
current stimulation over the anterior temporal areas boosts semantic pro-
cessing in primary progressive aphasia. Ann Neurol 2016;80:693e707.
https://doi.org/10.1002/ana.24766.

[81] Bikson M, Rahman A, Datta A. Computational models of transcranial direct
current stimulation. Clin EEG Neurosci Off J EEG Clin Neurosci Soc ENCS
2012;43:176e83. https://doi.org/10.1177/1550059412445138.

[82] Galletta EE, Cancelli A, Cottone C, Simonelli I, Tecchio F, Bikson M, et al. Use
of computational modeling to inform tDCS electrode montages for the pro-
motion of language recovery in post-stroke aphasia. Brain Stimulat 2015;8:
1108e15. https://doi.org/10.1016/j.brs.2015.06.018.

[83] Jog MV, Smith RX, Jann K, Dunn W, Lafon B, Truong D, et al. In-vivo imaging
of magnetic fields induced by transcranial direct current stimulation (tDCS)
in human brain using MRI. Sci Rep 2016;6:34385. https://doi.org/10.1038/
srep34385.

[84] Opitz A, Falchier A, Yan C-G, Yeagle EM, Linn GS, Megevand P, et al.
Spatiotemporal structure of intracranial electric fields induced by trans-
cranial electric stimulation in humans and nonhuman primates. Sci Rep
2016;6:31236. https://doi.org/10.1038/srep31236.

[85] Datta A, Zhou X, Su Y, Parra LC, Bikson M. Validation of finite element model
of transcranial electrical stimulation using scalp potentials: implications for
clinical dose. J Neural Eng 2013;10, 036018. https://doi.org/10.1088/1741-
2560/10/3/036018.

[86] Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al. Measure-
ments and models of electric fields in the in vivo human brain during
transcranial electric stimulation. eLife 2017;6. https://doi.org/10.7554/
eLife.18834.

[87] Gillick BT, Kirton A, Carmel JB, Minhas P, Bikson M. Pediatric stroke and
transcranial direct current stimulation: methods for rational individualized
dose optimization. Front Hum Neurosci 2014;8:739. https://doi.org/10.3389/
fnhum.2014.00739.

[88] Truong DQ, Hüber M, Xie X, Datta A, Rahman A, Parra LC, et al. Clinician
accessible tools for GUI computational models of transcranial electrical
stimulation: BONSAI and SPHERES. Brain Stimulat 2014;7:521e4. https://
doi.org/10.1016/j.brs.2014.03.009.

[89] Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the
electric field during transcranial direct current stimulation. Neuroimage
2015;109:140e50. https://doi.org/10.1016/j.neuroimage.2015.01.033.

https://doi.org/10.1016/j.brs.2012.09.010
https://doi.org/10.1016/j.brs.2012.09.010
https://doi.org/10.3389/fnbeh.2015.00257
https://doi.org/10.15540/nr.1.1.62
https://doi.org/10.15540/nr.1.1.62
https://doi.org/10.1016/j.brs.2011.10.001
http://handbook.cochrane.org
https://doi.org/10.1002/mpr.338
https://doi.org/10.1002/mpr.338
https://doi.org/10.3389/fnsys.2014.00002
https://doi.org/10.1016/j.clinph.2005.12.003
https://doi.org/10.1016/j.clinph.2005.12.003
https://doi.org/10.1016/j.cct.2016.10.002
https://doi.org/10.1016/j.cct.2016.10.002
https://doi.org/10.1371/journal.pone.0149703
https://doi.org/10.1016/j.brs.2015.01.399
https://doi.org/10.1016/j.brs.2014.09.015
https://doi.org/10.1016/j.brs.2014.09.015
https://doi.org/10.1016/j.clinph.2015.03.015
https://doi.org/10.1016/j.clinph.2015.03.015
https://doi.org/10.1016/j.brs.2014.01.059
https://doi.org/10.1016/j.neuroimage.2013.02.049
https://doi.org/10.1016/j.neuroimage.2013.02.049
https://doi.org/10.3233/NRE-141199
https://doi.org/10.1590/1516-3180.2014.00351712
https://doi.org/10.1590/1516-3180.2014.00351712
https://doi.org/10.3389/fpsyt.2012.00091
https://doi.org/10.1109/TNSRE.2014.2339014
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref65
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref65
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref65
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref65
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref65
https://doi.org/10.1097/YCT.10.1097/YCT.0b013e3182a4b4a7
https://doi.org/10.1016/j.jpain.2011.07.001
https://doi.org/10.1109/EMBC.2012.6346036
https://doi.org/10.1111/ejn.12908
https://doi.org/10.1111/ejn.12908
https://doi.org/10.1016/j.neuroimage.2015.05.019
https://doi.org/10.1371/journal.pbio.1002031
https://doi.org/10.1371/journal.pbio.1002031
https://doi.org/10.1016/j.brs.2016.04.009
https://doi.org/10.1016/j.neuroimage.2013.01.042
https://doi.org/10.1016/j.neuroimage.2013.12.002
https://doi.org/10.1016/j.eurpsy.2016.09.005
https://doi.org/10.1016/j.eurpsy.2016.09.005
https://doi.org/10.1016/j.brs.2015.08.003
https://doi.org/10.1016/j.brs.2015.01.401
https://doi.org/10.1088/1741-2560/8/4/046011
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref79
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref79
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref79
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref79
https://doi.org/10.1002/ana.24766
https://doi.org/10.1177/1550059412445138
https://doi.org/10.1016/j.brs.2015.06.018
https://doi.org/10.1038/srep34385
https://doi.org/10.1038/srep34385
https://doi.org/10.1038/srep31236
https://doi.org/10.1088/1741-2560/10/3/036018
https://doi.org/10.1088/1741-2560/10/3/036018
https://doi.org/10.7554/eLife.18834
https://doi.org/10.7554/eLife.18834
https://doi.org/10.3389/fnhum.2014.00739
https://doi.org/10.3389/fnhum.2014.00739
https://doi.org/10.1016/j.brs.2014.03.009
https://doi.org/10.1016/j.brs.2014.03.009
https://doi.org/10.1016/j.neuroimage.2015.01.033


