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ABSTRACT

In neuroscience, stimulus-response relationships have traditionally been analyzed using either encoding or decoding models. Here we propose a hybrid approach that
decomposes neural activity into multiple components, each representing a portion of the stimulus. The technique is implemented via canonical correlation analysis
(CCA) by temporally filtering the stimulus (encoding) and spatially filtering the neural responses (decoding) such that the resulting components are maximally
correlated. In contrast to existing methods, this approach recovers multiple correlated stimulus-response pairs, and thus affords a richer, multidimensional analysis of
neural representations. We first validated the technique’s ability to recover multiple stimulus-driven components using electroencephalographic (EEG) data simulated
with a finite element model of the head. We then applied the technique to real EEG responses to auditory and audiovisual narratives experienced identically across
subjects, as well as uniquely experienced video game play. During narratives, both auditory and visual stimulus-response correlations (SRC) were modulated by
attention and tracked inter-subject correlations. During video game play, SRC varied with game difficulty and the presence of a dual task. Interestingly, the strongest
component extracted for visual and auditory features of film clips had nearly identical spatial distributions, suggesting that the predominant encephalographic
response to naturalistic stimuli is supramodal. The diversity of these findings demonstrates the utility of measuring multidimensional SRC via hybrid encoding-

decoding.

Introduction

Understanding the relationship between a sensory stimulus and the
resulting neural response is a fundamental goal of neuroscience. Two
distinct paradigms have shaped the pursuit of the neural code. The
encoding approach attempts to explain neural responses from features of
the stimulus, typically via linear filtering (Dayan and Abbott, 2001).
Examples include receptive fields and spike-triggered averages in
single-unit electrophysiology (Dayan and Abbott, 2001), the generalized
linear model (GLM) in functional magnetic resonance imaging (fMRI)
(Friston et al., 1994; Monti, 2011), spectrotemporal response functions
(STRF) in electrocorticograms (Ding and Simon, 2012a), and temporal
response functions in encephalographic recordings (Lalor et al., 2006;
Lalor and Foxe, 2010; Liberto et al., 2015). In contrast to encoding, the
decoding approach is to predict the stimulus by filtering over an array of
neural responses. Decoding techniques have been shown to reconstruct
experienced stimuli in a large number of findings spanning animal
(Bialek et al., 1991; Warland et al., 1997; Stanley et al., 1999; Butts et al.,
2007) and human investigations of both visual (Norman et al., 2006;
Thirion et al., 2006; Miyawaki et al., 2008; Kay et al., 2008; Nishimoto
et al., 2011; Horikawa et al., 2013) and auditory stimuli (Pasley et al.,
2012; Luo and Poeppel, 2007; Mesgarani et al., 2014; Mesgarani and
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Chang, 2012; O’Sullivan et al., 2014).

The encoding and decoding approaches possess contrasting strengths
and weaknesses: whereas encoding models operate on the stimulus and
are thus easily interpretable (Naselaris et al., 2011), they generally pre-
dict the responses of individual data channels (i.e, neurons, voxels, or
electrodes) and do not efficiently recover distributed neural representa-
tions. Decoding techniques filter neural activity over multiple channels
and are therefore naturally suited to capturing distributed representa-
tions, but at the expense of models that are often difficult to interpret and
prone to overfitting. Therefore, an approach that efficiently captures
distributed neural representations and is readily interpretable in the
stimulus space is lacking.

Here we propose a hybrid approach that combines the strengths of
encoding and decoding. The technique integrates neural responses across
space while filtering the stimulus in time, i.e. it “decodes” neural activity
to recover an “encoded” version of the stimulus. By jointly learning
decoding and encoding models, distributed neural representations are
identified and explicitly linked to portions of the stimulus. In contrast to
existing paradigms, this approach decomposes the neural representation
of stimuli into multiple dimensions, with each dimension defined by a
(spatial) response component and a (temporal) stimulus component.

To validate the ability of the proposed technique to recover multiple
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simultaneous stimulus-driven components, we first conducted a simula-
tion study using data generated from a finite element model (FEM) of the
head. The recovered components matched the ground-truth activations
in both spatial topography and time course. We then evaluated the
technique on recordings of neural activity in response to various natu-
ralistic audiovisual stimuli and found multiple significant dimensions of
stimulus-response correlation (SRC) for both auditory and visual fea-
tures. These multiple dimensions were modulated by the attentional state
of the observer. Interestingly, we found that independent visual and
auditory features possessed a common response component, suggesting
that the dominant EEG response to natural stimuli is supramodal.

Inter-subject correlations (ISC) of neural responses to natural stimuli
have recently been shown to reflect a variety of behaviors (Hasson et al.,
2008a, 2008b; Lahnakoski et al., 2014; Wang et al., 2015; Stephens et al.,
2010; Dmochowski et al., 2012, 2014). We reasoned that stimulus re-
sponses would be similar across subjects and thus predicted that SRC
would track ISC; indeed, SRC covaried with ISC for both auditory and
visual features. In contrast to ISC and event-related potentials, however,
the proposed method does not require repeated exposures to the stimulus
and is thus applicable to the study of unique stimuli. We therefore studied
neural activity during video game play and identified SRCs that reflected
both the game difficulty and attentional state of the player. The variety of
novel findings attests to the utility of the hybrid encoding-decoding
approach.

Analytic methods

We develop the proposed technique by relating it to the two pre-
dominant approaches for the analysis of neural signals: predicting the
neural response from the stimulus (encoding), and recovering the stim-
ulus from the neural response (decoding).

Encoding: modeling the mapping from stimulus to response

Consider a stimulus whose time-varying features are encapsulated by
signal s(t). For an auditory stimulus, the values of s(f) may represent the
sound pressure envelope. For a visual stimulus, s(f) may represent the
luminance. The stimulus is presented to an observer, generating a neural
response ri(t) in the ith data channel (for example, an electrode in a
microelectrode or EEG array, or a voxel in fMRI). Encoding seeks to
identify the mapping from s(t) to ri(t). This is conventionally performed
by filtering s(¢) to produce an estimated neural response ri(*) for each
channel:
7i(2) = hi(t) * s(1). )
For EEG, the filters h;(t) represent the evoked response for each electrode
i (Lalor et al., 2006; Lalor and Foxe, 2010). Encoding filters h;(t) are
generally found by maximizing the correlation between the observed
neural response ri(t) and the estimated neural response ri(*) (or a
convolved version of ri(*) in the case of generalized linear models used
in fMRI (Friston et al., 1994)). Here the symbol * denotes temporal
convolution, such that h(t) «s(t) = > h(r)s(t— 7), but it could also
represent spatial convolution to model visual receptive fields (Dayan and
Abbott, 2001). Note that this optimization problem is generally solved
separately for each channel i = 1...D. Thus, the encoding approach does
not leverage potentially distributed representations where the stimulus
elicits correlated responses across multiple channels. In particular, if the
response magnitude in a given channel is below statistical detection
thresholds, it may be missed by an encoding approach.

