Alternate sessions of transcranial direct current stimulation (tDCS) reduce chronic pain in women affected by chikungunya. A randomized clinical trial

C.G. De Souza, R. Pegado, J.F. Costa, E. Morya, A. Baptista, G. Unal, M. Bikson, A.H. Okano

PII: S1935-861X(21)00043-7
DOI: https://doi.org/10.1016/j.brs.2021.02.015
Reference: BRS 1915

To appear in: Brain Stimulation

Received Date: 9 April 2020
Revised Date: 28 October 2020
Accepted Date: 21 February 2021


This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Author(s). Published by Elsevier Inc.
Credit Author Statement

Credits

To the Postgraduate Program in Public Health at the Federal University of Rio Grande do Norte.

Authors' Contribution

CGS: Conception and design of the study, submitted the project to the ethics committee, recruited the participants, evaluated it before and after the stimulation and wrote the manuscript;

RP: conception and design of the study, submitted the national platform of clinical trials REBEC, data analysis, interpretation and writing of the manuscript.

JFC: recruited participants, assessed before and after stimulation and wrote the manuscript and critically reviewed the article.

GU and MB cooperated in the analysis and interpretation of data, critical review and analysis of the high definition computational model.

AHO: Conception and design of the study, analysis and interpretation of data.

Final approval of the manuscript: CGS, RP, AHO, EM, GU and MB.
Alternate sessions of transcranial direct current stimulation (tDCS) reduce chronic pain in women affected by chikungunya. A randomized clinical trial.

C.G. De Souza, PT, PhD, Federal University of Rio Grande do Norte, Postgraduate Program in Rehabilitation Sciences, Santa Cruz, RN, Brazil. Address all correspondence to Dr Jette at: cleciogabriel11@hotmail.com.
R. Pegado, PT, PhD, Federal University of Rio Grande do Norte, Postgraduate Program in Rehabilitation Sciences, Santa Cruz, RN, Brazil.
J.F. Costa, PT, Faculty Estacio of Rio Grande do Norte, Natal, RN, Brazil.
E. Moriya, PT, PhD, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaíba-RN, Brazil.
A. Baptista, PT, PhD, Federal University of ABC, Center for Mathematics, Computing and Cognition, São Bernardo do Campo, SP, Brazil.
G. Unal, PhD, Department of Biomedical Engineering, The City College of New York, NY, USA.
M. Bikson, PhD, Department of Biomedical Engineering, The City College of New York, NY, USA.
A.H. Okano, PhD, Federal University of ABC, Center for Mathematics, Computing and Cognition, São Bernardo do Campo, SP, Brazil.

REBEC platform under registration number: RBR-5FHR4

This study protocol was approved by the Committee for Ethics and Research at the Federal University of Rio Grande do Norte, with registration number 2,932,953. All research procedures were followed in accordance with the Helsinki Declaration of 1975. All persons gave informed consent prior to their inclusion in the study. No animals were used in this study.
ABSTRACT

Context: Thousands of people worldwide have been infected by the chikungunya virus (CHIKV), and the persistence of joint pain symptoms has been considered the main problem. The mechanisms of neuropathic pain include cortical areas. Neuromodulation techniques such as transcranial direct current stimulation (tDCS) act on brain areas involved in the processing of chronic pain. It was previously demonstrated that tDCS for five consecutive days significantly reduced pain in the chronic phase of chikungunya (CHIK). Objective: To analyze the effect of alternate tDCS sessions on pain and functional capacity in individuals affected by CHIK. Methods: In a randomized clinical trial, 58 women in the chronic phase of CHIK were divided into two groups: active tDCS (M1-S0, 2mA, 20 minutes) and sham. The Visual Analogue Scale (VAS) and Brief Pain Inventory (BPI) were used to assess pain, while the Health Assessment Questionnaire (HAQ) assessed functional capacity. These scales were used before and after six sessions of tDCS in nonconsecutive days on the primary motor cortex, and at follow-up consultation 7 and 15 days after the last session. A repeated measures mixed-model ANOVA was used for comparison between groups (significant p-values < 0.05). Results: A significant pain reduction (Z[3, 171] = 14.303; p < 0.0001) was observed in the tDCS group compared to the sham group; no significant difference in functional capacity was observed (Z[1.57] = 2.797; p = 0.1). Conclusion: Our results suggest that six nonconsecutive sessions of active tDCS on M1 reduce pain in chronic CHIKV arthralgia.