M. Bikson et al. / Brain Stimulation 11 (2018) 465e480478
[90] Lee C, Jung Y-J, Lee SJ, Im C-H. COMETS2: an advanced MATLAB toolbox for
the numerical analysis of electric fields generated by transcranial direct
current stimulation. J Neurosci Meth 2017;277:56e62. https://doi.org/
10.1016/j.jneumeth.2016.12.008.

[91] Huang Y, Parra LC, Haufe S. The New York Headda precise standardized
volume conductor model for EEG source localization and tES targeting.
Neuroimage 2016;140:150e62. https://doi.org/10.1016/
j.neuroimage.2015.12.019.

[92] Huang Y, Parra LC. Fully automated whole-head segmentation with
improved smoothness and continuity, with theory reviewed. PLos One
2015;10, e0125477. https://doi.org/10.1371/journal.pone.0125477.

[93] Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC. Automated MRI
segmentation for individualized modeling of current flow in the human
head. J Neural Eng 2013;10, 066004. https://doi.org/10.1088/1741-2560/10/
6/066004.

[94] Bestmann S. Computational neurostimulation in basic and translational
research. Prog Brain Res 2015;222(xvexx). https://doi.org/10.1016/S0079-
6123(15)00159-4.

[95] Rahman A, Lafon B, Bikson M. Multilevel computational models for pre-
dicting the cellular effects of noninvasive brain stimulation. Prog Brain Res
2015;222:25e40. https://doi.org/10.1016/bs.pbr.2015.09.003.

[96] Fern�andez-Corazza M, Turovets S, Luu P, Anderson E, Tucker D. Transcranial
electrical neuromodulation based on the reciprocity principle. Front Psy-
chiatry 2016;7:87. https://doi.org/10.3389/fpsyt.2016.00087.

[97] Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M.
A simple method for EEG guided transcranial electrical stimulation without
models. J Neural Eng 2016;13, 036022. https://doi.org/10.1088/1741-2560/
13/3/036022.

[98] Roh T, Song K, Cho H, Shin D, Yoo H-J. A wearable neuro-feedback system
with EEG-based mental status monitoring and transcranial electrical stim-
ulation. IEEE Trans Biomed Circuits Syst 2014;8:755e64. https://doi.org/
10.1109/TBCAS.2014.2384017.

[99] Strube W, Bunse T, Nitsche MA, Nikolaeva A, Palm U, Padberg F, et al. Bidi-
rectional variability in motor cortex excitability modulation following 1 mA
transcranial direct current stimulation in healthy participants. Physiol Rep
2016;4. https://doi.org/10.14814/phy2.12884.

[100] Madhavan S, Sriraman A, Freels S. Reliability and variability of tDCS induced
changes in the lower limb motor cortex. Brain Sci 2016:6. https://doi.org/
10.3390/brainsci6030026.

[101] Dyke K, Kim S, Jackson GM, Jackson SR. Intra-subject consistency and reli-
ability of response following 2mA transcranial direct current stimulation.
Brain Stimulat 2016;9:819e25. https://doi.org/10.1016/j.brs.2016.06.052.

[102] Horvath JC, Vogrin SJ, Carter O, Cook MJ, Forte JD. Effects of a common
transcranial direct current stimulation (tDCS) protocol on motor evoked
potentials found to be highly variable within individuals over 9 testing
sessions. Exp Brain Res 2016;234:2629e42. https://doi.org/10.1007/s00221-
016-4667-8.

[103] Labruna L, Jamil A, Fresnoza S, Batsikadze G, Kuo M-F, Vanderschelden B,
et al. Efficacy of anodal transcranial direct current stimulation is related to
sensitivity to transcranial magnetic stimulation. Brain Stimulat 2016;9:8e15.
https://doi.org/10.1016/j.brs.2015.08.014.

[104] Bestmann S, Ward N. Are current flow models for transcranial electrical
stimulation fit for purpose? Brain Stimulat 2017;10:865e6. https://doi.org/
10.1016/j.brs.2017.04.002.

[105] Bikson M, Truong DQ, Mourdoukoutas AP, Aboseria M, Khadka N, Adair D,
et al. Chapter 1-Modeling sequence and quasi-uniform assumption in
computational neurostimulation. In: Bestmann S, editor. Prog. Brain Res, vol.
222. Elsevier; 2015. p. 1e23.

[106] Giordano J, Bikson M, Kappenman ES, Clark VP, Coslett HB, Hamblin MR,
et al. Mechanisms and effects of transcranial direct current stimulation.
Dose-Response Publ Int Hormesis Soc 2017;15, 1559325816685467. https://
doi.org/10.1177/1559325816685467.

[107] Jamil A, Batsikadze G, Kuo H-I, Labruna L, Hasan A, Paulus W, et al. Sys-
tematic evaluation of the impact of stimulation intensity on neuroplastic
after-effects induced by transcranial direct current stimulation. J Physiol
2017;595:1273e88. https://doi.org/10.1113/JP272738.

