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Abstract

Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional conse-
quences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic
stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy
subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has
never been systematically studied. We investigated whether bilateral tDCS over the tempo-
ral-parietal region could result in both online and offline SVV misperception in healthy sub-
jects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy
subjects performed tests of SVV before, during and after the tDCS applied over the tempo-
ral-parietal region in three conditions used on different days: right anode/left cathode; right
cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-spe-
cific current flow patterns were investigated using computational models. SVV was signifi-
cantly displaced towards the anode during both active stimulation conditions when
compared to sham condition. Immediately after both active conditions, there were rebound
effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left
anode condition. Current flow models predicted the stimulation of temporal-parietal regions
under the electrodes and deep clusters in the posterior limb of the internal capsule. The
present findings indicate that tDCS over the temporal-parietal region can significantly alter
human SVV perception. This tDCS approach may be a potential clinical tool for the treat-
ment of SVV misperception in neurological patients.
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Introduction

Subjective visual vertical (SVV) perception measures one’s ability to align their sense of vertical
with true ‘Earth vertical’ [1]. SVV testing is a widely used modality to assess vertical perception
and is considered the most sensitive sign of vestibular imbalance in the roll plane [2]. Patho-
logic misperceptions of SVV are frequent in patients with stroke and vestibular disorders, and
have been strongly correlated with functional disability in these patients [3-7]. Effective strate-
gies to improve SVV misperceptions do not yet exist.

Transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS)
and galvanic vestibular stimulation (GVS) are non-invasive methods for modulating cortical
excitability that have the potential to influence different brain functions depending on the stim-
ulated region and specific techniques used [8]. Non-invasive neuromodulation techniques in
vestibular research have been recently reviewed [9]. The vestibular ocular reflex (VOR) and
movement perception during rotational stimulation are significantly altered by tDCS [10].
Cathodal stimulation over left posterior parietal cortex has been shown to induce modulation
of the VOR [9, 11]. In addition, GVS can alter haptic and visual vertical perceptions in healthy
subjects and stroke patients [12, 13].

Composite analysis of brain lesions and functional imaging techniques indicate that the
parietal cortex, posterior temporal cortex, insula, and temporal-parietal junction are multi-
modal areas involved with accurate perception of SVV [14-16]. Most recently, repetitive
TMS (rTMS) over a small region of the supramarginal gyrus was found to produce a transi-
tory SV'V tilt in healthy subjects [17]. Analyzing the effect of tDCS on SVV in healthy sub-
jects is the next logical step because tDCS costs less and has greater portability, safety and
ease of use than rTMS [18]. These attributes of tDCS make it a practical modality to poten-
tially correct altered SVV of patients in a clinical setting. However, it has not been previously
studied.

In the present study, we investigated whether bipolar-balanced tDCS over the temporal-
parietal region could produce a tilting effect on the SVV in healthy subjects. We also studied
the effect of tDCS polarity on the direction of SV'V tilt, and whether an after-effect existed in
SVV tilt following tDCS application. SVV misperception towards the contralesional side after
stroke has been reported [6]. Hypothetically, based on findings from interhemispheric balance
between the motor cortices [19, 20] or between cortical regions related to visuospatial percep-
tion [21], increased interhemispheric inhibitory drive from the unlesioned to the lesioned cor-
tex creates this SVV misperception observed in stroke patients. Transcranial direct current
stimulation has the ability to induce an imbalance between cortical sites because the anode
generally upregulates excitability of underlying brain regions while the areas under the cath-
ode are down-regulated [22]. Thus, we predicted that tDCS would create an interhemispheric
imbalance between cortices that would induce SVV tilts toward the anode in healthy subjects
[23]. Such ability to selectively regulate brain regions may prove useful in counteracting SVV
misperceptions after stroke.

Materials and Methods

Participants

We studied thirteen right-handed healthy subjects (6 men, 7 women; mean age 29.6 + 3.8
years) with no evidence of brain, vestibular or orthopedic dysfunction. Additional oculomotor
tests, head shake test, and head thrust test were performed to guarantee the exclusion of vestib-
ular deficits [24]. All participants had normal or corrected-to-normal vision. They were naive
and blind to the tDCS approach and the study purpose.
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This study was conducted according to the Helsinki Declaration requirements for human
investigation, and was approved by the local ethics committee. All participants provided writ-
ten informed consent.

