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Abstract
Computational neurostimulation aims to develop mathematical constructs that link the appli-

cation of neuromodulation with changes in behavior and cognition. This process is critical but

daunting for technical challenges and scientific unknowns. The overarching goal of this review

is to address how this complex task can be made tractable. We describe a framework of se-

quential modeling steps to achieve this: (1) current flow models, (2) cell polarization models,

(3) network and information processing models, and (4) models of the neuroscientific corre-

lates of behavior. Each step is explained with a specific emphasis on the assumptions under-

pinning underlying sequential implementation. We explain the further implementation of the

quasi-uniform assumption to overcome technical limitations and unknowns. We specifically

focus on examples in electrical stimulation, such as transcranial direct current stimulation. Our

approach and conclusions are broadly applied to immediate and ongoing efforts to deploy

computational neurostimulation.
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1 A SEQUENTIAL MULTISTEP MODELING PROCESS
Computational neurostimulation (first formalized in Bestmann et al., 2015) argues

that advancement of experimental and clinical interventions will be accelerated

through development of quantitative models linking stimulation dose to behavioral

and clinical outcomes. But doing so requires significant technical sophistication and
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assumptions. Tomake the process tractable, we explain here how computational neu-

rostimulation can be divided into distinct steps that are implemented sequentially.

The steps are distinct when they are assumed sequential, such that later steps do

not need to inform earlier ones. By conceptualizing computational neurostimulation

into discrete steps, the technical challenges and assumptions at each stage can be

properly addressed. This review focuses on electrical neuromodulation of the cortex

(invasive and noninvasive, electrical and magnetic), though the sequence described

here generally applies to other targets and forms of neuromodulation with any energy

(e.g., light, ultrasound). Specifically for electrical stimulation, we review the “quasi-

uniform” assumption, initially made explicit in 2013 (Bikson et al., 2013a).

The first step in electrical neuromodulation is the use of “forward models” to pre-

dict current flow patterns through the head or brain target region. The second step is

to consider how current flow directly polarizes cell membranes and changes neuronal

firing rate. Third, the consequences of cellular polarization on neuronal information

processing are modeled. Fourth, these changes in neuronal processing are implicated

in changes in behavior or higher order cognitive function. In aggregate, this process

achieves the goal of computational neurostimulation: to quantitatively predict the

cognitive or behavioral consequences of electrical stimulation for the purpose of un-

derstanding and refining interventions. In addition to considering these steps as se-

quential, the application of the quasi-uniform assumption (defined below) makes this

complex process more tractable.

The first step of predicting brain current flow is assumed to be independent of

brain activity state or the response of activity to electrical stimulation. Therefore,

the first step of predicting current flow can be conducted ignoring brain neurophys-

iology. Indeed, this assumption is universal to brain stimulation modeling, (Warman

et al., 1992) spanning applications as diverse as deep brain stimulation (DBS), tran-

scranial magnetic stimulation (TMS; Esser et al., 2005), and transcranial direct cur-

rent stimulation (tDCS), and both analytical and numerical approaches.Whatever the

limitations of this assumption in relation to the physics of current flow (Bossetti

et al., 2008) or activity-dependent changes in tissue conductivity, they are considered

relatively minor.

In the second step, the direct cellular polarization produced as a consequence of

current flow (through a brain region of interest) is predicted, essentially independent

of brain activity. This separation of the first and second steps dates back to the ear-

liest examples of electrical stimulation modeling, where analytical solutions were

used to predict current flow in homogenous media and the response of simple axons

was derived analytically. This separation of steps persists even as more sophisticated

numerical techniques for predicting current flow and neuronal responses have devel-

oped. Thus, state-of-the-art computational neurostimulation efforts adopt this two-

stage process. Though the validity and limitations of this process has been questioned

(Bossetti et al., 2008), it was generally concluded that any theoretical errors are mi-

nor compared to other, the unknowns within each step itself. Polarization can be

used, for example, to predict resulting changes in firing rate either as a result of pac-

ing by suprathreshold stimulation or changes in threshold by subthreshold
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stimulation. It is understood that changes in activity secondary to polarization can

feedback to further change polarization and firing (e.g., polarization changes oscil-

lation activity which then changes firing; Rahman et al., 2013), but it is still possible

to predict the initial direct polarization—which serves to establish mechanisms and

causality.

In the third step, the polarization of a population of cells by electrical stimulation

is used to predict change in neuronal information processing—this will change brain

state aswell as be entirely determinedbybaselinebrain state.While brain state depends

on cognition and behavior, approaching this question from a systems level allows

analysis on a neuronal network scale. Finally, these changes in network function

can be quantitatively linked to changes in performance or clinical symptoms.