[108] Charvet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, et al.
Remotely-supervised transcranial direct current stimulation (tDCS) for
clinical trials: guidelines for technology and protocols. Front Syst Neurosci
2015;9:26. https://doi.org/10.3389/fnsys.2015.00026.

[109] Kasschau M, Sherman K, Haider L, Frontario A, Shaw M, Datta A, et al.
A protocol for the use of remotely-supervised transcranial direct current
stimulation (tDCS) in multiple sclerosis (MS). J Vis Exp JoVE 2015, e53542.
https://doi.org/10.3791/53542.

[110] Kasschau M, Reisner J, Sherman K, Bikson M, Datta A, Charvet LE. Trans-
cranial direct current stimulation is feasible for remotely supervised home
delivery in multiple sclerosis. Neuromodulation J Int Neuromodulation Soc
2016;19:824e31. https://doi.org/10.1111/ner.12430.

[111] Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM. Mapping human brain
function with MEG and EEG: methods and validation. Neuroimage
2004;23(Suppl 1):S289e99. https://doi.org/10.1016/j.neuroimage.2004.07.014.

[112] Coffman B. Increasing your brain potential: transcranial direct current
stimulation for enhancement of behavior and event-related potentials in
tests of attention and impulsivity. 2014. http://digitalrepository.unm.edu/
cgi/viewcontent.cgi?article¼1024&context¼psy_etds.
[113] Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria
for transcranial direct current stimulation (tDCS) in humans. Clin Neuro-
physiol 2003;114:2220e2. https://doi.org/10.1016/S1388-2457(03)00235-9.

[114] Reinhart RMG, Woodman GF. Causal control of medialefrontal cortex gov-
erns electrophysiological and behavioral indices of performance monitoring
and learning. J Neurosci 2014;34:4214e27. https://doi.org/10.1523/JNEUR-
OSCI.5421-13.2014.

[115] Marshall L, Molle M, Hallschmid M, Born J. Transcranial direct current
stimulation during sleep improves declarative memory. J Neurosci 2004;24:
9985e92.

[116] De Ridder D, Vanneste S. EEG driven tDCS versus bifrontal tDCS for tinnitus.
Front Psychiatry 2012;3:84. https://doi.org/10.3389/fpsyt.2012.00084.

[117] Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation
enhances individual alpha activity in human EEG. PLos One 2010;5, e13766.
https://doi.org/10.1371/journal.pone.0013766.

[118] Sugawara K, Onishi H, Yamashiro K, Kojima S, Miyaguchi S, Kirimoto H, et al.
The effect of anodal transcranial direct current stimulation over the primary
motor or somatosensory cortices on somatosensory evoked magnetic fields.
Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2015;126:60e7. https://
doi.org/10.1016/j.clinph.2014.04.014.

[119] Venkatakrishnan A, Contreras-Vidal JL, Sandrini M, Cohen LG. Independent
component analysis of resting brain activity reveals transient modulation of
local cortical processing by transcranial direct current stimulation. In: Conf
Proc IEEE Eng Med Biol Soc 2011; 2011. p. 8102e5. https://doi.org/10.1109/
IEMBS.2011.6091998.

[120] Suntrup S, Teismann I, Wollbrink A, Winkels M, Warnecke T, Fl€oel A, et al.
Magnetoencephalographic evidence for the modulation of cortical swal-
lowing processing by transcranial direct current stimulation. Neuroimage
2013;83:346e54. https://doi.org/10.1016/j.neuroimage.2013.06.055.

[121] Neuling T, Ruhnau P, Fusc�a M, Demarchi G, Herrmann CS, Weisz N. Friends,
not foes: magnetoencephalography as a tool to uncover brain dynamics
during transcranial alternating current stimulation. Neuroimage 2015;118:
406e13. https://doi.org/10.1016/j.neuroimage.2015.06.026.

[122] Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and
high-definition transcranial direct current stimulation on cortical reactivity
and working memory in healthy adults. Neuroimage 2017;152:142e57.
https://doi.org/10.1016/j.neuroimage.2017.03.001.

[123] Zheng X, Schlaug G. Structural white matter changes in descending motor
tracts correlate with improvements in motor impairment after undergoing a
treatment course of tDCS and physical therapy. Front Hum Neurosci 2015;9:
229. https://doi.org/10.3389/fnhum.2015.00229.

[124] Mondino M, Brunelin J, Palm U, Brunoni AR, Poulet E, Fecteau S. Transcranial
direct current stimulation for the treatment of refractory symptoms of
schizophrenia. Current evidence and future directions. Curr Pharm Des
2015;21:3373e83. https://doi.org/10.2174/1381612821666150619093648.

[125] Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, et al.
TDCS guided using fMRI significantly accelerates learning to identify con-
cealed objects. Neuroimage 2012;59:117e28. https://doi.org/10.1016/
j.neuroimage.2010.11.036.

[126] Coffman BA, Trumbo MC, Flores RA, Garcia CM, van der Merwe AJ,
Wassermann EM, et al. Impact of tDCS on performance and learning of target
detection: interaction with stimulus characteristics and experimental
design. Neuropsychologia 2012;50:1594e602. https://doi.org/10.1016/
j.neuropsychologia.2012.03.012.

[127] Falcone B, Coffman BA, Clark VP, Parasuraman R. Transcranial direct current
stimulation augments perceptual sensitivity and 24-hour retention in a
complex threat detection task. PLos One 2012;7, e34993. https://doi.org/
10.1371/journal.pone.0034993.