Keywords: Chikungunya virus; Arthralgia; Chronic pain; transcranial direct current stimulation.
Introduction

Arboviruses are a group of viruses transmitted by vectors. The main current arboviral diseases circulating are dengue, zika, and chikungunya (CHIK). They have spread worldwide, especially in Latin America, where the high number of cases affected negatively the population. Acute phase of CHIK present symptoms such as fever, headache, muscle pain and symmetric arthralgia, especially in the wrist and ankle joints. Approximately 50% of patients have chronic arthralgia for up to 6 years. The disease is considered chronic when symptoms persist for over three months. This phase accounts for a high rate of persistent and incapacitating arthralgia, resulting in a reduction of productivity and quality of life. To date, there is no effective treatment for the CHIKV chronic pain, which may result of alterations in neural networks and central pain mechanisms, both related to pain perception, sensitization, and modulation.

In the last decades, non-pharmacological treatment strategies for chronic pain based on noninvasive neuromodulation techniques were developed to act on central pain processing, such as transcranial direct current stimulation (tDCS). tDCS applies a low-intensity sustained electric current on the scalp to produce acute or lasting changes in cortical excitability. According to electrode montage, notably the anodal motor cortex (M1) and cathodal contralateral supra orbital area (SO), a modulatory effect can be observed in brain areas responsible for pain processing.

Possible mechanisms of action of M1/SO montage on pain involve: 1) M1 network with brain structures decreasing thalamic hyperactivity induced by chronic pain; 2) neurochemical mediation of neurotransmitters and central receptors involved in the inhibitory control of pain; and/or 3) diffuse current flow leading to broad stimulation of pain-related cortical and subcortical structures. Several studies demonstrated the tDCS effects on chronic pain conditions, more specifically in fibromyalgia, migraine, nonspecific low back pain, and knee osteoarthritis. We previously reported pain reduction in symptomatic individuals with CHIKV after five consecutive sessions of M1-SO tDCS.

Multiple daily sessions of tDCS are typically used clinically to maximize the size and duration of the effect. However one of the barriers for individuals with chronic diseases is the difficulty to access specialized services, which hinders treatment adherence. A previous study assessed the impact of the absence of up to two consecutive sessions of tDCS on the clinical efficacy of ten sessions for major depression and found similar results to consecutive sessions. Previous studies in healthy individuals suggested that stimulation on alternate days might produce cumulative (lasting) effects. Moreover, there are few reports on the effects of tDCS applied on nonconsecutive days. Therefore, the present study evaluated the effects of nonconsecutive tDCS session on pain and functional capacity in individuals with chronic CHIKV arthralgia.

Material and methods

Study design

A randomized, double-blinded clinical trial was conducted in the city of Natal, Brazil, in 2018. The sample was recruited at the Onofre Lopes University Hospital. The inclusion criteria were female patients, aged between 28 and 70 years, who had received...
a chikungunya diagnosis over three months prior, as evidenced by laboratory or clinical exams, and a minimum of CHIKV related pain score of 4 on the Visual Analogue Scale (VAS). The flowchart illustrating the process of the study is shown in Figure 1. These criteria were based on previous studies that demonstrated that the evolution of the chronicity of joint symptoms is more commonly observed in women and in this age group\(^{28,29}\). The participants who withdrew from treatment or who did not comply with the study schedule were included as intent to treat\(^{30}\). Individuals with epilepsy, metallic implants at the stimulation sites, and history of alcohol abuse, as well as breastfeeding and pregnant women, were not included for this study. The sample was randomly divided into two groups using the software randomization.com: active group (active-tDCS) and sham group (sham-tDCS). To ensure concealment of allocation, opaque and sealed envelopes with sequential numbering were used. Only one independent researcher had access to the list of participants.