Stimulation Protocol

Bipolar-balanced tDCS [25] was delivered through two saline-dampened electrodes of circular
shape (diameter of 5 cm) held in place by a neoprene EEG cap. Electrodes were placed at the
circumcenter of a triangle with vertices on C3, T3, P3 over the left hemisphere and C4, T4, P4
over the right hemisphere using EEG 10/20 coordinates. Stimulation sites were selected to opti-
mize coverage of the supramarginal gyrus, temporal-parietal junction area and the parietal
insular vestibular cortex (PIVC) [26]. Three experimental sessions (Sham, Right-anode/Left-
cathode, Left-anode/Right-cathode) were performed randomly on different days with an inter-
val of at least 24 hours. A battery-driven constant current stimulator (Chattanooga®™ Tonto,
USA) was set to deliver 2mA for 20 minutes. The device provided an automatic 30-second cur-
rent ramp up and down during power on/off to keep participants comfortable. In the sham
control condition the position of the anode (right versus left hemisphere) was randomly cho-
sen; ramp up (30 sec) was identical to the ‘real’ bipolar-balanced stimulation, but then the
device was immediately ramped down over 30-seconds (total time of stimulation = 60 sec-
onds). Participants maintained their eyes closed during stimulation, except when they were
performing the SVV tasks to systematize the visual vertical testing [27] and to improve sub-
jects’ blindness. In order to assure that subjects were blind to the montage, they were asked
whether they could perceive differences regarding stimulation protocols after the three experi-
mental sessions.

Test

SVV was determined using the "bucket method" [28]. To perform the assessments, each partic-
ipant remained seated upright in a chair with back and foot support and with their trunk
restrained by bands. Participants visualized a black line (10.5 cm long, 0.4 cm wide, at 25 cm
distance) inside the bottom of the bucket. On the exterior bottom of the bucket, a protractor
was aligned perpendicular to the dark line inside with a pendulum suspended from the axis of
bucket rotation. This was used to calibrate a digital inclinometer with a precision of 0.01° (Fig
1) before each session. A positive sign indicated clockwise SVV tilt and a negative sign a coun-
terclockwise SVV tilt. Participants looked into the bucket while the examiner manually rotated
it slowly in clockwise (+SVV) and counterclockwise (-SVV) directions. Subjects verbally
reported when the line inside the bucket appeared upright. One examiner was blinded to the
inclinometer measurements. This examiner also observed and supervised the position of the
participant’s head. A second examiner registered the SVV results. All subjects practiced at least
six trials to exclude a learning effect and were instructed to make as many corrections as they
needed to set the line in their perceived vertical. Each SVV assessment consisted of 10 trials, 5
beginning with the upper edge of the line in the clockwise and 5 in the counterclockwise tilt in
arandom order and angulation. SVV was examined at several time-points in relation to tDCS
intervention: before tDCS (T0: baseline), during tDCS (T1: 30 seconds after the start of stimu-
lation, T2: 15 minutes after the beginning of stimulation); and after tDCS (T3: immediately
after, T4: 15 minutes after the end of stimulation, T5: 30 minutes after stimulation).

Modeling of the tDCS induced current flow

Brain stimulation as represented by cortical electric field and current density was predicted
during tDCS by modeling electrostatic physics with Finite Element (FE) models. Three-
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Fig 1. “Bucket method” for measuring Subjective Visual Vertical. Note the exterior digital inclinometer (left) and interior line reference.