[128] Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, et al. Widespread
modulation of cerebral perfusion induced during and after transcranial
direct current stimulation applied to the left dorsolateral prefrontal cortex.
J Neurosci Off J Soc Neurosci 2013;33:11425e31. https://doi.org/10.1523/
JNEUROSCI.3887-12.2013.

[129] Weber MJ, Messing SB, Rao H, Detre JA, Thompson-Schill SL. Prefrontal
transcranial direct current stimulation alters activation and connectivity in
cortical and subcortical reward systems: a tDCS-fMRI study. Hum Brain
Mapp 2014;35:3673e86. https://doi.org/10.1002/hbm.22429.

[130] Zheng X, Alsop DC, Schlaug G. Effects of transcranial direct current stimu-
lation (tDCS) on human regional cerebral blood flow. Neuroimage 2011;58:
26e33. https://doi.org/10.1016/j.neuroimage.2011.06.018.

[131] Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current
stimulation (tDCS) produces localized and specific alterations in neuro-
chemistry: a 1H magnetic resonance spectroscopy study. Neurosci Lett
2011;500:67e71. https://doi.org/10.1016/j.neulet.2011.05.244.

[132] Rango M, Cogiamanian F, Marceglia S, Barberis B, Arighi A, Biondetti P, et al.
Myoinositol content in the human brain is modified by transcranial direct
current stimulation in a matter of minutes: a 1H-MRS study. Magn Reson
Med 2008;60:782e9. https://doi.org/10.1002/mrm.21709.

[133] Stagg CJ, O'Shea J, Kincses ZT, Woolrich M, Matthews PM, Johansen-Berg H.
Modulation of movement-associated cortical activation by transcranial
direct current stimulation. Eur J Neurosci 2009;30:1412e23. https://doi.org/
10.1111/j.1460-9568.2009.06937.x.

[134] Hunter MA, Coffman BA, Gasparovic C, Calhoun VD, Trumbo MC, Clark VP.
Baseline effects of transcranial direct current stimulation on glutamatergic

https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.jneumeth.2016.12.008
https://doi.org/10.1016/j.neuroimage.2015.12.019
https://doi.org/10.1016/j.neuroimage.2015.12.019
https://doi.org/10.1371/journal.pone.0125477
https://doi.org/10.1088/1741-2560/10/6/066004
https://doi.org/10.1088/1741-2560/10/6/066004
https://doi.org/10.1016/S0079-6123(15)00159-4
https://doi.org/10.1016/S0079-6123(15)00159-4
https://doi.org/10.1016/bs.pbr.2015.09.003
https://doi.org/10.3389/fpsyt.2016.00087
https://doi.org/10.1088/1741-2560/13/3/036022
https://doi.org/10.1088/1741-2560/13/3/036022
https://doi.org/10.1109/TBCAS.2014.2384017
https://doi.org/10.1109/TBCAS.2014.2384017
https://doi.org/10.14814/phy2.12884
https://doi.org/10.3390/brainsci6030026
https://doi.org/10.3390/brainsci6030026
https://doi.org/10.1016/j.brs.2016.06.052
https://doi.org/10.1007/s00221-016-4667-8
https://doi.org/10.1007/s00221-016-4667-8
https://doi.org/10.1016/j.brs.2015.08.014
https://doi.org/10.1016/j.brs.2017.04.002
https://doi.org/10.1016/j.brs.2017.04.002
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref105
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref105
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref105
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref105
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref105
https://doi.org/10.1177/1559325816685467
https://doi.org/10.1177/1559325816685467
https://doi.org/10.1113/JP272738
https://doi.org/10.3389/fnsys.2015.00026
https://doi.org/10.3791/53542
https://doi.org/10.1111/ner.12430
https://doi.org/10.1016/j.neuroimage.2004.07.014
http://digitalrepository.unm.edu/cgi/viewcontent.cgi?article&tnqh_x003D;1024&amp;context&tnqh_x003D;psy_etds
http://digitalrepository.unm.edu/cgi/viewcontent.cgi?article&tnqh_x003D;1024&amp;context&tnqh_x003D;psy_etds
http://digitalrepository.unm.edu/cgi/viewcontent.cgi?article&tnqh_x003D;1024&amp;context&tnqh_x003D;psy_etds
http://digitalrepository.unm.edu/cgi/viewcontent.cgi?article&tnqh_x003D;1024&amp;context&tnqh_x003D;psy_etds
http://digitalrepository.unm.edu/cgi/viewcontent.cgi?article&tnqh_x003D;1024&amp;context&tnqh_x003D;psy_etds
https://doi.org/10.1016/S1388-2457(03)00235-9
https://doi.org/10.1523/JNEUROSCI.5421-13.2014
https://doi.org/10.1523/JNEUROSCI.5421-13.2014
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref115
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref115
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref115
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref115
https://doi.org/10.3389/fpsyt.2012.00084
https://doi.org/10.1371/journal.pone.0013766
https://doi.org/10.1016/j.clinph.2014.04.014
https://doi.org/10.1016/j.clinph.2014.04.014
https://doi.org/10.1109/IEMBS.2011.6091998
https://doi.org/10.1109/IEMBS.2011.6091998
https://doi.org/10.1016/j.neuroimage.2013.06.055
https://doi.org/10.1016/j.neuroimage.2015.06.026
https://doi.org/10.1016/j.neuroimage.2017.03.001
https://doi.org/10.3389/fnhum.2015.00229
https://doi.org/10.2174/1381612821666150619093648
https://doi.org/10.1016/j.neuroimage.2010.11.036
https://doi.org/10.1016/j.neuroimage.2010.11.036
https://doi.org/10.1016/j.neuropsychologia.2012.03.012
https://doi.org/10.1016/j.neuropsychologia.2012.03.012
https://doi.org/10.1371/journal.pone.0034993
https://doi.org/10.1371/journal.pone.0034993
https://doi.org/10.1523/JNEUROSCI.3887-12.2013
https://doi.org/10.1523/JNEUROSCI.3887-12.2013
https://doi.org/10.1002/hbm.22429
https://doi.org/10.1016/j.neuroimage.2011.06.018
https://doi.org/10.1016/j.neulet.2011.05.244
https://doi.org/10.1002/mrm.21709
https://doi.org/10.1111/j.1460-9568.2009.06937.x
https://doi.org/10.1111/j.1460-9568.2009.06937.x