This multistep process is evidently rife with simplifications, unknowns, and as-

sumptions. The sequential methodology is largely determined by the mechanics of

computer simulation (e.g., current flow models do not include active neuronal net-

works, neuronal networks models have membrane polarization as a parameter) and

existing constructs in neuroscience (e.g., a given neuronal network model is linked to

behavior). Making this modeling workflow rigorous and useful is precisely the goal

of computational neurostimulation research. The quasi-uniform assumption is ap-

plied at the second step, with consequences throughout.

2 STEP 1: FORWARD MODELS OF CURRENT FLOW
Current flow prediction relies on relatively well-defined physical assumptions. To

accurately predict brain current flow produced during stimulation, one needs to spec-

ify the (1) relevant aspects of the stimulation device, and (2) relevant tissue proper-

ties; below we consider the relevant features each case. In this review, we focus on

electrical stimulation, but in any form of energy application where the physics are

well defined, then defining device and tissue properties should lead to straightfor-

ward prediction of energy dissipation in the body (Cho et al., 2010; Deng et al.,

2014; Ding et al., 2015; Jagdeo et al., 2012; Lee et al., 2015; Wu et al., 2012).

One of the most common and confounding mistakes in neuromodulation is to as-

sume that placing an electrode “near” a nominal target guarantees current flow to that

region. In the case of noninvasive electrical stimulation, such as tDCS, this has led to

irrational assumptions such as that current is delivered to a brain region smaller than
the primary electrode and that the second electrode can simply be ignored. Rather,

when two large scalp electrodes are used current must flow between electrodes po-

tentially influencing all intermediary regions, with a diffuse pattern determined by

the underlying tissues (Datta et al., 2009), and the position of the second electrode

even affects current under the first electrode (Bikson et al., 2010). With often unin-

tuitive current flow patterns, models are required (Seibt et al., 2015).

Even in the case of implanted electrodes (e.g., DBS), where increased targeting is

achieved by virtue of embedding an electrode near the target, oversimplistic assump-

tions about stimulation “near” targets should be avoided. As summarized by
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Cameron McIntyre (Arle and Shils, 2011): “The electric field generated by an

implanted electrode is a three-dimensionally complex phenomenon that is distrib-

uted throughout the brain. While the fundamental purpose of neurostimulation tech-

nology is to modulate neural activity with applied electric fields, historically, much

of the device design work and clinical protocols were primarily based on anatomical

considerations (i.e., stimulation of a specific brain nucleus). This approach was taken

because logical hypotheses could be generated to relate the effects of selectively

stimulating a given nucleus to a behavioral outcome. However, without considering

the complete system of electrode placement in that nucleus, stimulation parameter

settings, electrical characteristics of the electrode, and electrical properties of the sur-

rounding tissue medium, it is impossible to determine if the stimulation effects will

be contained in that nucleus or if they will extend to surrounding brain regions.

Therefore, the first step in predicting the effects of neurostimulation is to characterize

the voltage distribution generated in the brain.”

Forward models are therefore needed, and the first element that needs to be repro-

duced in computer simulations is dose. The relevant aspects of stimulation that need

to be reproduced is simply the “dose,” which as defined in Peterchev and colleagues

(2012) as those features of the stimulation device and electrodes or coils that influ-

ence the generation of current flow in the body. For electrical stimulation, this is the

electrodes’ shape and location, and the waveform applied to each electrode. For ex-

ample, in DBS, dose is reflected in the location and configuration of the implanted

electrodes and the high-frequency pulse train applied to them. While for tDCS, dose

is the position of the electrodes on the head and the intensity of direct current applied.

For TMS dose is coil geometry, current applied to the coil, and position relative to the

head (Deng et al., 2014; Guadagnin et al., 2014). Given the well-defined stimulation

dose, while there are some variations in how this is implemented (the simulation

boundary conditions; Bikson et al., 2012; Saturnino et al., 2015), it is relatively

straightforward to reproduce the dose of stimulation in a computational forwardmodel.

Special care should be taken in voltage-controlled stimulation. Current-

controlled stimulation provides the benefit that electrode impedance does not distort

stimulation waveform (Merrill et al., 2005), and for this reason the complex electrode

interface does not need to be incorporated in current flow models. The benefit pro-

vided by using current-controlled stimulation in physical devices is, in this sense,

transferred to models. In contrast, simulating voltage control requires explicit con-

sideration of the electrode interface (McIntyre et al., 2006). Current control is not

without concerns in regard to nonideal performance (e.g., see ratcheting in Merrill

et al., 2005) and voltage limits in Hahn et al. (2013), but such issues can generally

be disregarded for current flow modeling. For both current- and voltage-controlled

stimulation, there are issues regarding electrochemical reactions at the electrode that

are important for safety and tolerability (Merrill et al., 2005), but can be considered

separately from predictions of current flow.