doi:10.1371/journal.pone.0152331.g001

dimensional head models consisting of tissues with varying material properties (conductivities)
were created using subject-specific MRI data. MRI scans (1mm” resolution) of two subjects
were previously segmented into 7 materials of varying conductivity (S/m): skin (0.465), fat
(0.025), bone (0.01), cerebrospinal fluid or CSF (1.6), grey matter (0.276), white matter (0.126),
and air (107*%) [29]. This parameter set was named as “Standard”. Subject ‘SO’ is a reference
model of an adult male. Subject ‘S4’ is a model of an adult female. Both subjects were previously
found to represent a relatively wide variance in the cortical electric field [30]. An alternative set
of parameters used by other groups [31] was also modeled to compare the sensitivity of the pre-
dictions. This alternative set was named “H1”. These alternate conductivities (S/m) were: skin
& fat (0.08), bone (0.013), CSF (1.8), and grey & white matter (0.1). Circular sponges and elec-
trodes (50mm diameter x 5mm thickness) were modeled with conductivities of 1.4 and
5.99x10” S/m respectively. Adaptive volumetric meshes were generated for each subject and
montage using ScanIP (Simpleware, Exeter, UK). Volume conductor physics were applied in
an FE package (COMSOL, Burlington, MA) and voltage was solved for using the following
boundary conditions: 2 mA inward current on the anode surface, ground on the cathode, and
insulation on the remaining exposed surfaces. Cortical electric field magnitude was calculated
to represent stimulation. In order to visualize three-dimensional current flow, streamlines that
trace current density direction were seeded on the anode-sponge boundaries with streamline
radius proportional to the log of current density magnitude.

Sample size

According to Cocks and Torgerson [32], a pilot study requires at least 9% of the sample size
calculated to the final trial. A sample size of 13 participants corresponds to 10% of the esti-
mated a sample size for the final trial, considering an effect size of 0.25, assuming 80% power,
alpha of 5% and a two-sided paired t-test.
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Statistical analyses

This study is a randomized, sham-controlled, single blind crossover pilot study. The subjects and
the statistician who performed the analyses were blind to the condition settings. Descriptive anal-
yses of the data consisted of means and standard deviations for each time and each condition.

Data were analyzed using a linear mixed-effect model, according to statistical guidelines for
the analysis of crossover studies [33]. SVV degree was considered as the outcome variable, and
the subject’s effect was considered as the random effect to explain the correlation between
repeated measures of the same subject. The time (T0 to T6) and type of condition (Sham, R-
anode/L-cathode, L-anode/R-cathode) and the sequence of each condition were considered as
the fixed effects. The comparison among means was made through the orthogonal contrasts.
The hypotheses involved in the contrasts were tested using the t-test. Since the hypotheses
were defined a priori, no adjustments for multiple comparisons were performed [34]. The two-
sided testing hypothesis was that there would be a difference between sham condition and
active condition among each time-point of assessment, and between baseline time-point and
the after-stimulation time-points among stimulation conditions.

The assumption of normality of the residuals and homoscedasticity of the variances were
investigated by the normal plot and dispersion graphs between the residuals and the observed
values. In all tests, a 5% level of significance was used (two-sided). Statistical analyzes were per-
formed using the SAS System version 9.2 (SAS Institute Inc., Cary, NC, USA) and the graphs
were built using the R Project for Statistical Computing.

The calculation of effect size between tDCS conditions in each time-point was performed by

X, — X.
Cohents d == 2

Spooled

where X, and X, are the sample means of the tDCS conditions, and s,0,1.4 Was estimated by

L \/s%(nl —1) +5(m,—1)

led —
poole n1+n2—2

where s2, s2, n; and n, are the respective variance and sample size of the tDCS conditions. The
effect size between time-points of SVV assessment was calculated by dividing the mean esti-
mated difference between baseline and the other time-points by the SD for each tDCS condi-
tions [35]. Effect size was considered small when d = 0.2, medium when d = 0.5, and large
when d = 0.8 [36].

Results

The descriptive statistics are shown in Table 1. No significant differences were observed in the
baseline (T0) performances among conditions. In the comparisons with sham condition at T1
and T2, there was small effect in the condition R-anode/L-cathode and large effect in the condi-
tion L-anode/R-cathode (Table 1). During stimulation, condition Right-anode/Left-cathode
induced clockwise SV'V tilts and condition Left-anode/Right-cathode induced counterclock-
wise tilts. The comparison between sham and active conditions revealed rebound effects imme-
diately after both active conditions.

Except for baseline performance, there were statistically significant differences in all times
in the comparison between active treatment conditions R-anode/L-cathode and L-anode/R-
cathode (Table 1).