Sample Size

A pilot test was performed with 17 participants, and the results were used to calculate the sample size of the study, considering the estimated difference between groups and the respective standard deviations\(^{31}\). VAS was selected as the primary outcome with a difference of 1.70 between groups, and a standard deviation of 1.40 for the active-tDCS and 2.00 for the sham-tDCS. Based on these data and adopting a significance level of 95% and a statistical power of 80%, the ideal number of participants for each group was 24, for a total of 48 participants. To circumvent the selection bias and account for loss to follow-up and systematic errors, the sample was increased by 20%; therefore, 29 participants were included in each group, for a total of 58 participants in the study. Participants were recruited through social media and television outreach and screened by the researchers according to the eligibility criteria established for this research.

Variables

Pain was selected as the primary outcome and assessed by VAS, graded on a scale of 11 points (0 to 10), where 0 indicates the absence of pain and 10 the worst possible pain\(^{32}\). This variable was evaluated before and after six tDCS sessions, and at follow-up consultations on the 7th and 15th days after the last session.

Functional capacity was evaluated as secondary outcome by the Health Assessment Questionnaire (HAQ), which assesses the ability to perform daily activities that require the use of body joints, such as dressing and feeding oneself, taking the bus, and climbing stairs, among others. This score establishes three levels of disability: mild (0-1), moderate (> 1-2), and severe (> 2-3)\(^{33}\). The Brief Pain Inventory (BPI), which assesses pain severity and interference with daily living, based on a recall of pain, was also used\(^{34}\). Both assessment instruments were applied before and after the six sessions.

Data collection

A general evaluation form recorded sociodemographic and clinical information, such as time of CHIKV infection, medications used for treatment, and impacts on activities of daily living. The VAS, HAQ, and BPI instruments were applied before and
after the intervention protocol. All the collections took place at the Onofre Lopes University Hospital, in the city of Natal. For the patients who were absent, an intention-to-treat method was adopted in which the data of the participants who did not continue treatment were tabulated, repeating the last values obtained.

**Intervention protocol**

The participants underwent six sessions of tDCS on alternate days, corresponding to two weeks of treatment. The active-tDCS group received stimulation with an anode placed in the region of the M1 and the cathode over the contralateral supraorbital region according to the international 10/20 EEG system (C3/Fp2 montage). It was used 35 cm² surface electrodes (5 x 7 cm) covered by a sponge soaked in 0.9% sodium chloride (NaCl) saline solution. Active tDCS was performed on six nonconsecutive days of a constant current of 2 mA for 20 min. The same protocol was applied in the sham-tDCS, but a gradual current ramp-up and ramp-down of 30 s was used. Direct current stimulation was administered using a continuous electric stimulator, with three batteries (9V) connected in parallel with a maximum energy output of 10mA and controlled by a professional digital multimeter (DT832, WeiHua Electronic Co., Ltd, China) with a standard error of ±1.5%. Participants were blinded to which group they belonged to during the research protocol.

**High-resolution computational model.**

Current flow was simulated using finite element methods (FEM) models of two magnetic resonance imaging (MRI) derived female heads using our previously established and validated workflow. Briefly, FEM models were created to analyze the cortical electric field generated during tDCS. High-resolution MRIs were segmented into seven tissue/material masks of varying conductivities through a combination of automated and manual tools. Computer generated models of electrodes, gel, and/or sponge pads were incorporated into the segmentation. Simulation was 2 mA with a 5 x 7 cm electrode with anode positioned vertically over 10-20, location C3, and cathode positioned horizontally on the contralateral-supraorbital, over 10-20, location Fp2. (Figure 2).