Other than defining dose, models of current flow must reproduce the relevant tis-

sue properties. Here, the framework is well agreed-upon, if not the specific tissue
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parameters that should be used in any given case (Datta et al., 2013a; Opitz et al.,

2011; Schmidt et al., 2015; Wagner et al., 2014). The tissue properties are generated

in forward models by first dividing the anatomy into individual masks, such as gray

and white matter. Then, electrical properties are assigned to each mask. The impor-

tance of separating masks derives from the need to assign each mask its own elec-

trical properties. While in principle this approach is well established, there are

significant unknowns and debate about which masks should be segmented and what

electrical properties (e.g., frequency-specific tissue conductivities) should be

assigned. Masks may be synthetic (i.e., generic in a rendering software with simpli-

fied shapes; Wagner et al., 2007) or based on imaging from individuals (e.g., MRI,

CT; Datta et al., 2009; Lu and Ueno, 2013). Specific imaging sequences may provide

further insight into tissue properties, such as use of DTI to predict anisotropy

(Schmidt and van Rienen, 2012; Sweet et al., 2014)—though implementation is

not without debate (Diczfalusy et al., 2015; Shahid et al., 2014).

While there is a general trend toward increased model complexity (e.g., the num-

ber and detail of tissue masks), it is important to note that increased precision does not

necessarily translate to increased accuracy (Bikson and Datta, 2012). In some cases,

synthetic (abstracted) incorporation of preexisting information not evident in the

scans is needed (e.g., not resolved by scan contrast or not resolved full by scan res-

olution), for example, ensuring CSF continuity in transcranial stimulation models

(Datta et al., 2009) or an encapsulation layer in DBS (Butson et al., 2006). Relevant

tissue details will depend on the dose, for example, gyri-precise cortical representa-

tion is critical for tDCS (Datta et al., 2009) but not DBS. Similarly, spinal anatomy

details may be critical for stimulation of the spine (Song et al., 2015), but not for cor-

tical microstimulation (Song et al., 2013). Ultimately, the validity of forward models

in informing clinical trial design relates to the specific questions being asked of them.

If and how to individualize models, to account for variations in anatomy, remain

an open area of investigations (Dougherty et al., 2014; Edwards et al., 2013; Lee

et al., 2013; Opitz et al., 2015; Russell et al., 2013; Truong et al., 2013; Viskochil

et al., 1990). In some cases, interventions such as TMS, DBS, and ECT inherently

use individual dose titration, but the process is empirical. In other cases, no individ-

ual dose titration is attempted, such as tDCS. Models can inform both extremes.

While naturally model accuracy will increase with consideration of individual anat-

omy, the open question is what benefits are provided for computational neurostimu-

lation (Pourfar et al., 2015). Will individualized models explain data from human

trials in a way explicitly not possible with nonindividualized models (Douglas

et al., 2015; Kim et al., 2013)? Or will individualized models result in a different

dose being applied in a human trial in a way that impacts outcomes (Edwards

et al., 2013)? If the answer to both questions is “no” then it is not evident the value

of individual models, especially given the cost. One alternative is to rely on a pre-

existing head library to select a comparable anatomy or to warp preexisting

models—but these steps still require (potentially costly and complex) subject-

specific measurement and analysis. Dealing with susceptible populations, such as
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children (Gillick et al., 2014) or cases of brain injury (Datta et al., 2011), may mag-

nify the need for individual models.

Various tools have been developed for computational modeling; spanning work-

flows with varied engineering simulation packages (Huang and Parra, 2015), to

stand-alone workflows (e.g., Matlab; SCIRun; Dannhauer et al., 2012; Windhoff

et al., 2013), to GUI-based simulation (Truong et al., 2014). In principle, the process

involves exploring various montages (dose) with the goal of identifying a current

flow pattern that best supports the presumed mechanism of action or experimental

hypothesis (Wongsarnpigoon and Grill, 2012). However, how to select a “best” tar-

get and consider collateral brain current flow (side effects) is an open question

(Cheung et al., 2014; Fytagoridis et al., 2013) because the relationship between brain

current flow patterns and cognition is complex. One solution, which is implicitly

adopted in many reports though not made explicit, is the quasi-uniform assumption.

Under the quasi-uniform assumption the electric field (or current density) in each

brain region is assumed to predict the degree of polarization and neuromodulation

(Bikson et al., 2013a). The quasi-uniform assumption is addressed in detail in the

next section.

3 STEP 2: CELLULAR RESPONSE MODELS OF POLARIZATION
AND THE QUASI-UNIFORM ASSUMPTION
Significantly more complicated than the prediction of current flow patterns in the

head during stimulation is predicting the resulting neurophysiological and then cog-

nitive/behavioral outcomes. The second step in the sequential computational neuro-

stimulation process is calculating the cellular polarization produced by the brain

current flow patterns predicted in Step 1.While the theory for this is well established,

the details of complete implementation can be a (intractable) burden in CNS stim-

ulation. The process of complete implementation is described, setting up the discus-

sion of the utility of the quasi-uniform assumption alternative.