Regarding the comparisons of SVV among times for each tDCS condition, there were signif-
icant differences of TO with T1 and T2 with small effect in the conditions R-anode/L-cathode
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Table 1. Descriptive data of SVV for each time and condition, and comparisons between pairs of conditions for time-points of SVV assessment.

Label

Time-points of SVV assessment

TO
T1
T2
T3
T4
T5

TO
T
T2
T3
T4
T5

TO
T1
T2
T3
T4
T5

Mean (SD) Mean (SD) Mean (SD) Estimate p-value Lower ¢5,,Cl Upper ¢54,Cl Effect Size
Sham R-anode/ L-cathode L-anode/ R-cathode = Comparison between Sham and R-anode/L-cathode
-0.07 (1.12) 0.01 (1.18) -0.08 0.572 -0.35 0.19 -0.07
-0.22 (1.01) 0.64 (1.32) -0.86  <0.0001 -1.13 0.59 -0.70
-0.13 (1.15) 0.52 (1.32) -0.65  <0.0001 -0.92 0.38 -0.50
-0.16 (1.08) -0.50 (1.45) 0.34 0.013 0.07 0.61 0.25
-0.19 (1.33) -0.02 (1.32) -0.28 0.050 -0.55 0.00 -0.12
-0.25 (1.01) -0.06 (1.24) -0.19 0.168 -0.46 0.08 -0.16
Comparison between Sham and L-anode/R-cathode
-0.07 (1.12) 0.10 (1.50) -0.17 0.216 -0.44 0.10 -0.12
-0.22 (1.01) -0.91(1.64) 0.690 <0.0001 0.42 1.96 0.48
-0.13 (1.15) -0.81 (1.68) 0.68  <0.0001 0.40 0.95 0.45
-0.16 (1.08) 0.14 (1.73) -0.30 0.029 -0.57 -0.03 -0.20
-0.19 (1.33) -0.21 (1.5) 0.02 0.878 -0.25 0.29 0.01
-0.25 (1.01) -0.40 (1.53) 0.15 0.267 -0.12 0.42 0.11
Comparison between R-anode/L-cathode and L-anode/
R-cathode
0.01 (1.18) 0.10 (1.50) -0.09 0.502 -0.36 0.18 -0.06
0.64 (1.32) -0.91(1.64) 155  <0.0001 1.28 1.82 1
0.52 (1.32) -0.81 (1.68) 1.33  <0.0001 1.06 1.60 0.84
-0.50 (1.45) 0.14 (1.73) -0.64  <0.0001 -0.91 -0.37 -0.38
-0.02 (1.32) -0.21 (1.5) 0.30 0.035 0.02 0.57 0.13
-0.06 (1.24) -0.40 (1.53) 0.34 0.013 0.07 0.61 0.23

SVV = subjective visual vertical; SD = standard deviation; R = right; L = left; 95¢,Cl = 95% confidence interval of the difference between means (effect size).

doi:10.1371/journal.pone.0152331.t001

and medium effect in condition L-anode/R-cathode (Table 2). The immediate after-effect

showed a significant difference at T0 and T3 in the R-anode/L-cathode condition only. Lasting
after-effects were observed only in the condition L-anode/R-cathode since there were signifi-
cant differences of TO with T4 and T5 (Table 2). The after-effects in T4 and T5 were also signif-
icantly different when the conditions R-anode/L-cathode and L-anode/R-cathode were
compared. The effect sizes of each comparison are shown in Tables 1 and 2. All data are freely
available in S1 Table for researchers to use, whenever this is legal and ethical. SAS procedures
for statistical analysis are in S1 Text and graphs of each stimulation condition showing the
mean and standard error of SVV scores of each subject are in S1, S2 and S3 Figs.

Fig 2 shows the mean SVV results of all conditions at different times. The mean duration of
each set of 10 SV'V tests was 3.58 + 0.8 minutes. After the end of the 3 sessions, all the partici-
pants reported no perceived qualitative difference among conditions demonstrating that they
were blind to the stimulation protocol and the sham method was effective. Current flow models
predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters
in the posterior limb of the internal capsule (thalamic radiation) (Fig 3).