M. Bikson et al. / Brain Stimulation 11 (2018) 465e480 479
neurotransmission and large-scale network connectivity. Brain Res
2015;1594:92e107. https://doi.org/10.1016/j.brainres.2014.09.066.

[135] Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in
depression unmasks increased connectivity between networks via the dorsal
nexus. Proc Natl Acad Sci U S A 2010;107:11020e5. https://doi.org/10.1073/
pnas.1000446107.

[136] Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al.
Transcranial direct current stimulation for acute major depressive episodes:
meta-analysis of individual patient data. Br J Psychiatry J Ment Sci 2016;208:
522e31. https://doi.org/10.1192/bjp.bp.115.164715.

[137] Martin DM, Yeung K, Loo CK. Pre-treatment letter fluency performance
predicts antidepressant response to transcranial direct current stimulation.
J Affect Disord 2016;203:130e5. https://doi.org/10.1016/j.jad.2016.05.072.

[138] Ho K-A, Bai S, Martin D, Alonzo A, Dokos S, Loo CK. Clinical pilot study and
computational modeling of bitemporal transcranial direct current stimula-
tion, and safety of repeated courses of treatment, in major depression. J ECT
2015;31:226e33. https://doi.org/10.1097/YCT.0000000000000230.

[139] Pereira Junior B de S, Tortella G, Lafer B, Nunes P, Bense~nor IM, Lotufo PA,
et al. The bipolar depression electrical treatment trial (BETTER): design,
rationale, and objectives of a randomized, sham-controlled trial and data
from the pilot study phase. Neural Plast 2015;2015:684025. https://doi.org/
10.1155/2015/684025.

[140] Brunoni AR, Ferrucci R, Bortolomasi M, Vergari M, Tadini L, Boggio PS, et al.
Transcranial direct current stimulation (tDCS) in unipolar vs. bipolar
depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:
96e101. https://doi.org/10.1016/j.pnpbp.2010.09.010.

[141] Palm U, Schiller C, Fintescu Z, Obermeier M, Keeser D, Reisinger E, et al.
Transcranial direct current stimulation in treatment resistant depression: a
randomized double-blind, placebo-controlled study. Brain Stimulat 2012;5:
242e51. https://doi.org/10.1016/j.brs.2011.08.005.

[142] Brunoni AR, Valiengo L, Baccaro A, Zanao TA, Oliveira AC, Goulart AC, et al.
The sertraline versus electrical current therapy for treating depression
clinical study: results from a factorial, randomized, controlled trial. JAMA
Psychiatry 2013;70:383e91.

[143] Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML,
Fernandes RA, et al. Trial of electrical direct-current therapy versus escita-
lopram for depression. N Engl J Med 2017;376:2523e33. https://doi.org/
10.1056/NEJMoa1612999.

[144] Zan~ao TA, Moffa AH, Shiozawa P, Lotufo PA, Bense~nor IM, Brunoni AR. Impact
of two or less missing treatment sessions on tDCS clinical efficacy: results
from a factorial, randomized, controlled trial in major depression. Neuro-
modulation J Int Neuromodulation Soc 2014;17:737e42. https://doi.org/
10.1111/ner.12167. discussion 742.

[145] George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M,
et al. Daily left prefrontal transcranial magnetic stimulation therapy for major
depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatr
2010;67:507e16. https://doi.org/10.1001/archgenpsychiatry.2010.46.

[146] Aparício LVM, Guarienti F, Razza LB, Carvalho AF, Fregni F, Brunoni AR.
A systematic review on the acceptability and tolerability of transcranial
direct current stimulation treatment in neuropsychiatry trials. Brain Stimulat
2016;9:671e81. https://doi.org/10.1016/j.brs.2016.05.004.

[147] Valiengo LCL, Goulart AC, de Oliveira JF, Bense~nor IM, Lotufo PA, Brunoni AR.
Transcranial direct current stimulation for the treatment of post-stroke
depression: results from a randomised, sham-controlled, double-blinded
trial. J Neurol Neurosurg Psychiatry 2017;88:170e5. https://doi.org/10.1136/
jnnp-2016-314075.

[148] Reis J, Robertson E, Krakauer JW, Rothwell J, Marshall L, Gerloff C, et al.
Consensus: “Can tDCS and TMS enhance motor learning and memory forma-
tion?”. Brain Stimulat 2008;1:363e9. https://doi.org/10.1016/j.brs.2008.08.001.

[149] Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron
2011;72:443e54. https://doi.org/10.1016/j.neuron.2011.10.008.

[150] Censor N, Horovitz SG, Cohen LG. Interference with existing memories alters
offline intrinsic functional brain connectivity. Neuron 2014;81:69e76.
https://doi.org/10.1016/j.neuron.2013.10.042.