The long-standing approach to model polarization response to electrical stimu-

lation is to consider “which elements are activated” (Ranck, 1975)—where elements

refer not only to which cells but which specific compartments of cells such as a

branch of the dendrite, the soma, or a segment of the axon. It is essential to appreciate

that separate compartment of a single neuron will respond different to electrical stim-

ulation, even as the compartments interact. Which elements respond will be highly

dose (electrode position and stimulation waveform) dependent. Regardless of down-

stream actions, the primary response of the nervous system to current flow is typi-

cally considered (foremost) polarization of neuronal membranes. Understanding

which neurons are polarizing, and which compartments within those neurons, is thus

considered a critical substrate for a quantitative model of electrical stimulation. The

answer will evidently depend on the modality (dose) of stimulation, which regions of

the nervous system receive significant current flow as a result, and the types of cells

in those regions.
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For computational neurostimulation, it is important to situate this second step in

the context of the series. The first step generates current flow predictions that meth-

odologically do not consider neuronal morphology, except globally when it affects

gross resistivity such as gray versus white matter or white matter anisotropy. In the

second step, this current flow pattern is “overlaid” on neurons (or other cells of in-

terest), explicitly considering their morphology and membrane biophysics—taking

current flow patterns and cell morphology/biophysics together provides the informa-

tion needed, in principle, to predict resulting membrane polarization in each com-

partment of each cell. These polarizations are a quantity that can be used as an

input to the neuronal networks models in the third step, as membrane potential

(or a cell parameter of excitability) is often factored in network models. Alterna-

tively, for suprathreshold approach, the second step can be used to predict which

neural elements are driven to fire action potentials (and with what periodicity/rate)

and this action potential rate information can be provided in the third step to a

network model where firing is a parameter. A separate variation for subthreshold

stimulation is to predict the change in synaptic efficacy produced at a given synapse

by stimulation (Rahman et al., 2013), and provide this as a coupling parameter in to a

network model that considers synaptic coupling strength. There may be still other

“cell level” parameters that can be transferred to a network model. The decision

of what parameter(s) to carry forward from the second to third state depends on

hypothesis for mechanisms (what parameters considered relevant) and ultimately

the mechanics of the models (what parameters are applicable).

In those applications where suprathreshold pulses are used (such as DBS, TMS)

identification of cellular targets has focused on axons (Nowak and Bullier, 1998). In

the case of stimulation targeting the peripheral nervous system, axons evidently are a

unique target. But also in the central nervous system they may represent the struc-

tures more sensitive to stimulation, in the sense they have the lowest threshold to be

driven to fire action potentials—specifically axon terminals. For subthreshold stim-

ulation, such as produced by tDCS, attention has traditionally focused on compart-

ments other than axons. Specifically, weak current produces a biphasic polarization

profile along the neuronal axis producing polarization of the soma and dendrites

(Bikson et al., 2004). However, ongoing research on subthreshold as refocused at-

tention on axon terminals (Arlotti et al., 2012; Rahman et al., 2013) brings cellular

targets more in line with suprathreshold.

How does one predict the polarization produced in each compartment of every

cell, and in turn which specific neurons fire or how synaptic efficacy changes at each

connection? The theory for modeling neuronal polarization, and so action potential

generation, by electrical stimulation is well established but requires considering of

each neurons and its distributed segmented morphology and membrane biophysics at

each segment. Specifically, the activating function (derivative of electric field) along

each neuronal compartment must be calculated and then the polarization of the entire

neuron solved, one unique neuron at a time. In contrast to the PNS where relatively

uniform axonal bundles make this tractable, in the CNS the number and diversity of

cell types make this complex (McIntyre et al., 2007). The complexity is then
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amplified when considered how stimulation of axons that are part of a complex and

active brain network results in an aggregate change of activity in the third step The

traditional way to make this second-step process tractable in the CNS is some com-

bination of reductionism (considering only a few type of homogeneous neurons in a

few brain regions) and increasing complexity and speculation (since parameters are

largely unknown).

This approach can be daunting. For example, in discussing cortical stimulation,

Sergio Canavero concludes (Arle and Shils, 2011) “In the end, this discussion high-

lights the extreme aspecificity of current cortical stimulation paradigms, since stim-

ulation tends to affect the cortex across the board. A first step would be complexity

analysis with closed-loop stimulation devices (e.g., the NeuroPace device for epi-

lepsy control), but it is moot that this alone may circumvent the amazing intricacy

of cellular architecture. Does cortical stimulation affect differentially positioned

cells in the same way? Does a homogeneous wave of excitation create intracortical

conflicts (e.g., two self effacing inhibitions)? Should dendrites, soma, axon hillocks,

nodes, internodes and unmyelinated terminals, all having different electrical proper-

ties, be stimulated differentially? This is way beyond current technology. When it

comes to details, the only currently feasible approach is to consider the cortex a sort

of black box, from which a net effect is sought through trial and error.”