Discussion

This study provides the first evidence that bipolar-balanced tDCS conditions applied over the
temporal-parietal region have both online effects and after-effects on visual vertical perception.
There were clear and tilted SVV towards the anode for both ‘real’ stimulation conditions that

PLOS ONE | DOI:10.1371/journal.pone.0152331 March 31,2016 6/14



@'PLOS ‘ ONE

Visual Vertical during and after tDCS

Table 2. Comparisons between time-points of SVV assessment for the tDCS conditions.

Time-points of SVV assessment

To-T1
To-T2
To-T3
To-T4
To-T5

To-T1
To-T2
To-T3
To-T4
To-T5

To-T1
To-T2
To-T3
To-T4
To-T5

Estimate p-value Lower g5-,Cl Upper g59,Cl

0.15
-0.07
0.09
0.15
0.18

-0.63
-0.50
0.51
-0.07
0.07

1.01
0.92
-0.04
0.32
0.51

Sham Condition

0.266 -0.12 0.42

0.62 -0.20 0.33

0.51 -0.18 0.36

0.36 -0.15 0.39

0.182 -0.09 0.45
R-anode/L-cathode Condition

<0.0001 -0.90 -0.36

0.0003 -0.77 -0.23

0.0002 0.24 0.78

0.602 -0.35 0.20

0.60 -0.20 0.34
L-anode/R-cathode Condition

<0.0001 0.74 1.28

<0.0001 0.65 1.18

0.781 -0.31 0.23

0.022 0.05 0.59

0.0002 0.24 0.78

SVV = subjective visual vertical; R = right; L = left; ¢5¢,Cl = 95% confidence interval of the difference between means.

doi:10.1371/journal.pone.0152331.1002
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Fig 2. Mean and standard error of SVV scores for tDCS conditions at different times. Before tDCS

(TO = Baseline), during tDCS (T1 = 0.5min: 30 seconds after the start of stimulation; T2 = 15min: 15 minutes
after the beginning of stimulation); and after tDCS (T3 = 20min: immediately after; T4 = 35min: 15 minutes
after the end of stimulation; T5 = 50min: 30 minutes after the stimulation).

doi:10.1371/journal.pone.0152331.g002
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Standard

Max: 0.9 V/m
Max: 0.19 A/m2

Max: 0.24 A/m2
Max:3.2V/m

Standard
Max: 0.7 V/m

Max: 0.18 A/m?

\

Max: 2.8 V/m

Max: 0.24 A/m2

Fig 3. Sensitivity analysis of vertical perception tDCS using Finite Element Analysis. Bilateral temporal-parietal region stimulation with 5cm diameter
electrodes was modeled in “two subjects,” each using two different conductivity sets, “Standard” and “H1”. Electric field (V/m) and current density (A/m?) were
predicted for 2mA of stimulation. Columns 1 and 2 demonstrate the relative electrode position with current streamlines, whose radii are proportional to the
logarithm of current density. The magenta ring represents the location of the axial slice in the far right column. Simulations using standard conductivity values
resulted in diffuse electric field throughout the parietal lobe, while H1 conductivity values resulted in more concentrated cortical stimulation. Across two head
models and two conductivity sets, the most reliable cortical and subcortical regions of influence were under the electrodes.

doi:10.1371/journal.pone.0152331.9003

confirm tDCS neuromodulation of this perception. The lack of effect of sham stimulation con-
firms that the differences found in both active tDCS conditions were true treatment effects.
The small magnitude of SVV change reported here could also be attributed to the usage of a
single stimulation exposure to each tDCS condition. Other approaches such as high-definition
tDCS (HD-tDCS) and random noise stimulation have the potential to produce even greater
effects [37, 38].

Bipolar-balanced tDCS as applied in this protocol over the posterior parts of the temporal-
parietal cortex targeted brain regions most frequently associated with vertical misperceptions
in studies based on lesion analysis [39-44]. Other evidence supporting the relevance of these
regions to accurate assessment of SVV comes from high-density EEG recordings of brain activ-
ity during visual vertical performance tasks. These studies described early-evoked potentials
localized in right lateral temporal-occipital cortex and later evoked potentials localized in bilat-
eral temporal-occipital and parietal-occipital cortical regions [16]. Recently, continuous theta

PLOS ONE | DOI:10.1371/journal.pone.0152331 March 31,2016 8/14
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burst rTMS over the posterior part of the right supramarginal gyrus was found to tilt vertical
perception in healthy subjects [17]. Combining lesion analysis methods, functional techniques,
and neuromodulation approaches thus strengthens ones confidence in the validity of our
observations [45].