[151] BerlimMT, Van den Eynde F, Daskalakis ZJ. Clinical utility of transcranial direct
current stimulation (tDCS) for treating major depression: a systematic review
and meta-analysis of randomized, double-blind and sham-controlled trials.
J Psychiatr Res 2013;47:1e7. https://doi.org/10.1016/j.jpsychires.2012.09.025.

[152] Meron D, Hedger N, Garner M, Baldwin DS. Transcranial direct current
stimulation (tDCS) in the treatment of depression: systematic review and
meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev 2015;57:
46e62. https://doi.org/10.1016/j.neubiorev.2015.07.012.

[153] Shiozawa P, Fregni F, Bense~nor IM, Lotufo PA, Berlim MT, Daskalakis JZ, et al.
Transcranial direct current stimulation for major depression: an updated
systematic review and meta-analysis. Int J Neuropsychopharmacol 2014;17:
1443e52. https://doi.org/10.1017/S1461145714000418.

[154] Remillard G. The study of sequence learning in individuals with schizo-
phrenia: a critical review of the literature. J Neuropsychol 2014;8:231e45.
https://doi.org/10.1111/jnp.12022.

[155] Martin DM, Liu R, Alonzo A, Green M, Player MJ, Sachdev P, et al. Can
transcranial direct current stimulation enhance outcomes from cognitive
training? A randomized controlled trial in healthy participants. Int J Neu-
ropsychopharmacol 2013;16:1927e36. https://doi.org/10.1017/
S1461145713000539.
[156] Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of
tDCS on motor learning and memory formation: a consensus and critical
position paper. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2017;128:
589e603. https://doi.org/10.1016/j.clinph.2017.01.004.

[157] Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, et al.
Facilitation of implicit motor learning by weak transcranial direct current
stimulation of the primary motor cortex in the human. J Cogn Neurosci
2003;15:619e26.

[158] Hashemirad F, Zoghi M, Fitzgerald PB, Jaberzadeh S. The effect of anodal
transcranial direct current stimulation on motor sequence learning in
healthy individuals: a systematic review and meta-analysis. Brain Cogn
2016;102:1e12. https://doi.org/10.1016/j.bandc.2015.11.005.

[159] Deecke L, Scheid P, Kornhuber HH. Distribution of readiness potential, pre-
motion positivity, and motor potential of the human cerebral cortex pre-
ceding voluntary finger movements. Exp Brain Res 1969;7:158e68.

[160] Manoach DS, White NS, Lindgren KA, Heckers S, Coleman MJ, Dubal S, et al.
Hemispheric specialization of the lateral prefrontal cortex for strategic
processing during spatial and shape working memory. Neuroimage 2004;21:
894e903. https://doi.org/10.1016/j.neuroimage.2003.10.025.

[161] Horvath JC, Forte JD, Carter O. Evidence that transcranial direct current
stimulation (tDCS) generates little-to-no reliable neurophysiologic effect
beyond MEP amplitude modulation in healthy human subjects: a systematic
review. Neuropsychologia 2015;66:213e36. https://doi.org/10.1016/
j.neuropsychologia.2014.11.021.

[162] Waters-Metenier S, Husain M, Wiestler T, Diedrichsen J. Bihemispheric
transcranial direct current stimulation enhances effector-independent rep-
resentations of motor synergy and sequence learning. J Neurosci Off J Soc
Neurosci 2014;34:1037e50. https://doi.org/10.1523/JNEUROSCI.2282-
13.2014.

[163] D'Urso G, Mantovani A, Micillo M, Priori A, Muscettola G. Transcranial direct
current stimulation and cognitive-behavioral therapy: evidence of a syner-
gistic effect in treatment-resistant depression. Brain Stimulat 2013;6:465e7.
https://doi.org/10.1016/j.brs.2012.09.003.

[164] Brunoni AR, Boggio PS, De Raedt R, Bense~nor IM, Lotufo PA, Namur V, et al.
Cognitive control therapy and transcranial direct current stimulation for
depression: a randomized, double-blinded, controlled trial. J Affect Disord
2014;162:43e9. https://doi.org/10.1016/j.jad.2014.03.026.

[165] Nienow TM, MacDonald AW, Lim KO. TDCS produces incremental gain when
combined with working memory training in patients with schizophrenia: a
proof of concept pilot study. Schizophr Res 2016;172:218e9. https://doi.org/
10.1016/j.schres.2016.01.053.

[166] Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M.
Repetitive transcranial magnetic stimulation combined with cognitive
training is a safe and effective modality for the treatment of Alzheimer's
disease: a randomized, double-blind study. J Neural Transm Vienna Austria
1996;2013(120):813e9. https://doi.org/10.1007/s00702-012-0902-z.

[167] Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current
stimulation improves naming reaction time in fluent aphasia: a double-
blind, sham-controlled study. Stroke 2011;42:819e21. https://doi.org/
10.1161/STROKEAHA.110.600288.

[168] Allman C, Amadi U, Winkler AM, Wilkins L, Filippini N, Kischka U, et al.
Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in
patients after stroke. Sci Transl Med 2016;8:330. https://doi.org/10.1126/
scitranslmed.aad5651. re1.

[169] Bolognini N, Vallar G, Casati C, Latif LA, El-Nazer R, Williams J, et al.
Neurophysiological and behavioral effects of tDCS combined with
constraint-induced movement therapy in poststroke patients. Neuro-
rehabilitation Neural Repair 2011;25:819e29. https://doi.org/10.1177/
1545968311411056.