One alternative to this complexity is the “quasi-uniform” assumption that pre-

sumes that regional polarization (as a global quantity) and even neuromodulation

is predicted simply by local electric field (Bikson et al., 2013a). Under the quasi-

uniform assumption, current flow models are used to predict regional electric fields,

and these values in the brain are presented a representative of the aggregate likeli-

hood a brain region will be polarized and so modulated. Other postprocessing

methods to simplify visualizing of predicted activation maps have been proposed

(Hartmann et al., 2015; Madler and Coenen, 2012).

The quasi-uniform assumption is not trivial because membrane polarization

has long been linked to the change in electric field along a cell, via the so-called

activating function (see above), but it is precisely because of this dependence that

traditional approach depends on exhaustive cell-specific data. Rather, the quasi-

uniform approach considers that in a “soup” of noncompact, bending, and terminat-

ing processes (axons, dendrites), the electric field may indicate maximal polarization

(Arlotti et al., 2012; Rattay, 1986), while compact neuron polarization will also track

electric field (Joucla and Yvert, 2009; Radman et al., 2009a). Straight axonal will be

sensitive to electric field when crossing resistive boundaries (Miranda et al., 2006;

Salvador et al., 2011), and local terminations and bends will polarize with electric

field (Arlotti et al., 2012).

The possibility that nonneuronal cells, such as glia or endothelial cells, may be

targets for stimulation remains an highly open but critical debate (Lopez-Quintero

et al., 2010; Pelletier and Cicchetti, 2014) and would require separate classes of

models. Interestingly, the polarization of spheres (or spheroids; Kotnik and

Miklavcic, 2000) is directly linked to electric field, making the quasi-uniform
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assumption relevant to these cases. Predicting clinical and behavioral outcomes

would still require coupling action on nonneural cells types to neurons.

Finally, the quasi-uniform assumption helps support the concept of coupling con-

stant (also called polarization length) which can be defined as the amount of cell

membrane compartment polarization (in mV) per unit uniform electric field (in

mV/mm). The coupling constant (Bikson et al., 2004) is a powerful concept because

it can be readily quantified in experimental or neuron models (assuming a linear sen-

sitivity to low-intensity electric fields) and can be generalized to many types of com-

putational neurostimulation (Frohlich andMcCormick, 2010). The coupling constant

may be waveform specific (e.g., AC fields; Deans et al., 2007).

4 STEP 3: INFORMATION PROCESSING AND NETWORK
CHANGES
The third step in computational neurostimulation is modeling active network re-

sponses to electric stimulation. Warren Grill summarizes (Arle and Shils, 2011):

“Electrical activation of the nervous system has traditionally been thought of and

analyzed as a two-part problem. The first part is determining, through measurement

or calculation, the electrical potentials (voltages) generated in the tissue by the ap-

plication of stimulation pulses [or other waveforms]. The second part is determining,

again through measurement or calculation, and now, through imaging, the response of

neurons to the stimulation pulses (i.e., to the voltages imposed in the tissue). However,

recent progress highlights the need to add a third part to this problem—the network

effects of stimulation. That is, given the changes in the pattern of activity in the neurons

directly affected by stimulation, what changes occur either downstream from the point

of stimulation or even further distant within interconnected networks of neurons.”

It is increasingly recognized that functional outcomes of electrical stimulation on

the nervous system can often only be understood in the context of network architec-
ture (e.g., the connectivity of the brain) and ongoing activity (e.g., the state of the

brain; Kwon et al., 2011). This is manifest on several scales. On the global scale,

electrical neuromodulation will travel along the brains existing connections. For

these reasons, even presumably focal stimulation will produce brain-wide changes.

Modern analysis of interventions such as TMS (Bestmann, 2008) and DBS (Kahan

et al., 2014; Kent et al., 2015; Min et al., 2012) leverages characterization of these

connections. On a local network scale, the ongoing activity of a network will funda-

mentally influence what actions electrical stimulation has; with highly organized

processes such as oscillations, the effects of stimulation are almost entirely explained

by how these processes are altered (Frohlich and McCormick, 2010; Kang and

Lowery, 2013; Reato et al., 2010, 2013b). At the cellular level, the background ac-

tivity of neurons may influence their responsiveness to stimulation, more simply that

an active neurons will be closer to threshold (Radman et al., 2009b) but also through
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amplifying synaptic activity onto neurons (Bikson et al., 2004; Rahman et al., 2013)

and other processes (Rosenbaum et al., 2014).