A previous study has analyzed vestibular ocular reflex (VOR) and rotation perception dur-
ing rotational stimulation in healthy subjects [10]. They studied VOR responses during and
after bipolar-balanced tDCS via electrodes placed over CP6 and CP5, approximately 1 cm
below of the electrode localization used in the present study. They found an increase in VOR
and rotational perceptual thresholds during tDCS and approximately 2 minutes after tDCS.
However, they did not find a polarized effect based on the side of anodal stimulation and both
active conditions increased VOR and perceptual thresholds [10]. In this context, after continu-
ous theta burst TMS (cTBS) over the posterior part of the right supramarginal gyrus, Kherad-
mand et al. [17] found visual vertical tilts towards the stimulated hemisphere, i.e., towards the
region that had its excitability decreased [46], in one subject whose head was in the upright
position. However, when the other 8 subjects were assessed with their heads tilted 20°, SVV
was always tilted opposite to the direction of the head tilt after cTBS [17]. Here we evaluated
subjects with head in the upright position and found a SVV tilt towards the anode and away
from the cathode, i.e., towards the hemisphere that had its excitability increased and away
from the hemisphere that had its excitability decreased [37]. These opposite outcomes might
be related to the chosen parameters and type of stimulation because tDCS has more diffuse
neuromodulation effects than rTMS [for review [37, 46]. Also, the side of stimulation may
explain the opposite outcomes because rTMS was applied in the right hemisphere and tDCS
was applied bilaterally [1, 10, 17, 47]. Alternatively, the directional specificity of neuronal excit-
ability might have been changed due to the relatively high intensity (2mA) and longer duration
(20 min) used in the present study. There is also evidence of reversed motor cortical excitability
after the same parameters of tDCS [48].

Sponge pad tDCS may not support detailed anatomical targeting [49]. We therefore investi-
gated current distribution under the tDCS montages used in our protocol. Even considering
possible variability of current flow during tDCS between subjects [49] as shown in Fig 3, the
induced electrical fields model indicated clusters of activation in most areas of the neural net-
work that processes perceptions of verticality: superior temporal sulcus, temporal-parietal
junction, supramarginal gyrus, and insular cortex (Fig 3)[16, 17, 39, 43]. Also, deep current
clusters were found in the posterior limb of the internal capsule (thalamic radiation), which
connect the thalamic nuclei involved in vestibular processing (Fig 3)[50]. Therefore, the phys-
ics of our current flow analysis add further support to our study hypothesis.

The underlying mechanism of SVV misperception induced by tDCS in healthy subjects
might involve interhemispheric mis-balance produced by decreased excitability of cerebral
regions under the cathode and increased excitability under the anode as occurs with visuospa-
tial perception [23]. Polarized SVV effects after tDCS may indicate an interhemispheric inter-
action within the verticality perception network. Polarity-specific effects may be influenced by
neuronal network architecture of specific temporal-parietal regions [51]. Assessing SVV is a
complex sensory, perceptual, cognitive task. We analyzed only one of the possible effects of
tDCS over this multimodal region. Other brain functions were probably also affected and war-
rant future studies [52].

One may question whether the tDCS current used in this protocol also modulated the
peripheral vestibular system resulting in SVV effects that were due to galvanic vestibular stimu-
lation (GVS) as opposed to cortical stimulation. GVS can produce vestibular ocular torsion
that leads to SVV tilt towards the anode [12, 13, 53, 54]. Moreover, the torsional response is
present with GVS currents as low as 0.3 mA when electrodes are placed on the mastoids [55].