Decoding: recovering the stimulus from the response

To remedy this, decoding techniques combine the neural responses of
multiple channels and aim to reconstruct the stimulus (e.g. (Mesgarani
and Chang, 2012; Friston et al., 1994)):
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§(r) = Zwi(t) * ri(1). @)

The decoding weights w;(t) perform both spatial and temporal filtering,
and are found by maximizing the correlation between the observed
stimulus s(t) and the estimated stimulus s(™). Here the symbol xdenotes
temporal correlation, such that w(t) xr(t) = Y w(r)r(t+ 1), captures
the response after stimulus presentation at time t. Note that the responses
of multiple channels are linearly combined to recover a single stimulus
feature, and that the model parameters are now optimized jointly.
However, one limitation of this technique is that it is difficult to directly
interpret the decoding coefficients w;(t) (Haufe et al., 2014). Moreover, in
cases with many channels and long temporal apertures, conventional
decoding techniques are prone to over-fitting and thus require careful
model regularization (Yamashita et al., 2008; Pereira et al., 2009; Pasley
et al., 2012; Haxby et al., 2014).

It should be noted that both encoding and decoding techniques can be
inverted (to become decoders or encoders) if the unconditional distri-
butions of the stimulus or the response, respectively, are available
(Naselaris et al., 2011; Nishimoto et al., 2011; Naselaris et al., 2009).
While the statistics of the stimulus may be readily estimated, it may be
more challenging to estimate the statistics of the response independently
of the stimulus.

Hybrid encoding and decoding

Here we propose a combination of the encoding and decoding ap-
proaches by simultaneously filtering the stimulus in time and the neural
responses in space:

a(t) = h(t) * s(t), 3

(1) = Zw,-r[(t)A 4

The encoder h(t) and decoder w; are found by maximizing the correlation
between the encoded stimulus u(™) and the decoded response v(*).
Note that the decoding is now purely spatial (accounting for distributed
neural representations), while the encoding is purely temporal (capturing
only the relevant portions of the stimulus). It is straightforward to expand
both filtering operations to become spatiotemporal, at the cost of
increased dimensionality. The proposed approach is depicted diagram-
matically in Fig. 1.

We summarize the three approaches here so that the analogies can be
more clearly identified:

ri(t) ~ s(t) « hi(r) (Encoding) 5)
> “wilt) % ri(r) ~ s(1) (Decoding) (6)
Zw,-r,»(t) ~ s(t) * h(t) (Hybrid) )

where, u(t) ~v(t) indicates that model parameters are selected to
maximize the correlation between the signals u(t) and v(¢):

Du()v(r)
. (8)

and where zero-mean has been assumed for u and v. Model parameters
that maximize correlation in (5) and (6) are unique and can be found
with conventional least-squares optimization, arguably leading to the
popularity of the conventional encoding and decoding approaches (see
Methods).

Optimizing the parameters of the hybrid technique (7) is performed

p(u,v)
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Fig. 1. Schematic view of the proposed technique. A stimulus impinges on the observer, generating a set of neural responses r(t). The relevant features of the stimulus
(for example, the time-varying luminance or sound envelope) are extracted, resulting in a time series s(t). An optimization procedure, implemented here via canonical
correlation analysis, then computes spatial filters wy to apply to the neural responses and temporal filters hi(t) to apply to the stimulus features such that the resulting
filter outputs are maximally correlated in time. The result is a set of multiple stimulus and response components whose activities track each other.

by Canonical Correlation Analysis (CCA) (Hotelling, 1936), which pro-
vides multiple independent dimensions, or “components” of the correla-
tion between the stimulus and the response. Specifically, each dimension
k=1,...,K is defined by an encoder hy(t) and decoder wy;. Each enco-
ding/decoding dimension k captures in vk(™) a spatial component of the
neural activity and in uk(™) a temporal component of the stimulus. The
SRC of dimension k is then defined according to:

Pk :P( ukr‘.k)ﬂv ©

with p; > p, > ... > pg, and zero cross-correlation across components,
p(uk(™), vI(*)) = 0 for k # 1 (this is approximately true also in the case
of regularization, as demonstrated in the Results). Thus, different com-
ponents capture genuinely different aspects of the stimulus-response
relationship. Note that this multidimensional representation cannot be
recovered with the either the encoding approach (5) or the decoding
approach (6), as they inherently yield only one dimension of the SRC.
Some have used principal components analysis (PCA) as a post-
processing of encoding models to capture components of distributed
representations (Huth et al., 2012, 2016). However, PCA enforces
orthogonality on the weights of the spatial (or temporal when performing
temporal component analysis) filters. In contrast, CCA only requires
temporally uncorrelated filter outputs, and spatial filters w; are not
required to be orthogonal. We also note that CCA has been previously
used to measure correlation between stimuli and MEG responses using
purely temporal filters (Koskinen et al., 2013) without capturing
distributed responses.

There are two conceptual differences between the hybrid approach
(7) and conventional encoding or decoding (5)-(6). First, the hybrid
approach captures distributed representations while providing readily
interpretable stimulus response models. Second, the neural responses are
separated into components k that are uncorrelated from each-other. In
total, the neural responses to the stimulus are implicitly modeled as:
Fi(t) = Z%‘M(ﬁ #s(1). (10)

k

Here the “temporal response” hi(t) represents the time course of
neural activity evoked by the stimulus for component k. These temporal
responses do not depend on space (electrode). The factor aj, which varies
with electrode i, reflects how strong (and with which sign) the neural
response is expressed across space. It thus captures the “spatial response”.

As with other decoding and source separation methods, it is easier to
interpret the spatial responses aj than the spatial filter weights wy, Haufe
et al. (2014). Differences between filter weights at low-variance or noisy
electrodes do not indicate genuine differences in neural responses to the
stimulus. On the other hand, the spatial response captures the distribu-
tion of stimulus-related activity that is extracted by the spatial filter (see
Appendix A, Eq. (16)).

Note that in the traditional encoding and decoding approaches
(5)-(6), the number of free parameters is QD, with Q representing the
length of the temporal aperture and D denoting the number of neural data
channels. On the other hand, the hybrid method as formulated here leads
to simpler models with (Q + D)K free parameters. Typically, the total
correlation is contained within a few components K (e.g. 5 or less) while
D and Q often span hundreds of parameters. We thus expect the new
technique to be less susceptible to overfitting the data.

Experimental methods

The proposed technique was evaluated using both simulated data as
well as multiple real EEG data sets collected in various settings.