**Data analysis**

Analyses were performed using the SPSS software (V.19.0, Chicago, USA) and Graph Pad Prism 5. Descriptive statistics were initially performed. Results were expressed in absolute and relative values; the mean was used as a measure of central tendency and the standard deviation (SD) as a measure of dispersion. Analytic statistics were performed based on the repeated measurements mixed-model analysis of variance (ANOVA), which compared the effects of the variables within the same group and over time (intragroup comparison) and between the groups (intergroup comparison), in addition to the simultaneous interaction of both factors. Initially, the theoretical assumptions for the application of ANOVA were assessed by analyzing data distribution through the Kolmogorov-Smirnov test. T-test for independent samples and the Levene test were performed to assess the equality of variances and homogeneity of the groups, and a chi-squared test was used for the categorical variables. The sphericity of the set of variables was assessed by the Mauchly test and, when it was violated, the Greenhouse-Geisser correction was used. To determine the difference between different
times or within the groups, the Bonferroni post hoc test was used; the values of the differences were considered significant when $p < 0.05$.

The cumulative proportion of responders\textsuperscript{41} was analyzed, with a cut-off point of 30\% change in the VAS score, which, according to the literature, is considered clinically relevant for studies on chronic pain\textsuperscript{42}. The number needed to treat (NNT) was calculated using these values. The NNT is the mean number of patients who need to receive a specific intervention for one of them to benefit from the desired outcome in one compared with the control\textsuperscript{43}. According to the Brazilian National Health Surveillance Agency (ANVISA), this information is of significant relevance to clinical effectiveness and should be included in clinical trials. For the variables functional capacity, interference of pain, and severity of pain, the effect size was calculated using Cohen's "d" index, considering the difference between means and standard deviation; the results were classified as insignificant ($d < 0.19$), small ($0.2 - 0.49$), moderate ($0.5 - 0.79$), and high ($0.8 - 1.29$)\textsuperscript{44}.

Ethical aspects

The experimental procedures were developed in accordance with the guidelines of Resolution 466/12 of the National Health Council and conducted according to the Declaration of Helsinki, which addresses ethics in research with human beings. This study was approved by the local ethics committee under opinion number 2,932,953. The study was registered in the Brazilian Clinical Trials Registry (ReBeC) under registration number: RBR-5FHR4. All subjects were volunteers and signed an informed consent form and were made aware of the objectives and procedures of the study, as well as of the risks and benefits.

Results

A total of 58 women participated in the study, with a mean age of $52.85 \pm 10.76$ years. Only one participant from the sham-tDCS withdrew from the study and was analyzed as intention to treat. The time of CHIKV infection was $21.54 \pm 3.53$ months. There were no differences in sociodemographic and pain variables between groups at baseline, but functional capacity and pain interference variables showed differences between groups, as shown in Table 1 (Table 1).

Accordingly, mixed ANOVA showed a significant interaction between the group and time on pain evaluated using VAS $F(3.171) = 14.303; p = 0.0001$, partial $\eta^2 = 0.20$. There were significant main effects of time $F(3.171) = 60.128, p = 0.0001$, partial $\eta^2 = 0.51$ and group $F(3.57) = 7.902, p = 0.007$, partial $\eta^2 = 0.12$. A simple main effect for group and time was performed for testing differences in VAS between groups at each category of the within-subjects factor using three separate one-way ANOVAs with Bonferroni adjustment. No significant simple main effect difference in VAS between groups at the baseline was found ($p = 0.09$). However, significant difference between groups was found in day 6 ($p = 0.001$; mean difference: 1.98), 1\textsuperscript{st} follow-up ($p = 0.0001$; mean difference: 2.39) and 2\textsuperscript{nd} follow-up ($p = 0.0001$; mean difference: 1.32) (Figure 3).

Analysis of the cumulative proportion of responders showed that 79.31\% of the participants in the active-tDCS had an improvement in VAS score greater than 30\% compared with the sham-tDCS. These data were used to calculate the NNT, which in this study was 2, meaning that two patients needed to be treated with this technique for one more to benefit from the desired effect.
A significant interaction between time and group was found for functional capacity $F(1.57) = 36.549; p = 0.0001$, partial $\eta^2 = 0.39$. Similarly, there was significant main effect of time, $F(1.57) = 133.085$, $p = 0.001$, partial $\eta^2 = 0.7$ but not for group $F(1.57) = 2.797$, $p = 0.1$, partial $\eta^2 = 0.04$ (figure 4). Impact of pain on daily life activities showed a significant interaction group and time, $F(1.57) = 25.598$, $p = 0.0001$, partial $\eta^2 = 0.31$. Similarly, for pain severity $F(1.57) = 16.513$, $p = 0.0001$, partial $\eta^2 = 0.22$ (figure 5). No significant effect was observed for group ($p = 0.96$; $p = 0.06$ respectively).