PLOS ONE | DOI:10.1371/journal.pone.0152331 March 31,2016 9/14



@’PLOS ‘ ONE

Visual Vertical during and after tDCS

Computational models show that tDCS over the posterior parietal cortex produces electric
fields in the inferior temporal gyrus and behavioral changes consistent with parietal neuromo-
dulation [56, 57]. Current modeling also shows diffuse current flow through the skin and CSF,
as well as the brain [58]. Across individuals and model assumptions, current is consistently
predicted in the parietal regions under the electrodes. Outside the brain, current was not con-
centrated either in the ear canals or the pneumatized temporal bone (where the vestibular
receptors are located). While tDCS of the peripheral vestibular system—or for that matter cra-
nial nerves or other brain regions—cannot be excluded, our current modeling and behavioral
result support our parietal cortical stimulation hypothesis. These conclusions are in agreement
with the observations of Kyriakareli and coworkers after posterior parietal tDCS [10].

Immediately after tDCS, we observed a tilting effect towards the cathode in both active stim-
ulation conditions. Several evidences indicate that both anodal and cathodal tDCS mainly
affect resting membrane potential during stimulation (for review see [59]). We hypothesize
that the opposite SVV tilt observed immediately after tDCS in relation to the online effect
might be related to homeostatic mechanisms which aim to preserve plastic changes within a
physiologically useful range and allows network stability [59, 60]. In this scenario, a sustained
modulated membrane state produced by the constant current delivered by the protocol used in
the present study might react to the stoppage of the stimulation by reversing its state and, thus,
transiently producing an opposite effect.

There was no difference among time-points T4 and T5 between the sham-condition and
active-conditions, however, relative to baseline the after-stimulation time-points among condi-
tion left anode/right cathode stimulation showed a small but significant tDCS after-effects up
to 30 minutes after the end of stimulation. We speculate that the presence of a long-lasting
effect of tilted SVV towards the same direction observed during the stimulation might have
been related to the dominance for visual vertical cortical function in the non-dominant hemi-
sphere [16, 26]. Moreover, long-lasting after-effects have been associated with neuroplasticity
mechanisms such as long-term potentiation and depression, which are thought to underlie
memory and learning [59]. Therefore, repetitive tDCS sessions might produce longer-lasting
SVV effects.

Two possible limitations of the present study could be the simple methodology of SVV
assessment and the lack of experimenter blinding. However, the SVV assessment was not influ-
enced by experimenter bias. Moreover, the “bucket method” was already validated with accu-
racy and reliability as good as those of more sophisticated methods [28].

In conclusion, the present findings indicate that bipolar-balanced tDCS over the temporal-
parietal region can produce a tilting effect on SVV in healthy subjects and can last for 30 min-
utes. Future studies are required to determine optimal stimulation parameters for a longer last-
ing and more robust SVV effect and clinical application for patients with vertical perception
disorders.

Supporting Information

S1 Fig. Mean and standard error of SVV scores of each subject for sham condition at differ-
ent times. Before tDCS (T0 = Baseline), during tDCS (T1 = 0.5min: 30 seconds after the start
of stimulation; T2 = 15min: 15 minutes after the beginning of stimulation); and after tDCS

(T3 = 20min: immediately after; T4 = 35min: 15 minutes after the end of stimulation;

T5 = 50min: 30 minutes after the stimulation).

(TTF)

S2 Fig. Mean and standard error of SVV scores of each subject for tDCS condition Right
anode/Left cathode at different times. Before tDCS (T0 = Baseline), during tDCS
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(T1 = 0.5min: 30 seconds after the start of stimulation; T2 = 15min: 15 minutes after the begin-
ning of stimulation); and after tDCS (T3 = 20min: immediately after; T4 = 35min: 15 minutes
after the end of stimulation; T5 = 50min: 30 minutes after the stimulation).

(TIF)

S3 Fig. Mean and standard error of SVV scores of each subject for tDCS condition Left
anode/Right cathode at different times. Before tDCS (T0 = Baseline), during tDCS

(T1 = 0.5min: 30 seconds after the start of stimulation; T2 = 15min: 15 minutes after the begin-
ning of stimulation); and after tDCS (T3 = 20min: immediately after; T4 = 35min: 15 minutes
after the end of stimulation; T5 = 50min: 30 minutes after the stimulation).

(TIF)

S1 Table. Dataset.
(XLS)

S1 Text. SAS procedures for statistical analysis.
(PDF)
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