Simulation study

We conducted a simulation study of the proposed technique using a
FEM of the segmented human head (Huang et al., 2016). The model
included 10,000 EEG sources arranged along the grey matter surface and
230 electrodes placed on the scalp following an extended 10/5 scheme
(Huang et al., 2016). The stimulus was extracted as the optical flow time
series from a clip of the film “Dog Day Afternoon” (duration 325s, 24
frames/s). This stimulus was encoded by two brain regions: the primary
visual cortex (V1; coordinates in the head model —0.0078, —0.10,
0.0028), whose temporal response to the stimulus was given by an im-
pulse response shaped according to the Cauchy probability density
function (PDF) with a peak at 167 ms and a scale parameter of 0.5. Visual
area V4 (coordinates —0.026, —0.10, —0.0048) also represented the
optical flow stimulus with an impulse response shaped according to a
Cauchy PDF with a peak at 500 ms and a scale parameter of 1. Both
temporal responses were normalized to unit L2 norm, and are shown in
Fig. 2A. A third brain region, modeled here as the inferior temporal
cortex (ITC; coordinates —0.062, —0.035, —0.028), generated a
stimulus-independent white noise waveform with a standard deviation of
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Fig. 2. Hybrid encoding-decoding recovers multiple dimensions of SRC. Simulated activations of the primary visual cortex and visual area V4 followed the optical
flow of a film clip with temporal responses depicted in (A) and spatial responses depicted in (B). A source in the inferior temporal cortex (ITC) was uncorrelated with
the stimulus. The hybrid technique recovered the temporal (C) and spatial (D) responses of the V4 source in component 1, and the V1 source in component 2,
respectively, with correlations between the estimated and true responses being r > 0.99 (spatial) and r > 0.68 (temporal). (E) Regularization was performed here by
truncating the eigenvalue spectrum of the stimulus (temporal) and response (spatial) covariance. Peak SRC was attained with a 9-dimensional stimulus covariance and
a full (230) dimensional EEG covariance. The accuracy of the estimated spatial and temporal responses were relatively insensitive to regularization, potentially due to
the presence of spatially white noise added to the EEG which effectively regularized the data.

twice that of the stimulus-driven sources. Each source consisted of 40
vertices closest to the manually identified region coordinates. The three
source activations were projected onto the scalp electrodes using the
head model’s lead field matrix and superimposed. Spatially white
Gaussian noise was then added to the electrodes such that the
signal-to-noise ratio (SNR) was 0.3 (—10 dB). The scalp projections (i.e.,
spatial responses) from the three modeled brain regions are shown in
Fig. 2B. To evaluate the effect of regularization on the recovered sources
and the SRC, we varied the strength of regularization (i.e., the number of
principal components retained in the covariance matrices of the stimulus
feature and EEG response; see Regularization in Appendix A) from 5% to
100% in 20 equally spaced intervals. The first 300 s of the stimulus and
simulated EEG response were used to learn the model parameters, while
the last 25 s served as the test set where performance was evaluated. We
measured the SRC, the correlation between the recovered and actual
spatial response, and the correlation between the recovered and actual
spatial temporal response, all averaged over the first two components.

Subjects and stimuli

All participants provided written informed consent in accordance
with the procedures approved by the Western Institutional Review Board
(Puyallup, WA). 30 healthy human subjects (15 females, median age 23)
participated in the main experiment, during which they freely viewed a

clip from the film “Dog Day Afternoon” (duration 325 s, 24 frames/s; this
clip was first analyzed in Honey et al. (2012) using fMRI) while their EEG
was recorded. An additional 5 healthy human subjects (2 females, me-
dian age 21) were recruited for the video game study, where EEG was
collected while subjects played the car-racing video game “Super-
TuxKart” (variable duration, 60 frames/s). Subjects controlled the
vehicle using their right hand, via keyboard directional arrows - left/-
right keys controlled steering, while up/down controlled acceleration.
The video game study also included a “divided-attention” condition
during which participants performed a concurrent
rapid-serial-visual-presentation (RSVP) task (Gerson et al., 2006) to earn
various “items” which gave players a temporary competitive advantage
against the other racers. For this condition, a square black panel was
superimposed on the screen with objects rapidly flashed (i.e., 5 Hz) in-
side the square. Subjects were instructed to attend (while maintaining
eye gaze on their vehicle and race track) to a particular object of the
RSVP display. Players could redeem their selected items by pressing the
space bar with the left hand. Two levels of race difficulty were tested:
“easy” and “hard”. The easy condition consisted of slow driving speed
against 3 simulated race competitors, tuned to allow the subject ample
opportunity to win the race. In the hard condition, the driving speed
increased, as well as the number (i.e., 7) and performance of the simu-
lated race competitors. This resulted in more obstacles, crashes, and
aggressive driving. In both experiments, sound was delivered via Sony
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MDR-7506 headphones adjusted by each subject to a comfortable
listening volume prior to the experiment.

Existing data

To evaluate the effect of attention (see Fig. 6), we reanalyzed the EEG
data from (Ki et al., 2016). In that study, EEG was collected during
passive viewing/listening of the following popular stimuli: “Bang! You’re
Dead” (N = 20, 8 females, median age 20, duration 372 s, 25 frames/s)
(Hasson et al., 2008c), “The Good, the Bad, and the Ugly” (same subject
pool, duration 388 s, 30 frames/s) (Hasson et al., 2004), and “Pie Man”
(recorded on a separate N = 20 subjects, 7 females, median age 21,
duration 360 s, 30 frames/s, (Lerner et al., 2011), although this audio
narration only showed a fixation cross on the screen). There were two
experimental conditions (each with N = 20): in the “attend” condition,
subjects were instructed to normally attend to the stimuli. To emulate the
inattentive state, in the “count” condition subjects were instructed to
mentally count backwards in steps of 7 during viewing/listening.

EEG collection and pre-processing

Subjects were fitted with a 32-electrode cap placed on the scalp ac-
cording to a modified 10/10 scheme for EEG, which was recorded with a
BioSemi ActiveTwo system (BioSemi, Amsterdam, Netherlands) at a
sampling frequency of 2048 Hz and 24 bits per sample. Four-channel
electrooculogram (EOG) recordings were collected from electrodes
below and adjacent to each eye. EEG pre-processing was performed
automatically and offline in the MATLAB software (MathWorks, Natick,
MA). The signals were high-pass filtered at 1 Hz, notch filtered at 60 Hz,
and then downsampled to 256 Hz. To remove the contribution of eye
movements from the EEG, the four EOG channels were linearly regressed
out of the 32-channel EEG. Artifactual channels and data samples were
identified and replaced with zeros when their respective power exceeded
the mean power by 4 standard deviations. The EEG was further down-
sampled to the frame rate of the stimulus prior to analysis.

Stimulus feature extraction

All stimuli were loaded into the MATLAB software to extract the video
frames and audio samples comprising the stimulus. The color video
frames were converted to grayscale, resulting in intensity values I,(t) for
pixel p at frame time t. The luminance at each frame was then computed
as the mean intensity across pixels: L(t) = (I(t)), = }1—,25:111,(1*). Simi-
larly, temporal contrast was derived as the mean temporal derivative of
intensity changes, (

ol (t)/ 6t}>P (i.e., unsigned frame to frame changes in
intensity). Local contrast was computed following (Groen et al., 2013):
(|Io(t) — Hp = I(t)|),, where * indicates a 2-dimensional spatial convo-
lution, here with uniform point-spread function H, with a 30x30
region-of-support. Optical flow was estimated from the frame sequence
using the Horn-Schunk method (Horn and Schunck, 1981) via the
MATLAB Computer Vision System Toolbox. The sound envelope was
computed as the squared magnitude of the Hilbert transform of the sound
pressure amplitude, and then downsampled to the frame rate of the
accompanying video. Prior to processing, all features were high-pass
filtered at 1 Hz (to match the neural response and remove slow drifts)
and z-scored.