For network changes in the third step, we mean quantifiable metrics/features of

the network activity such as oscillation power, frequency, or coherence (Frohlich and

McCormick, 2010; Lee et al., 2011; Parra and Bikson, 2004; Reato et al., 2010). Pre-

cisely because many network behaviors are emergent properties of a coupled and

active system, so to are the effects of stimulation a result of network dynamics

(Berzhanskaya et al., 2013; Francis et al., 2003; Reato et al., 2013b). The network

response to stimulation may therefore not be obvious from action at the level of iso-

lated cell, even if stimulation acts by polarizing cells (Step 2). Similarly for infor-

mation processing in the third step the tools are computational models with

precise aggregate metrics, finally in the fourth step are these neuroscience quantities

related to more abstract representations of cognitive function. Though evidently,

with predicting behavioral changes the net outcome of computational neurostimula-

tion, the selection of system in Step 3 is entirely based on making the bridge to higher

function as well as hypothesis for cellular targets based on Step 2.

The third step of analysis of network function (and its bridging to behavior in the

fourth step) is fundamental to understanding the specificity of stimulation. The pur-

pose of any neuromodulation intervention is to generate a desired behavioral or clin-

ical outcome (i.e., improvement in symptoms) without stimulation-generated side

effects. Specificity can be enhanced by guiding current to specific brain regions

(Step 1) but since no brain region is involved in one brain function and most brain

functions involve multiple regions, anatomical targeting of current flow can enhance

but does not in itself explain specificity. Similarly, the dose, and especially the wave-

form, of stimulation can shape which neuronal elements are activated (Step 2) but the

ability to capture neurons specific to just one task is unrealistic. Therefore, we sug-

gest only through nuance in understanding network and information processing

changes, can we rationally consider the origins, and limits, of neuromodulation

specificity.

Notions of activity dependence of stimulation support the concept of “functional

targeting.” We propose functional targeting, in contrast to anatomical targeting.

Functional targeting supposes that an endogenously active brain process (e.g., a brain

process activated by concurrent training) is preferentially sensitive to electrical

stimulation—various forms of selectivity then can arise (Bikson et al., 2013b).

In some applications, especially for peripheral stimulation, simple changes in

neuronal firing can be linked to the operative behavioral (functional) changes, for

example, when the intended outcome of stimulation is a motor response. But in cases

where actions are central, and where there is a higher order cognitive or behavioral

target, a final step is needed to bridge from cellular and network changes.

As discussed in Step 2, electric field produced during electrical stimulation is

coupled to the network via cellular polarization—meaning the cell that make up

the computational model of Step 3 is polarized based on principles set in Step 2.

Though the quasi-uniform assumption is applied in Step 2, it has important implica-

tions for the feasibility of Step 3. The quasi-uniform assumptions assumed a network
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is exposed to one electric field or that discrete nodes in a network are each exposed to

one electric field. This single electric field thus represents the input from electrical

stimulation to that network. If one makes general assumptions about a homogeneous

cellular structure in the network, one can apply the quasi-uniform assumption with-

out needing to solve for the polarization of every element in a network. For example,

one can assume stimulation primarily couples through soma polarization of the pri-

mary output excitatory neuron in a brain region, such as the CA1 pyramidal neuron

soma, and then based on a single or distributed average coupling constant provide a

polarization input to all excitatory neurons somas in the network. One can consider

other neuronal elements such as various excitatory cell types, interneurons, or axon

terminals, and apply a cell- or process-specific average polarization. The principle

remains that under the quasi-uniform assumption, a regional electric field is applied

to one or more “characteristic” neuronal elements that are replicated across the net-

work. In this way, modeling stimulation of a network is tractable albeit with assump-

tions about average and net effects.

There are some situations where the effects on network activity are directly

linked to desired behavioral outcomes. For example, for approaches such as ECT

where therapy is based on the hypothesis that behavioral benefits derive from the

generating seizures, modeling predictions may attempt to converge on regional sei-

zure thresholds (Bai et al., 2010). These are often collapsed to functions of regional

electric field, following the quasi-uniform assumption, where an (waveform spe-

cific) electric field seizure threshold is set any given brain region. Even so, refined

approach for brain targeting, hypothesis that efficacy may be mediated by electrical

stimulation independent of seizures, and approaches to reduce side effects (Sackeim

et al., 2008), may adopt more sophisticated computational neurostimulation ap-

proaches (Bai et al., 2012).

Conversely, in the case of seizure control, reduction on network epileptiform ac-

tivity is considered a direct aim of treatment or at least directly correlated with de-

sired clinical outcomes. There is significant data on success in controlling

epileptiform activity in animal models where often the goal is simply to stop or re-

duce neuronal firing (Ghai et al., 2000), but mixed success in the clinic (Sugiyama

et al., 2015). The lack of correlation of epileptiform activity with behavior may there-

fore be a crutch holding back advancement, including recognizing that brain regions

perform multiple complex functions (Sunderam et al., 2010).