[170] Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, et al.
Raised corticomotor excitability of M1 forearm area following anodal tDCS is
sustained during robotic wrist therapy in chronic stroke. Restor Neurol
Neurosci 2009;27:199e207. https://doi.org/10.3233/RNN-2009-0470.

[171] Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain
stimulation facilitates motor recovery in chronic stroke patients. Neurology
2010;75:2176e84. https://doi.org/10.1212/WNL.0b013e318202013a.

[172] Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, et al. Pre-
conditioning of low-frequency repetitive transcranial magnetic stimulation
with transcranial direct current stimulation: evidence for homeostatic
plasticity in the human motor cortex. J Neurosci Off J Soc Neurosci 2004;24:
3379e85. https://doi.org/10.1523/JNEUROSCI.5316-03.2004.

[173] Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, et al.
Transcranial direct current stimulation (tDCS) and robotic practice in chronic
stroke: the dimension of timing. NeuroRehabilitation 2013;33:49e56.
https://doi.org/10.3233/NRE-130927.

[174] Iezzi E, Conte A, Suppa A, Agostino R, Dinapoli L, Scontrini A, et al. Phasic
voluntary movements reverse the aftereffects of subsequent theta-burst
stimulation in humans. J Neurophysiol 2008;100:2070e6. https://doi.org/
10.1152/jn.90521.2008.

[175] Tsagaris KZ, Labar DR, Edwards DJ. A framework for combining rTMS with
behavioral therapy. Front Syst Neurosci 2016;10:82. https://doi.org/10.3389/
fnsys.2016.00082.

[176] Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to
variability of response in transcranial direct current stimulation studies.
Front Cell Neurosci 2015;9:181. https://doi.org/10.3389/fncel.2015.00181.

https://doi.org/10.1016/j.brainres.2014.09.066
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1073/pnas.1000446107
https://doi.org/10.1192/bjp.bp.115.164715
https://doi.org/10.1016/j.jad.2016.05.072
https://doi.org/10.1097/YCT.0000000000000230
https://doi.org/10.1155/2015/684025
https://doi.org/10.1155/2015/684025
https://doi.org/10.1016/j.pnpbp.2010.09.010
https://doi.org/10.1016/j.brs.2011.08.005
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref142
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref142
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref142
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref142
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref142
https://doi.org/10.1056/NEJMoa1612999
https://doi.org/10.1056/NEJMoa1612999
https://doi.org/10.1111/ner.12167
https://doi.org/10.1111/ner.12167
https://doi.org/10.1001/archgenpsychiatry.2010.46
https://doi.org/10.1016/j.brs.2016.05.004
https://doi.org/10.1136/jnnp-2016-314075
https://doi.org/10.1136/jnnp-2016-314075
https://doi.org/10.1016/j.brs.2008.08.001
https://doi.org/10.1016/j.neuron.2011.10.008
https://doi.org/10.1016/j.neuron.2013.10.042
https://doi.org/10.1016/j.jpsychires.2012.09.025
https://doi.org/10.1016/j.neubiorev.2015.07.012
https://doi.org/10.1017/S1461145714000418
https://doi.org/10.1111/jnp.12022
https://doi.org/10.1017/S1461145713000539
https://doi.org/10.1017/S1461145713000539
https://doi.org/10.1016/j.clinph.2017.01.004
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref157
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref157
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref157
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref157
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref157
https://doi.org/10.1016/j.bandc.2015.11.005
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref159
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref159
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref159
http://refhub.elsevier.com/S1935-861X(17)31024-0/sref159
https://doi.org/10.1016/j.neuroimage.2003.10.025
https://doi.org/10.1016/j.neuropsychologia.2014.11.021
https://doi.org/10.1016/j.neuropsychologia.2014.11.021
https://doi.org/10.1523/JNEUROSCI.2282-13.2014
https://doi.org/10.1523/JNEUROSCI.2282-13.2014
https://doi.org/10.1016/j.brs.2012.09.003
https://doi.org/10.1016/j.jad.2014.03.026
https://doi.org/10.1016/j.schres.2016.01.053
https://doi.org/10.1016/j.schres.2016.01.053
https://doi.org/10.1007/s00702-012-0902-z
https://doi.org/10.1161/STROKEAHA.110.600288
https://doi.org/10.1161/STROKEAHA.110.600288
https://doi.org/10.1126/scitranslmed.aad5651
https://doi.org/10.1126/scitranslmed.aad5651
https://doi.org/10.1177/1545968311411056
https://doi.org/10.1177/1545968311411056
https://doi.org/10.3233/RNN-2009-0470
https://doi.org/10.1212/WNL.0b013e318202013a
https://doi.org/10.1523/JNEUROSCI.5316-03.2004
https://doi.org/10.3233/NRE-130927
https://doi.org/10.1152/jn.90521.2008
https://doi.org/10.1152/jn.90521.2008
https://doi.org/10.3389/fnsys.2016.00082
https://doi.org/10.3389/fnsys.2016.00082
https://doi.org/10.3389/fncel.2015.00181


M. Bikson et al. / Brain Stimulation 11 (2018) 465e480480
[177] Strube W, Bunse T, Malchow B, Hasan A. Efficacy and interindividual vari-
ability in motor-cortex plasticity following anodal tDCS and paired-
associative stimulation. Neural Plast 2015;2015:530423. https://doi.org/
10.1155/2015/530423.