Cross-validation and statistical significance

When learning the optimal hybrid model parameters, we performed
leave-one-out cross-validation along the subject dimension. In particular,
we held out one subject at a time, learning the encoding (hi(t)) and
decoding filters (w;) on the data pooled from the remaining subjects. The
resulting model parameters were then applied to the held-out subject to
measure the SRC on “unseen” data.
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Cross-validation was not performed for the SRC-ISC comparison (Fig
5) due to the fact that the goal of the analysis was to measure the cor-
respondence between SRC and ISC: any spurious model fits would not be
expected to produce SRCs that covary with the ISC.

In order to determine statistical significance of the SRC at each
learned component pair (p, > 0), we formed N = 1000 surrogate data
records in which the phase spectrum of the EEG was randomized
following (Theiler et al., 1992). This procedure preserved the autocor-
relation structure of the EEG while disrupting the temporal relationship
between the stimulus and neural activity. SRC computed with the
permuted data records defined the null distribution from which p-values
were estimated.

SRC-ISC comparison

When comparing SRC with ISC (Fig. 5), we learned the encoding and
decoding filters separately for each individual subject (i.e., no pooling of
subjects’ EEG was conducted for this analysis). This was performed in
order to ensure that the computation of SRC-maximizing filters would
not be biased towards picking up patterns of activity that were common
across subjects, thus confounding the SRC-ISC relationship. For each
subject, their SRC-maximizing spatial filter was applied to their EEG
record, and the resulting EEG components were then correlated with
their corresponding optimally filtered stimulus feature. The correlation
was computed in a time-resolved fashion using windows of 5-second
length and 80% overlap across successive windows. At each window,
the SRC was uniformly summed across the first three components in
order to reduce the dimensionality of the comparison. To compute ISCs of
the neural responses, we followed the procedure of (Dmochowski et al.,
2012). The subject-independent spatial filters that maximized ISC across
the subject pool were learned and then applied onto each subject’s data
before computing pairwise ISCs and then summing across all N x (N — 1)
/2 = 435 subject pairs. As with the SRC, the ISC was computed across 5 s
windows and uniformly summed across the first three components.

To test for statistical significance of the correlation between ISC and
SRC, we performed a permutation test where the phase-spectrum of the
ISC time series was randomized (Theiler et al., 1992). By preserving the
magnitude spectrum, this procedure maintains the autocorrelation of the
ISC signal. The permuted ISC was then correlated with the SRC, and the
procedure was repeated 100,000 times. The p-value was then estimated
from the proportion of iterations in which the mock correlation exceeded
the true one.

Results
Hybrid encoding-decoding recovers multidimensional SRC

To verify that the proposed hybrid technique can recover multidi-
mensional SRC, we conducted a simulation study in which two visual
brain regions represented the optical flow of a film stimulus with
differing delays. The temporal responses of the primary visual cortex
(V1) and visual area V4 are shown in Fig 2A, along with the response of
the inferior temporal cortex (ITC) whose activation was uncorrelated
with the stimulus waveform. The spatial responses of these activations
are shown in Fig 2B and represent the projections of the activated brain
regions on the scalp. We expected that the topographies of the stimulus-
driven sources would be recovered by the proposed technique, but not
the topography of the stimulus-unrelated source.

The first component recovered by the hybrid technique closely
matched the V4 activation in both temporal response (Fig 2C, p = 0.99,
N = 25 with no regularization) and spatial response (Fig 2D, p = 0.99,
N=230 with no regularization). The second recovered component
matched the V1 activation (temporal response: p = 0.93, spatial
response: p = 0.68). As expected, the spatial response of the stimulus-
independent source was not recovered. To evaluate the effect of regula-
rization on the recovered sources and SRCs, we repeated the analysis at
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different levels of regularization, measured here as the number of prin-
cipal component dimensions retained in the covariance matrices of the
stimulus feature and EEG response (see Regularization in Appendix A for
details). For each regularization level, we quantified the accuracy of the
recovered spatial responses by computing the correlation with the actual
projections from the cortical sources to the scalp. Similarly, we measured
the correlation between the true temporal responses and the recovered
ones. In each case, we averaged the correlations among the first two
components. The SRC peaked when retaining 9 (of a possible 25) tem-
poral stimulus components and all 230 spatial EEG dimensions (Fig 2E).
The accuracies of the temporal and spatial responses were highest for a
stimulus dimensionality of 14 and 8, respectively, with regularization of
the EEG failing to improve the accuracy of the recovered components.
This could be due to the fact that spatially white noise was added to the
simulated EEG, thus effectively regularizing the covariance.

Note that there is an inherent sign ambiguity in the recovered spatial
and temporal responses: each can be negated without altering the value
of the resulting SRC. Therefore, in Fig 2 (e.g. component 2) and
throughout, we have in some cases inverted the polarity of the recovered
topographies and associated time courses to match the ground-truth or a
component from another condition (e.g. feature).

In the following, we demonstrate the utility of hybrid encoding-
decoding by applying the technique to real EEG responses evoked by
naturalistic audiovisual stimuli.

Dynamic visual features elicit strong multidimensional SRC

We first sought to determine which features of naturalistic stimuli
evoke the strongest SRC. For a popular film clip during which we
recorded the evoked scalp potentials of N = 30 viewers, we extracted a
set of visual and auditory features including optical flow, visual temporal
contrast, sound amplitude envelope, luminance, and spatial contrast (see
Methods). Applying these derived features and neural responses to the
hybrid encoding-decoding scheme led to a range of SRC values (Fig. 3A).
We found statistically significant correlations along multiple dimensions
(i.e., component pairs) for four of the five features (all p < 0.05,
computed using phase-randomized surrogate data). SRCs of different
component pairs are shown cumulatively, as each pair captures a
different dimension in the data with uncorrelated activity. The strongest
SRCs were exhibited by temporal contrast and optical flow, exceeding the
correlations with sound envelope (paired t-test for sound envelope with

A Component 1
Component 2
Component 3

o
N

Stimulus-Response Correlation
o

B

I
1

*

i *

B Spatial contrast

Spatial
response
0.5

Temporal
response
0
-0.5
0.5
-0.5
0 05 1
Time (s)

Spatial Luminance  Sound Temporal  Optical
contrast envelope  contrast flow

Neurolmage 180 (2018) 134-146

temporal contrast, t(29) =5.7,p =4 x 10~%, and with optical flow £(29)
=4.7,p =5x 107>, both N = 20).