5 STEP 4: FROM NETWORK TO BEHAVIOR
An ambitious step in computational neurostimulation is relating network changes

produced by electrical stimulation to behavior. This process is challenging for issues

generic to neuroscience, the link between cellular function and cognition is complex

and unknown. Indeed, one of the attractions of experimental design informed by

computational neurostimulation is to use interventional brain stimulation and obser-

vation on behavior to bridge this divide.
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A key consideration in developing models that bridge to behavior is if to limit

consideration to a brain “node” (a limited anatomical region) of interest or to explic-

itly model distributed brain processing (spanning multiple distant but connected

brain regions). Evidently any higher brain function (behavior, cognition, therapeutic

action) reflects distributed brain processes, but for the purposes of computational

neurostimulation, this relevant question is what scale (node or distributed network)

of models provides meaningful predictions of behavior changes produced by neuro-

modulation. Some stimulation modalities, like the conventional tDCS approach, in-

evitably influence regions across the brain—and interpretation of behavioral changes

based on any single node is an assumption (Seibt et al., 2015). Alternatively, direct

action on multiple nodes in a network can be embraced as inherent to the net actions

of stimulation (Brunoni et al., 2014; Dasilva et al., 2012; Douglas et al., 2015; Senco

et al., 2015) where connectivity parameters can be informed by functional imaging or

tractography (Sweet et al., 2014). This analysis has been particularly advance for

DBS (McIntyre and Hahn, 2010). Perhaps, the most obvious criticism of the single

node notion is that when suprathreshold stimulation is applied, inevitably not only is

the target activated but all antidromic orthodromic, and axons of passage—thus at the

most basic level stimulation effects a network. This does not mean that one cannot

link local (node specific) changes to behavior, but some sophistication in considering

the function of the node is required.

One type of bridge to behavior is based on themodulation of network oscillations,

either acutely or leading to lasting changes (Reato et al., 2015). For example, Schiff

and colleagues demonstrated an empirical link between electrical stimulation fre-

quency, oscillations, and behaviors in rat (La Corte et al., 2014). Reato and col-

leagues used computational neurostimulation constrained by human EEG

recording to link entrainment of slow-wave oscillations by transcranial electrical

stimulation which changes in plasticity that could in turn explain learning changes

observed experimentally (Reato et al., 2013a). Merlet and colleagues proposed

methods to link tACS with EEG changes (Merlet et al., 2013). Similarly, Ali and

colleagues (Ali et al., 2013) developed a model for tACS based on large-scale cor-

tical oscillations. There is a reasonable well-established experimental and theoretical

pathways linking stimulation with changes in network oscillations (Park et al., 2005;

Reato et al., 2013b). Network oscillations have in turn been linked to specific cog-

nitive states and behavior (Cheron et al., 2015; Colgin, 2015).

A simplistic bridge from cellular/network activity to behavior is to adopt either a

“sliding scale” concept of brain function (notably for tDCS and post-rTMS), para-

digms of “virtual lesions” (including in acute TMS, DBS), or theories based on

“pacing/over-riding” (for example in SCS). These concepts are node based in that

they explain the actions of neuromodulation by local effects, though they are not ex-

clusive of considering the stimulated node as part of distributed network. For exam-

ple, DBS is hypothesized to create a virtual lesion of a node, thereby removing its

influence on the broader network, or to pace the node, thereby increasing drive in

upstream/downstream regions (McIntyre et al., 2004). Or, for example, tDCS may

be hypothesized to shift the excitability of one node involved in task. In SCS, the
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gating theory suggests driving (pacing) a set of neurons generates downstream ef-

fects related to gain control. These approaches are attractive (and ubiquitous) be-

cause they typically do not require any numerical simulation, but rather a block

diagram approach to understanding brain function and disease. They do not require

sophistication in understanding information processing with a node or the possibility

that some functions may be enhanced while other disrupted in the same network. And

these approaches lend themselves to simple integration with Step 2; for example,

tDCS that depolarizes the soma slides excitability and so brain function “up.” Neu-

roscientists, biomedical engineers, and clinicians naturally gravitate to trivial expla-

nations, when faced with unknowns and complexity. But these approaches rarely

withstand rigorous conceptual consideration or experimental validation. Computa-

tional neurostimulation is the alternative.

Changes in synaptic plasticity can be linked conceptually to any lasting changes

and learning. Understanding how stimulation affects synaptic plasticity is therefore a

generic substrate to link cellular/network and behavioral phenomena—in the sense

that any evidence for some synaptic plasticity is used as a mechanistic substrate for

some learning. But to avoid reverting to a “sliding scale” explanation (e.g., “more”

synaptic plasticity is “more learning” and “more therapy”), it is necessary to develop

computational neurostimulation models that are capable of different forms and path-

way of synaptic plasticity. In this way, one can link a specific change in plasticity

with a targeted change in learning or behavior.