When the effect size between the active-tDCS and sham-tDCS was analyzed, no significant effect was observed for functional capacity ($d = 0.11$), moderate for interference of pain ($d = 0.60$), and high for pain severity ($d = 0.96$).

Discussion

The objective of the study was to evaluate the effect of six nonconsecutive sessions of tDCS on chronic pain of women with CHIKV chronic arthralgia. It showed a significant reduction of pain after stimulation in a short and long-term follow-up. This result suggests that tDCS could be a relevant strategy with cost-effective approach to relief persistent pain in chronic CHIKV patients. However, no change in functional capacity has been found.

Silva-Filho et al.\textsuperscript{24} showed significant clinical pain improvement after five consecutive sessions of M1-SO tDCS in individuals with chronic chikungunya arthralgia. The authors did not find an effect on functional capacity. In the present study, we assessed a modified dosing protocol, with alternate sessions of tDCS. A reduction in pain intensity was observed after six sessions only for active-tDCS and persisted until 15\textsuperscript{th} day post-treatment, meaning a long-term effect.

A study that used tDCS over 12 consecutive days in individuals with chronic low back pain combined with peripheral transcutaneous electrical stimulation showed an improvement in pain level and a higher percentage of responders in the stimulated group\textsuperscript{45}. This was also observed in the present study.

A review\textsuperscript{19} on the effects of tDCS on chronic pain in diverse clinical conditions found a decrease of 17\% in pain intensity in the stimulated group compared with the control and placebo groups, which was considered a minimal difference. Although a reduction in pain was observed in both groups over time, in the present protocol, in the active-tDCS pain level was reduced more than 50\% even 15 days after the intervention, reaching the lowest level reported by the participants. These outcomes are consistent with other pain studies\textsuperscript{18,46} that showed the efficacy of tDCS in reducing the VAS score in patients with fibromyalgia. Other studies\textsuperscript{47,48} that performed the stimulation consecutively demonstrated pain improvement up to three months later.

Although most studies on tDCS stimulation are applied on consecutive days, the number of sessions and the application method used in the present study sought to accommodate the practicality of rehabilitation programs. A previous study assessed the impact of the absence of up to two consecutive sessions of tDCS on the clinical efficacy of ten treatment sessions for major depression and found results similar to those that performed all sessions consecutively. A 60\% absence rate was observed in at least one tDCS session. This same study highlighted the difficulty in carrying out long-term treatments with neuromodulation, continuously, due to time, cost and patient access, suggesting the analysis of other models of application of tDCS\textsuperscript{26}. In the present study, there was only one withdrawal, and no absence of participants in the application of tDCS on alternate days. There is no consensus on the minimum number of sessions...
required for tDCS for some health conditions, and the time interval between sessions\textsuperscript{49}. Such factors hypothesize that a tDCS protocol with sessions on alternate days can present satisfactory results, with a lower dropout rate, therefore greater adherence. Nonconsecutive days of tDCS could be an alternative strategy for long-term treatment of debilitating diseases.

Functional capacity did not show significant differences between groups, as observed by Silva-Filho et al. (2018)\textsuperscript{24}. The difference found in the baseline for functional capacity and interference of pain with daily life may have interfered with the final result, considering that both had remarkably reduced scores after the intervention, although without statistical significance. Moreover, this fact may be explained by the characteristics of the research participants, who already had functional capacity limitation, but did not receive a stimulus other than tDCS to change these aspects of the functionality. Ahn et al., (2017)\textsuperscript{23} evaluated the efficacy of tDCS with regard to safety, mobility, and clinical pain in subjects with knee osteoarthritis; these authors observed a significant reduction in the numerical pain scale after five daily sessions applied over three weeks but did not observe changes in mobility, although there were moderate clinical effects for some variables, similar to what occurred in the present study.