By construction, the response components recovered by CCA are
temporally uncorrelated with one another. However, when regularizing
covariance as was performed here (see Methods), the response compo-
nents may exhibit some level of correlation. Thus, to confirm that regu-
larization did not introduce “cross-talk”, we also measured the
correlation between mismatched stimulus and response components (e.g.
the correlation between stimulus component 1 and response component
2). These correlations were found to be very low (mean + standard de-
viation across all features and component pairs: 0.0005 + 0.003 ).
Comparing this to the SRC measured within matched component pairs
(as high as 0.1 for temporal contrast), it is clear that the multiple response
components detected by the hybrid technique were distinct.

Similar spatial responses to auditory and visual stimuli

The hybrid technique correlates spatial response components with
temporal stimulus components. Response components are characterized
by a topography, termed a spatial response, that conveys the spatial dis-
tribution of the decoded neural activity. Stimulus components are
extracted by a temporal filter that conveys a temporal response. Together,
the spatial and temporal responses fully convey the mapping between
original stimulus and evoked neural response (see Methods for details).
Interestingly, the spatial responses of the first component were similar for
all features (Fig. 3B).

While the finding of congruent spatial responses was expected for the
two dynamic visual features which were strongly correlated (correlation
between optical flow and temporal contrast: r = 0.96), we did not expect
to find such similar topographies for weakly correlated auditory and
visual features (correlation between sound envelope and temporal
contrast: r = 0.067). To rule out that the similarity of the auditory and
visual spatial responses was due to this small correlation, we subtracted
from the temporal contrast the fraction that was explained by the sound
envelope, and vice versa. In doing so we generated orthogonal time series
for temporal contrast and sound envelope. The spatial responses of the
first component for these uncorrelated visual and auditory features still
had nearly identical distributions on the scalp (Fig. 4, left; correlation
between spatial responses of sound envelope and temporal contrast: r =
0.99). The associated temporal responses (filters) showed opposing po-
larities of the responses to visual and auditory features (Fig. 4, right). We

Sound envelope Temporal contrast

Qv QN
O\ O

Optical flow

-0.5
0 05 1 0 05 1
Time (s) Time (s)

€ jusuodwon zusuodwo) T jusauodwo)

Fig. 3. Neural responses to a film clip track dynamic visual features. A SRC as computed for various auditory and visual features of a clip from “Dog Day Afternoon”.
Significant correlations were detected along multiple dimensions for 4 of the 5 features considered (p < 0.05, permutation test using surrogate data, and indicated by
“** with color indicating the component tested). Correlations with temporal contrast and optical flow, features that differentiated pixel values across frames, exceeded
those with the sound envelope (p < 0.04, paired t-test, N=30). Error bars denote the standard errors of the mean (SEM) across subjects. B Spatial responses convey the
topography of neural activity that best expressed the stimulus features. Temporal responses reflect the delays between stimulus and neural response. While the to-
pographies of the first response components (left panels in top row) were congruent for all features, the temporal responses varied with the particular feature used.
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Fig. 4. Visual and auditory features evoke similar spatial responses. The spatial
responses of the first component for visual temporal contrast and sound enve-
lope, which depict where on the scalp these stimuli were expressed, were highly
similar (left column, r = 0.99), even though the features were decorrelated
(r=0). However, the associated temporal responses were inversely related (right
column, r = — 0.83), suggesting that the evoked responses to visual and
auditory stimuli drove the EEG with opposing polarity. All values have arbitrary
units as SRC is independent of scale.

checked whether these temporal filters introduced a correlation between
the two features, and found only a weak negative correlation of r = —
0.14 between filtered visual and auditory features. We also investigated
whether the regularization added to the computation of the filter weights
(see Regularization in Appendix A) may have led to the similarity of the
spatial responses. After repeating the analysis but without regularization,
we once again found that the spatial responses were highly similar for
auditory and visual features (r = 0.97). Therefore, one possible inter-
pretation of similar spatial responses to visual and auditory stimuli is that
the dominant EEG response to natural stimuli is supramodal (however,
see Discussion).

SRC tracks inter-subject correlation (ISC)

A number of reports have shown that dynamic natural stimuli elicit
similar responses across subjects in fMRI, EEG and MEG (Hasson et al.,
2008a; Dmochowski et al., 2014; Lankinen et al., 2014). For responses to
be reproducible across subjects, the responses should also be reliably
evoked by the stimulus within subjects. Therefore, we hypothesized that
there would be a correspondence between how strongly the stimulus
drove individual neural responses and how similar the responses were
across subjects. To test this, we computed a time-resolved measure of the
SRC (by summing across the first three component pairs of the hybrid
technique) for the temporal contrast and sound envelope of the same film
clip. Similarly, we also measured the time-resolved ISC (by summing
across the three components maximizing correlation across subjects)
experienced during the same stimulus (see Methods). In line with our
hypothesis, a significant portion of the variability in the ISC time series
could be explained from both visual and auditory SRC (Fig 5; temporal
contrast: r = 0.59,p = 3 x 10731, N = 321; sound envelope: r = 0.34,p =
3x 1071%, N = 321). While these correlations are not large, it is still
remarkable that the responses to simple unimodal stimulus features can
explain a significant portion of the ISC variability.
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Attentional modulation of SRC

Given the long-standing evidence showing that attention modulates
evoked responses (e.g. (Picton and Hillyard, 1974)), we hypothesized
that the SRC would decrease when the level of attention directed to the
stimulus was reduced. To test this, we reanalyzed previous data recorded
in two attentional conditions (Ki et al., 2016): subjects either naturally
attended to the stimulus or performed a counting task, intended to
distract viewers from the stimulus. Two film clips (“Bang! You’re Dead”
and “The Good, The Bad, and the Ugly”) and one narrated audiobook
(“Pie Man”) were considered for this analysis. All subjects were presented
the same stimuli under both conditions (i.e., we took repeated measures).
We investigated whether SRC was modulated by attention (attend vs
count) and if this was specific to particular stimuli or component pairs.
We first analyzed the SRC using the sound envelope. A three-way,
repeated-measures ANOVA with component, attention and stimulus as
factors identified main effects of attention (F(1) = 7.48, p = 0.008) and
stimulus (F(1) = 29.17, p = 1.82 x 107°) and an interaction between
component and stimulus (F(2) = 14.15, p = 1.02 x 10~°). Follow-up
pairwise comparisons showed that the reduction in SRC for the “count”
condition was driven by the two stimuli containing speech (Fig. 6A). In
contrast, the “The Good, the Bad, and the Ugly” had minimal speech
content and elicited weak SRC that was not modulated by attention. This
suggests that the effect of attention on auditory EEG responses may be
specific to speech. For the two audiovisual clips, we measured SRC using
the optical flow and again performed a three-way, repeated-measures
ANOVA with attention, stimulus and component as factors. There was
again a strong main effect of attention (F(1) = 34.6, p = 107°), with
reduced SRC in the “count” condition (Fig 6A). An interaction between
attention and stimulus (F(1) = 12.2, p = 0.002) was also found. Spe-
cifically, SRC during the suspenseful “Bang! You’re Dead” was more
robustly modulated by attention, consistent with results reported in Ki
et al. (2016).