[178] Bastani A, Jaberzadeh S. Does anodal transcranial direct current stimulation
enhance excitability of the motor cortex and motor function in healthy in-
dividuals and subjects with stroke: a systematic review and meta-analysis.
Clin Neurophysiol Off J Int Fed Clin Neurophysiol 2012;123:644e57. https://
doi.org/10.1016/j.clinph.2011.08.029.

[179] Butler AJ, Shuster M, O'Hara E, Hurley K, Middlebrooks D, Guilkey K. A meta-
analysis of the efficacy of anodal transcranial direct current stimulation for
upper limb motor recovery in stroke survivors. J Hand Ther Off J Am
Soc Hand Ther 2013;26:162e70. https://doi.org/10.1016/j.jht.2012.07.002.
quiz 171.

[180] Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F,
et al. Evidence-based guidelines on the therapeutic use of transcranial direct
current stimulation (tDCS). Clin Neurophysiol Off J Int Fed Clin Neurophysiol
2016;128:56e92. https://doi.org/10.1016/j.clinph.2016.10.087.

[181] Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders:
toward a translational paradigm for dysfunctional large-scale networks.
Neuron 2012;75:963e80. https://doi.org/10.1016/j.neuron.2012.09.004.

[182] Kasten FH, Dowsett J, Herrmann CS. Sustained aftereffect of a-tACS lasts up
to 70 min after stimulation. Front Hum Neurosci 2016;10:245. https://
doi.org/10.3389/fnhum.2016.00245.

[183] Lustenberger C, Boyle MR, Alagapan S, Mellin JM, Vaughn BV, Fr€ohlich F.
Feedback-controlled transcranial alternating current stimulation reveals a
functional role of sleep spindles in motor memory consolidation. Curr Biol
2016;26:2127e36. https://doi.org/10.1016/j.cub.2016.06.044.
[184] Vannorsdall TD, van Steenburgh JJ, Schretlen DJ, Jayatillake R, Skolasky RL,
Gordon B. Reproducibility of tDCS results in a randomized trial: failure to
replicate findings of tDCS-induced enhancement of verbal fluency. Cogn
Behav Neurol Off J Soc Behav Cogn Neurol 2016;29:11e7. https://doi.org/
10.1097/WNN.0000000000000086.

[185] Finkel EJ, Eastwick PW, Reis HT. Best research practices in psychology:
illustrating epistemological and pragmatic considerations with the case of
relationship science. J Pers Soc Psychol 2015;108:275e97. https://doi.org/
10.1037/pspi0000007.

[186] Barch DM, Gotlib IH, Bilder RM, Pine DS, Smoller JW, Brown CH, et al. Com-
mon measures for National Institute of Mental Health funded research. Biol
Psychiatr 2016;79:e91e96. https://doi.org/10.1016/j.biopsych.2015.07.006.

[187] Hudson KL, Collins FS. Sharing and reporting the results of clinical trials. J Am
Med Assoc 2015;313:355e6. https://doi.org/10.1001/jama.2014.10716.

[188] Hudson KL, Collins FS. The 21st Century Cures act - a view from the NIH.
N Engl J Med 2017;376:111e3. https://doi.org/10.1056/NEJMp1615745.

[189] Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The National
Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing
on biomedical big data. J Am Med Inform Assoc JAMIA 2014;21:957e8.
https://doi.org/10.1136/amiajnl-2014-002974.

[190] Kaplan RM, Irvin VL. Likelihood of null effects of large NHLBI clinical trials
has increased over time. PLos One 2015;10, e0132382. https://doi.org/
10.1371/journal.pone.0132382.

[191] Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial
magnetic stimulation: a useful tool to understand the physiological effects of
TMS?. In: Conf Proc IEEE Eng Med Biol Soc 2015; 2015. p. 222e5. https://
doi.org/10.1109/EMBC.2015.7318340.

https://doi.org/10.1155/2015/530423
https://doi.org/10.1155/2015/530423
https://doi.org/10.1016/j.clinph.2011.08.029
https://doi.org/10.1016/j.clinph.2011.08.029
https://doi.org/10.1016/j.jht.2012.07.002
https://doi.org/10.1016/j.clinph.2016.10.087
https://doi.org/10.1016/j.neuron.2012.09.004
https://doi.org/10.3389/fnhum.2016.00245
https://doi.org/10.3389/fnhum.2016.00245
https://doi.org/10.1016/j.cub.2016.06.044
https://doi.org/10.1097/WNN.0000000000000086
https://doi.org/10.1097/WNN.0000000000000086
https://doi.org/10.1037/pspi0000007
https://doi.org/10.1037/pspi0000007
https://doi.org/10.1016/j.biopsych.2015.07.006
https://doi.org/10.1001/jama.2014.10716
https://doi.org/10.1056/NEJMp1615745
https://doi.org/10.1136/amiajnl-2014-002974
https://doi.org/10.1371/journal.pone.0132382
https://doi.org/10.1371/journal.pone.0132382
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340

	Rigor and reproducibility in research with transcranial electrical stimulation: An NIMH-sponsored workshop
	Introduction
	Physiological mechanisms
	Effects of tDCS on synaptic plasticity
	Interaction of tACS with ongoing brain rhythms

	Methods and technology
	Reproducibility
	Masking
	Computational models and tES dose optimization
	Remotely-supervised tDCS: at-home use for clinical trials
	Neuroimaging in neuromodulation studies

	Clinical trial design and implementation
	tDCS depression trials: design considerations
	tDCS augmentation trials
	tACS trials: targeting brain oscillations
	Transparency
	NIMH support of clinical trials

	Conclusions
	Financial disclosures
	Disclaimer
	Acknowledgments
	References