6 DEALING WITH UNKNOWNS AND MULTISCALE
APPROACHES
Cameron McIntyre summarized (ISBN: 978-0-12-381409-8): “Defining relation-

ships between the anatomical placements of the electrode [Step 1], the stimulation

parameter settings, the relative proportion of neurons directly stimulated [Step 2], the

stimulation-induced network activity [Step 3], and the resulting behavioral outcomes

[Step 4], represent the state-of-the-art process for deciphering the therapeutic mech-

anisms of neurostimulation therapies. However, integration of such systems is so

complex that it typically requires computational models and numerous simplifying

assumptions to analyze appropriately. In turn, numerous scientific questions remain

unanswered on the stimulation-induced network activity generated by therapies like

DBS. Nonetheless, as new experimental data become available, and modeling tech-

nology evolves, it will be possible to integrate synergistically the results of systems

neurophysiology with large-scale neural network models to create a realistic repre-

sentation of the brain circuits being modulated by neurostimulation. Such advances

will enable the development of novel stimulation technology (electrodes, pulsing

paradigms, pulse generators, etc.) that can be optimized to achieve specific clinical

goals; thereby improving patient outcomes.”

Computational neurostimulation is the framework by which to rationally orga-

nize empirical data, formulate quantitative hypothesis, and test new interventions.
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Developing computational neurostimulation models requires the right balance of de-

tailed multiscale model with appropriate reductionism (Douglas et al., 2015;

Frohlich et al., 2015; Holt and Netoff, 2014; Karamintziou et al., 2014; Mina

et al., 2013; Modolo et al., 2011; Shukla et al., 2014). This review attempts to present

the modeling process as tractable, even when dealing with unknowns, including se-

rializing modeling steps and applying the quasi-uniform assumption where relevant.

The research and optimization process should be considered as iterative and so com-

putational neurostimulation is a tool to continuously refine approaches. The alterna-

tive is a qualitative and ad hoc testing of protocols, where both isolated positive and
negative clinical findings may do little to advance the science of treatment because

they are not placed within a rational interventional framework.

A central motivation for computational neurostimulation is that the interventional

parameter space (dose, timing, task, inclusion citation, etc.) is too wide, given the

cost and risk of human trials, for “blind” empirical optimization. Computational neu-

rostimulation is thus necessary for rational optimization of neuromodulation proto-

cols (Beriault et al., 2012; de Aguiar et al., 2015). At early stages, such effort must be

highly experimental data constrained (Douglas et al., 2015; Merlet et al., 2013;

Shamir et al., 2015) and typically constrained to a limited range of dose settings.

Computational neurostimulation is also the bridge by which data from animal studies

can be rationally incorporated into models for interventions.

Approaches using closed-loop stimulation are inherently state dependent and re-

quire computational neurostimulation (Cheng and Anderson, 2015; Gluckman et al.,

2001; Gorzelic et al., 2013; Grahn et al., 2014; Liu et al., 2013; Priori et al., 2013;

Shamir et al., 2015). As relevant and practical for any given approach, feedback can

be based on output at any of the four stages: (1) recording of current flow patterns for

a given dose (Datta et al., 2013b), (2) monitoring of cellular responses such as unit

firing rat, (3) changes in network activity such as local field potentials (Bergey et al.,

2015; Gluckman et al., 2001; Merlet et al., 2013), and (4) behavior (Shamir et al.,

2015). Even if based on assumptions (which can be tested) and simplifications

(which may not necessarily reduce value in clinical optimization), a computational

neurostimulation approach that spans across these stages is a rational substrate for

closed-loop dose optimization.

In many instances, even if computational neurostimulation can be applied using

conceptually sequential steps, a more holistic approach may be required. For exam-

ple, ongoing neuronal activity (Step 3) may influence both polarization sensitivity

(e.g., baseline oscillation level modulates polarization length; Reato et al., 2010)

and resulting effects of stimulation on firing patterns (e.g., baseline firing pattern de-

termines effects of stimulation). Thus network- and activity-dependent consider-

ations can influence Step 2. The state of neuronal networks can be controlled

through behavioral interventions (Step 4), such that engaging in a task will influence

network activity (Step 3) and hence susceptibility to electrical stimulation.

It may be that only by integrating predictions at multiple scales can a valuable and

coherent prediction arise (Ali et al., 2013; Douglas et al., 2015). For example, in a

computational neurostimulation models of electrical modulation of sleep

14 Modeling sequence and quasi-uniform assumption

ARTICLE IN PRESS



homeostasis, it was necessary to consider both polarization polarity inversions across

cortical folds (which at cellular level may seem to cancel a polarity-specific effects)

with neuronal network binding across brain region products by slow-wave

oscillations—whereby a net effect of stimulation was produced through rectification

and modulation of oscillations and then plasticity (Reato et al., 2013a). This effort

was both experimentally constrained by electrographic recordings from human, as

well as animal data on polarization sensitivity (Reato et al., 2010), and used to predict

behavioral (learning) changes. Such efforts, which use computational neurostimula-

tion to bridge dose to behavior, however rudimentary, demonstrate the feasibility

and application of computational neurostimulation, and so are encouraging for

ongoing work.
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