SRC during interactive stimuli

To demonstrate that the proposed technique can capture SRC elicited
by uniquely experienced stimuli, we recorded scalp potentials from N =5
subjects while playing a car-racing video game (Fig 7A). The ongoing
feedback between player and game meant that every race was percep-
tually unique. After reconstructing the optical flow of the video game
display during each race, the stimulus time series and neural responses
were used to measure SRC with the hybrid technique.

We found 5 statistically significant components whose spatial and
temporal responses are illustrated in Fig 7B. Note that the spatial
response of the first component was focused over parietal electrodes, and
the associated temporal response had an early peak (i.e., 150 ms, Fig 7B).
This is in contrast to the first component observed during film viewing
(see Fig 3B). A component with a similar spatial but not temporal
response as this “film” component was observed more weakly during
video game play (Fig 7B, component 4 ). The discrepancy between film
and video game components may indicate that when actively engaged
with natural stimuli, distinct neural circuits are recruited. An alternative
interpretation is that somatosensory and motor activity correlated with
optical flow as players controlled speed and direction with right-hand
key-presses. In this case, however, one would have expected a more
central spatial response.

SRC is modulated by difficulty and presence of dual-task

The video game consisted of a car race with obstacles and competing
drivers. Players experienced two levels of race difficulty by varying the
number and skill of competing drivers. The game also included a divided-
attention condition which required players to simultaneously attend to
the top center of the screen (Fig. 7A), where items were presented for
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Fig. 5. SRC tracks the inter-subject correlation (ISC) of neural responses to naturalistic stimuli. A The time course of the SRC, as computed on the temporal contrast of
a film clip, explains 34% of the variability in the ISC time course (r = 0.59, p < 10~%, N = 321, permutation test). This suggests that the exogenous drive provided by
the common stimulus underlies the reliability of neural responses across subjects as measured by the ISC. B Same as (A) but now for the envelope of the film’s
soundtrack. The SRC accounts for approximately 12% of the variability in the ISC (r = 0.34, p = 0.001, N = 321, permutation test). Shading indicates the SEM across

subjects (for SRC) or subject pairs (for ISC).

selection (Gerson et al., 2006). We predicted that players would devote
more resources to the driving task during difficult races, resulting in
higher SRC. In contrast, during periods of divided attention to a sec-
ondary task, SRC would be reduced. Repeated measures ANOVA with
difficulty, attention, and component as factors revealed main effects of
difficulty (F(1) = 4.58, p = 0.035), attention (F(1) = 3.97, p = 0.050),
and component (F(4) = 29.15, p = 0 to numerical precision), with cor-
relations increasing during difficult races and decreasing during the
divided attention task, as predicted. It is important to note that the
stimuli differed with game difficulty, and thus one cannot rule out that
the effects are a result of varying stimuli and not of varying neural
responses.

Discussion

Here we have developed a hybrid technique for learning the mapping

Component 1 Component 2

between a dynamic stimulus and the corresponding neural response. By
simultaneously encoding the stimulus and decoding the neural response,
the proposed approach recovers multiple dimensions of SRC via the ca-
nonical correlation analysis formalism. We employed the technique to
show that the brain’s dominant response to visual and auditory stimuli
had a common spatial response, even after removing all correlation be-
tween the film’s soundtrack and visual features. Moreover, the di-
mensions of the SRC were modulated by the viewer’s attentional state.
The SRC was also shown to track the ISC of neural responses that have
recently been employed to decode a variety of cognitive states. In
contrast to the ISC, however, the multidimensional SRC does not require
multiple subjects to experience the same stimulus. The technique is thus
applicable to the study of interactive stimuli, as was demonstrated here
for video game play, where both attentional and task demands were
shown to modulate the SRC.

EEG tracks dynamic visual features. While there have been multiple
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Fig. 6. Multidimensional SRC is modulated by the level of attention directed to the stimulus. Subjects viewed film clips or listened to an audiobook while either
naturally attending to the stimulus (‘attend’) or performing a counting task (‘count’). A SRC as measured for the sound envelope of two audiovisual and one auditory
stimulus. Repeated measures ANOVA showed a significant effect of attention (F(1) = 7.48, p = 0.008). Follow-up comparisons indicated that SRC was modulated by
attention in the first component but only for the stimuli that contained speech (t-test, BYD: p=0.021 and PM: p = 0.044, both N = 20). B Repeated measures ANOVA on
the SRC with optical flow also found a main effect of attention (F(1) = 34.6, p = 107°). Follow-up comparisons indicated that this effect was robust in the first
component for BYD (t-test: p=0.002, N = 20), and in the second component for both audiovisual stimuli (t-test, BYD: p = 0.0011 and GBU: p = 0.0036, both N = 20).

Error bars denote SEM across subjects.
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Fig. 7. SRC with optical flow measured during video game play is modulated by game difficulty and attention to a secondary task. A Neural activity was recorded
while subjects played a car-racing video game under two difficulty levels and with some of the races containing an additional cognitive task. B The hybrid technique
resolved five significant components, with the strongest component showing a parietal spatial response and an early temporal response (150 ms). C Repeated measures
ANOVA showed main effects of difficulty (F(1) = 4.58, p = 0.035, asterisk displayed over bars in the ’attend’ condition), attention (F(1) = 3.97, p = 0.05), and
component (F(4) = 29.15, p = 0 to numerical precision). SRC was increased during difficult runs, while decreasing when the player’s attention was divided between

the game and a secondary task. Error bars denote the SEM across subjects.

reports of EEG responses tracking auditory features, in particular the
envelope (Lalor and Foxe, 2010; Ding and Simon, 2012a, 2012b; Power
et al., 2012; Golumbic et al., 2013; Liberto et al., 2015), relatively little
comparable findings exist for visual stimuli (see Groen et al. (2013) for an
exception). The hybrid technique developed here demonstrated that
dynamic visual features were correlated with encephalographic re-
sponses to a level comparable if not stronger than the well-studied
auditory envelope.

Supramodal component. The supramodal component identified here
bears some resemblance to the component that was previously found to
maximize the ISC of EEG responses to video (Dmochowski et al., 2012,
2014) and auditory narratives (Ki et al., 2016; Cohen et al., 2016). In
these earlier studies, the supramodality was obscured as the ISC approach
is blind to which features of the stimulus drive reliable responses. Here
we demonstrated that both auditory and visual features correlated with
this component. It is thus possible that this component is selective to
integrated audiovisual activity, as has been observed in temporal cortex
during presentation of speech (Callan et al., 2001) as well as individual
letters (Raij et al., 2000). Alternatively, the activity may be related to
attentional networks that are entrained by the stimulus regardless of
modality (Lakatos et al., 2009; Walz et al., 2013). It is also possible that
the similarity of the spatial responses resulted from the correlation be-
tween auditory and visual features after temporal filtering (encoding).
While this is unlikely as the correlation between filtered features was
found here to be small, additional experiments are required to rule out
this possible confound.