Musculoskeletal pain caused by CHIK is related to neuropathic and nociceptive peripheral mechanisms, which can progress to central sensitization\textsuperscript{50,51}. It was suggested that M1 SO montage activates several circuits present in the pre-central gyrus responsible for connecting structures involved in the sensory and emotional component of pain processing\textsuperscript{13}. This hypothesis justifies the potential to reduce pain through the inhibitory control of the descending pathways\textsuperscript{16,52}.

Despite the large number of studies on tDCS, its neurophysiological foundations are not yet fully clarified, especially the optimal dosimetry of stimulation. The time of application and repetition of the alternate sessions used in this study yielded significant results. Also, tDCS sessions on alternate days provided good adherence to the protocol. Thus, further studies should focus on the number of tDCS sessions and the association with other resources, such as simultaneous physical exercise.

Conclusions

Six nonconsecutive sessions of anodal tDCS over M1 were effective in reducing pain in short and long-term in women with chronic CHIKV arthralgia. Alternate session is an available approach to support treatment adherence and reduction of treatment withdrawal. Future intervention including additional stimulation sessions and combination tDCS with other therapeutic resources such as physical exercise could be a rational strategy to decrease pain and improve functional capacity in chronic CHIKV arthralgia.

Acknowledgements

Source(s) of financial support: This study was partially funded by grants to MB from NIH (NIH-NIMH 1R01MH111896, NIH-NINDS 1R01NS101362, NIH-NCI U54CA137788/ U54CA132378, R03 NS054783) New York State Department of Health (NYS DOH, DOH01-C31291GG).

Conflict of Interest
The City University of New York (CUNY) has IP on neuro-stimulation system and methods with author MB as inventor. MB has equity in Soterix Medical. MB serves on Boston Scientific and GlaxoSmithKline Inc. advisory boards.

Author contributions

C.G. De Souza, J.F. Costa and R Pegado, made substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data. A.H. Okano, M. Bickson, G. Unal participated in drafting the article or revising it critically for important intellectual content. A. Baptista, E. Morya, R.P.A. Freitas gave final approval of the version to be published. C.G. De Souza agreed to be responsible for every aspect of the work, and ensure that questions related to any part of the work will be appropriately investigated and resolved.

References


Table 1. Sample characterization with absolute and relative values, as well as the mean and standard deviation.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Active-tDCS Mean ± SD</th>
<th>Sham-tDCS Mean ± SD</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>50.83 ± 10.38</td>
<td>54.80 ± 10.94</td>
<td>0.158*</td>
</tr>
<tr>
<td>Time with CHIKV</td>
<td>20.97 ± 4.25</td>
<td>22.10 ± 2.60</td>
<td>0.225*</td>
</tr>
<tr>
<td>Drugs for pain</td>
<td>4.76 ± 1.62</td>
<td>4.43 ± 1.61</td>
<td>0.442*</td>
</tr>
<tr>
<td>VAS baseline</td>
<td>6.86 ± 1.66</td>
<td>6.07 ± 1.91</td>
<td>0.094*</td>
</tr>
<tr>
<td>HAQ baseline</td>
<td>1.61 ± 0.42</td>
<td>1.14 ± 0.47</td>
<td>0.001*</td>
</tr>
<tr>
<td>BPI sev baseline</td>
<td>6.0 ± 1.37</td>
<td>5.64 ± 1.77</td>
<td>0.390*</td>
</tr>
<tr>
<td>BPI interf baseline</td>
<td>7.11 ± 1.47</td>
<td>5.63 ± 2.14</td>
<td>0.003*</td>
</tr>
</tbody>
</table>

| Ethnicity                 |                      |                     |          |
| White                     | 14 (48%)             | 14 (47%)            | 0.121**  |
| Black                     | 1 (3.4%)             | 6 (20%)             |          |
| Mixed-race                | 14 (48%)             | 10 (33%)            |          |
| Total                     | 29                   | 30                  |          |

| Education                 |                      |                     |          |
| Elementary school         | 6 (20%)              | 5 (16%)             | 0.703**  |
| Secondary school          | 17 (60%)             | 16 (54%)            |          |
| College                   | 6 (20%)              | 9 (30%)             |          |
| Total                     | 29                   | 30                  |          |

| Comorbidity               |                      |                     |          |
| Yes                       | 16 (55%)             | 20 (67%)            | 0.365**  |
| No                        | 13 (45%)             | 10 (33%)            |          |
| Total                     | 29                   | 30                  |          |

| Rheumatic disease         |                      |                     |          |
| Yes                       | 12 (41%)             | 11 (37%)            | 0.711**  |
| No                        | 17 (59%)             | 19 (63%)            |          |
| Total                     | 29                   | 30                  |          |

Figure 3. Pain reduction was observed immediately after tDCS intervention and remained unchanged in the subsequent observation times.

Figure 3. Pain reduction was observed in short and long-term only in active-tDCS (n = 29) when compared with sham-Group (n = 30). Mixed ANOVA showed a significant interaction between the group and time (p < 0.0001) with a group effect (p < 0.05) over time. *Significant difference between groups in day 6 (p = 0.001; mean difference: 1.98), 1st (7 days after last tDCS session) follow-up (p = 0.0001; mean difference: 2.39) and 2nd (15 days after last tDCS session) follow-up (p = 0.0001; mean difference: 1.32) Pairwise comparisons with Bonferroni adjustment.
Figure 4. Despite the reduction in the disability score, no significant effect of tDCS was observed on the functional capacity of individuals affected by chikungunya ($Z[1.57] = 2.797; p = 0.1$).

Figure 4: Mixed ANOVA showed an interaction between time and group for functional capacity ($p = 0.0001$), with main effect of time ($p = 0.001$) but not for group ($p = 0.1$).
Figure 5. BPI domains. Pain interference (p = 0.0001) and pain severity (p = 0.0001) showed a significant interaction group and time (ANOVA). But no significant effect was observed for group (p = 0.96; p = 0.06 respectively).
Enrollment of chikungunya patients with pain more than 4 in a VAS

Baseline assessment

1:1 Randomization

Active-tDCS (n=29)
6 sessions alternating days

Post-treatment assessment at the end of 6th session

First Follow-up assessment: 7th days after the last session

Sham tDCS (n=29)
6 sessions alternating days

Second Follow-up assessment: 15th days after the last session
Figure 2. Computational current flow model of M1-SO tDCS montage. Electric field intensity is shown in the cortical surface, cross section (False Color, Electric Field) and flux line.
HIGHLIGHTS

Alternating sessions of tDCS are effective in reducing pain in women had chikungunya.

tDCS does not alter the functional capacity of women with chikungunya in the chronic phase.

Alternating sessions tDCS promote greater adherence to treatment with a lower withdrawal
DECLARATION OF AUTHORS

We wish to draw the attention of the Editor to the following facts which may be considered as potential conflicts of interest. The City University of New York (CUNY) has IP on neuro-stimulation system and methods with author MB as inventor. MB has equity in Soterix Medical. MB serves on Boston Scientific and GlaxoSmithKline Inc. advisory boards. There was no financial support for this work that might have influenced its outcome.

We confirm that the manuscript has been read and approved by all authors indicated and that there are no other persons who meet the criteria for authorship. In addition, we confirm that the order of the authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including publication time, in relation to intellectual property. In doing so, we confirm that we have followed the regulations of our institutions regarding intellectual property.

In addition, we confirm that any aspect of the work covered in this manuscript that involved humans was conducted with the ethical approval of all relevant bodies and that such approvals are recognized in the manuscript.

We understand that the Corresponding Author is the only contact for the Editorial process (including the Editorial Manager and the direct communications with the office). He is responsible for communicating with other authors about progress, submission and final approval of the evidence. We confirm that we provide a current and correct email address, which can be accessed by the corresponding Author and has been set up for the email of cleciogabriel1@hotmail.com.

Signed by all authors:

Clécio Gabriel de Souza: ___________________________ Data: 02/27/2020.