Distributed stimulus representations. A basic premise of the proposed
approach is that stimulus features are represented by distributed rather
than local neural responses. This is particularly true for EEG where the
activity from a localized neural population can be detected at multiple
electrodes. The encoding approach, conventionally used for analyzing
spiking activity (Dayan and Abbott, 2001), fMRI (Friston et al., 1994) and
recently also EEG (Lalor et al., 2006), models neural responses at indi-
vidual channels (electrodes, voxels), and does not directly leverage such
distributed activity. Decoding approaches, in contrast, can combine re-
sponses that are distributed and appear only weakly in individual
channels (Kamitani and Tong, 2005; Norman et al., 2006). While
encoding models are sometimes reversed to provide decoding (Nishi-
moto et al., 2011), such an approach often ignores the correlated nature
of neural responses (Eyherabide and Samengo, 2013). The hybrid
encoding-decoding technique captures distributed representations as
components of the neural response. These components are linked to
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temporal components of the stimulus, and are thus readily interpretable.

Separating multiple dimensions of SRC. An important aspect of the
proposed technique is its ability to extract multiple, independent di-
mensions of SRC. These multiple dimensions allow one to more finely
probe the effects of experimental manipulations. For example, consider
the effect of attention on SRC during film viewing (Fig. 6). For the sound
envelope, only the correlation of the first component was modulated by
altering attentional state. Conversely, for optical flow, the modulation
was strongest in the space of the second component. Thus, the multidi-
mensional nature of the proposed approach allows one to identify the
neural circuits driven by experimental variables. The challenge of any
decomposition technique, including principal, independent or correlated
component analysis (Parra et al., 2005; de Cheveigné and Parra, 2014;
Dmochowski et al., 2012), is to identify the functional significance of the
extracted components. One approach is to manipulate the stimulus, task,
or cognitive state of the subjects (as we have done here), and determine
how the different components respond to such manipulations. Addi-
tionally, one can interpret the spatial response by comparing it against
known functional anatomy (in the case of EEG/MEG, the spatial response
can be projected onto cortex via an appropriate inverse model), or by
comparing the delays in the temporal response with what is known about
neural representation.

Relation to Inter-Subject Correlations. The SRC was shown to temporally
covary with the ISC of neural responses to the stimulus. This is consistent
with the idea that the common stimulus “synchronizes” the neural re-
sponses of multiple viewers. In principle, the ISC can be driven by any
property of the stimulus, including high-level semantic features. Here we
found that a significant fraction of the ISC fluctuation was explained by
relatively simple unimodal features such as temporal contrast (r = 0.59)
and sound envelope (r = 0.34). This result is significant because unlike
the ISC approach, SRC may be measured with only one subject and one
exposure to a stimulus. There are several recent examples of the ISC
reflecting behavioral outcomes. For instance, ISC predicts subsequent
memory of the stimulus (Hasson et al., 2008a), is indicative of viewer
engagement (Dmochowski et al., 2012, 2014), correlates with the
effectiveness of communication between individuals (Stephens et al.,
2010; Silbert et al., 2014), and reveals the time scale of information
integration for narratives (Hasson et al., 2008b). With the proposed
technique, many of these studies can now potentially be conducted in the
context of interactive stimuli. This is particularly useful with video game
play, which is adaptive to user behavior and thus results in a different
stimulus for every rendition of the game. Whether or not the SRC is also
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predictive of complex behaviors remains an empirical question. Our
preliminary findings showing that attentional and task-demands modu-
late the SRC suggest that this is indeed the case.

Attentional modulation of evoked activity. Manipulating attentional
state has been previously shown to strongly affect the ISC of the
encephalogram (Ki et al.,, 2016), and preliminary evidence (Poulsen
et al., 2017) suggests that this may partly result from varying evoked
response magnitude, which is known to be affected by attentional state.
We thus reanalyzed the data from (Ki et al., 2016) and found that both
auditory and visual SRC were indeed reduced when directing attention
away from the stimulus (Fig. 6). Modulation of SRC with attentional tasks
has been previously demonstrated for the cocktail party problem (i.e.,
attend to the voice of speaker A vs speaker B when both are simulta-
neously speaking). Both decoding (Mesgarani and Chang, 2012; O’Sul-
livan et al., 2015; Golumbic et al., 2013) and encoding approaches (Ding
and Simon, 2012a) have been used in this context. It is interesting that
the attentional modulation of the SRC with sound envelope was found
here only for stimuli that contained speech, indicating that the modula-
tion was not due to generic sound-evoked responses. We also found a
robust modulation of SRC for the visual feature, but this too depended on
the specific stimulus. Once again, this suggests that attentional modula-
tion may not be a general property of evoked responses, and may explain
the mixed results found in studies of task-related visual attention
(O’Connell et al., 2009; Saupe et al., 2009).

The video-game experiment was designed to test the hypothesis that a
more challenging game would also be more engaging. This would pre-
sumably increase the attentional focus of the player on the stimulus,
resulting in an increase of SRC. In contrast, the distracting secondary task
would reduce attention from the primary visual stimulus and thus reduce
SRC. The modulations of SRC observed with task difficulty and presence
of the dual task (Fig. 7) were consistent with this hypothesis. However,
we cannot rule out that the effects on SRC were due to variability in the
stimulus itself, which also changed along with the manipulations to
attention and difficulty.

Interpreting video game activity. We found that the neural response to
optical flow differed both spatially and temporally depending on whether
the subject was passively observing or actively engaged with the stim-
ulus. During active play of a video game, a response component with a
parietal topography and an early time course emerged. This was in
contrast to the slower supramodal component that was found to best
correlate with optical flow during passive film viewing. While it is
tempting to speculate that this result is evidence of mode-dependent
visual processing, we cannot rule out alternative explanations that
involve the effects of motor actions on the EEG: during video game play,
subjects continually pressed keyboard buttons to control the game. Even
though the observed spatial response is not consistent with a motor
topography, there is evidence that button presses alter the task-evoked
topographies of oddball paradigms (Salisbury et al., 2001). Further ma-
nipulations that control for the effects of key presses are needed to pin
down the source of the response component recovered during video
game play.

Owing to the similarities between film and video game stimuli, one
may have expected to find the supramodal “film” component in the video
game data. Indeed, we found that a spatially similar component emerged
more weakly in the video game analysis (i.e., component 4). Note that

Appendix A

Implementing hybrid encoding-decoding
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while CCA does not impose orthogonality between spatial filters, it does
require the activity of the various components to be uncorrelated. This
decorrelation constraint complicates the comparison of components
across different experiments (i.e., it is not straightforward to relate
component 4 in the video game analysis to the supramodal component in
the film experiments).

Comparing hybrid approach to encoding or decoding alone. One may
naturally be tempted to compare the correlations achieved by the three
general approaches (encoding, decoding, hybrid) on common data sets to
determine which method works “best”. However, these three approaches
operate on different spaces: encoding correlates neural responses,
decoding correlates stimuli, while the hybrid approach correlates filtered
stimuli with filtered responses. As stimulus features and brain signals
generally possess distinct noise characteristics, high correlation values do
not necessarily indicate that one approach captures more of the rela-
tionship between stimulus and response than the others. For example, the
hybrid approach may achieve a high correlation between stimulus and
response components that contribute little to the variance in the overall
stimulus and response. Therefore, a direct comparison of the correlations
achieved by the three approaches would be difficult to interpret. More-
over, the choice of which approach to adopt will likely be guided by the
particular application being considered.

Previous uses of CCA in neuroimaging. CCA has been used extensively to
relate neural activity between several subjects or between different im-
aging modalities, but there are only isolated efforts aiming to capture
stimulus-response relationships. Fujiwara et al. (2013) uses CCA to ex-
tracts patterns of activity in a local neighborhood of an fMRI voxel to
correspond to linear combination of pixel intensities in a visual stimulus.
This is very similar in spirit to the present work and captures responses
that are distributed in space. However, their approach does not capture
temporal responses as we have done here, nor can their formulation be
readily expressed as a multidimensional, spatio-temporal encoding
model — equations (10) or (16). Other related multivariate methods have
been used to capture a distributed representation in the fMRI while at the
same time linearly combining stimulus features (e.g. (Worsley et al.,
1997; Friman et al., 2001; Nandy and Cordes, 2003; Kriegeskorte et al.,
2006), summarized in Friston et al. (2008)), but they suffer from the
same limitations, namely, no temporally delayed response is captured
and it is not clear how to express the resulting model as a multidimen-
sional encoding model.

Extensions to non-linear architectures and microelectrode arrays. Our
ability to uncover the principles of sensory representation goes hand in
hand with the ability to explain variance in the neural response. Here the
relationship between stimulus and response was constrained to multiple
linear mappings. It is expected that the incorporation of more sophisti-
cated architectures that capture non-linear mappings will increase the
magnitude of observed SRC. For example, deep neural networks that can
synthesize complex functions and account for higher-order correlations
may be implemented in a regression. A deep-learning extension of clas-
sical CCA has recently been formulated (Wang et al., 2015; Andrew et al.,
2013). Kernel methods that exhibit robustness to overfitting may also
prove useful (Akaho, 2001; Felix Biefmann et al., 2010). Finally, we note
that the formalism presented here is equally applicable to other types of
neural data including magnetoencephalography (MEG), fMRI, and
multi-unit activity.

To implement the required optimization problems (Eq. (5)—(7)), we now formulate those expressions in matrix-vector notation. Let the stimulus be
represented as a L-length row vector s, where L is the duration of the stimulus and the neural response as a DxL matrix R. Note that we have assumed
that s and R have equivalent sampling rates — in practice, either the neural response or the stimulus must be resampled to the lower of the two native

sampling rates. To implement the convolution, it will be convenient to define a Toeplitz matrix *s with column and row indices 7 and t: (*s)

=s(t—r1),

Tt
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where s(t), are the elements of vector s and, 7 = 1...Q, denotes the taps of the applied temporal filter. Elements prior to the first sample can be set to zero
assuming that there is no stimulation prior to the start. This matrix has dimensions QxL. With this we can now define the temporally filtered stimulus
and spatially filtered response:

,
u = h'’s,
v = wR

(1)

The temporal and spatial filters that maximize the correlation between u and v are given by CCA, which provides a set of components encompassing
multiple filter pairs {hy, wyx,k = 1...K} as the following eigenvectors (Borga, 1998; Hotelling, 1936):

(*s'sT)*sR”(RR”)"'R*sh, iy, 12)
(RR7) 'R's"('s'sT) 'sR'w, = p,wi.

The number of components K is limited by the rank of the data: K = min(rank(*s),rank(R)). The maximal correlation of p; is achieved by projecting
the stimulus onto h; and the neural response onto w;. Subsequent components (hy,wy),k = 2,...,K, yield projections temporally uncorrelated with
previous ones and progressively lower correlations, such that p; > p, > ...pg.

For practical purposes, it is worth noting that Eq. (12) is the conventional CCA solution which has been implemented in many toolboxes. In
particular, one can simply execute the canoncorr function in MATLAB with matrices R and *s as inputs. However, in most cases these toolboxes will not
have implemented regularization, as discussed next.

Regularization

While the hybrid encoding-decoding model will generally possess fewer parameters than conventional encoding or decoding, it may still be
beneficial to regularize the solutions. In particular, CCA inverts the covariance matrices of the neural response and the stimulus (RRT and *s*s”
respectively). Prior to inversion of these matrices, it is important to limit dimensions with small eigenvalues that are dominated by noise. To this end one
can substitute the inverse of the covariance matrix C with:

C'<BA] B, 13)

where B is a matrix of eigenvectors of C sorted in descending order of associated eigenvalues, and [A '], a diagonal matrix with the corresponding
eigenvalues inverted and set to zero for all dimensions beyond J. Decreasing J increases the strength of regularization. Here we selected the value of J
(i.e., 10) as the knee point of the eigenvalue spectrum for both neural response and stimulus. Importantly, none of the results reported in the main text
depended critically on this choice.

Spatial and temporal response

To visualize the spatial distribution of neural activity associated with each component, it is conventional to use the “forward model” formalism
(Parra et al., 2005; Haufe et al., 2014). The forward model is defined as the linear mapping that best recovers the neural response R from the decoded
response V in a least-squares sense, namely

A, = (VW) 'VR". 14

where V = W'R is the matrix of decoded neural responses, W = [wy, w»...W]| is a matrix of K CCA-derived spatial filters, and the corresponding
forward models are the columns of matrix A, = [a;,az...ak]. The kth column ay reflects the spatial mapping from the neural activity vi (extracted to
correlate with the stimulus) to the scalp sensors.

This forward model is equal (up to a scaling of each component) to the “spatial response” defined here as the linear mapping that best recovers (in a
least-squares sense) the neural response R from the temporally filtered stimulus U:

A, = (UU")'UR". (15)

where H and V denote matrices composed of the vectors hy, and vy, respectively. The proportionality of the forward model and this spatial response
follows from the fact that both UUT and VV are diagonal matrices, and that UR'«VR?, where « indicates that both sides are equal up to a diagonal
scaling matrix (see Eqs. 4.31 and 4.26 in Borga (1998) respectively). Therefore, A,xVRT «UR” xA;.

In total, H is the “temporal response” and A is the “spatial response” which together best recover the neural response from the stimulus with the
following rank-K linear estimate:

R=""H"s. (16)

Conventional encoding and decoding

For comparison and reference we provide here the equations for the encoding and decoding approaches. To implement the temporal correlation

(filtering) in Eq. (6) of the main text we define a Hankel matrix with column and row indices 7 and t: (*r)u =r(t+ ), and a block-Hankel matrix that

concatenates the responses for all sensors, *R = [*r7,..., *r§]”. With that we can write the encoded response and decoded stimulus as:

ri ="NT"s, a7
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T
s="""R.
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(18)

The best encoding and decoding filters (Egs. (5) and (6) in the main text) are unique and are given by the conventional least-squares estimates:

h; = (*s's") ""stl,
w = ("R*R") "*Rs".

Note the similarities of these equations to the CCA equations (12).
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