
DIGITAL	CULTURE	&	EDUCATION,	8(3)	 	 	 	 	 	 	 	 	 	 	 	 	
2016,	ISSN	1836-8301

Digital Culture & Education (DCE)

Publication details, including instructions for authors
http://www.digitalcultureandeducation.com/

Platforms in the cloud: On the
ephemerality of platforms

Casey O’Donnell

Michigan State University

Online Publication Date: 14th November 2016

To cite this Article: O’Donnell, C. (2016). Platforms in the cloud: On the ephemerality of platforms. Digital Culture & Education,
8(2), 185-90.

URL: http://www.digitalcultureandeducation.com/cms/wp-content/uploads/2016/11/guins.pdf

PLEASE SCROLL DOWN FOR ARTICLE

O’Donnell

	 185

PLATFORMS IN THE CLOUD: ON THE ephemerality of
platforms

Casey O’Donnell

Abstract: This essay explores the ephemeral character of platforms and the critical role that
theoretical frameworks play in making sense of platforms as socio-technical assemblages. Through an
exploration aimed at further complicating the Nintendo Wii as platform and exploring Twitter as
platform, the essay considers the crucial role of theory in the unpacking of black boxes. In an attempt to
render platforms accessible, it is quite possible they have been presented as more opaque, and their
analysts have not adequately debugged the messes they have encountered.

Key Words: Platform Studies; Alien Phenomenologies; Science and Technology
Studies; Twitter; Debugging

Introduction

In the early summer of 2012 at a meeting of the Foundations of Digital Games (FDG), I
assembled a variety of researchers interested in exploring the micro-blogging site Twitter
from the perspective of platform studies. I populated the panel with researchers and
developers who had explored or created games or software for Twitter. I asked each of
them to think about Twitter as a platform. Yet, according to Montfort and Bogost’s
original charge of platform studies, such a thing would not qualify as a platform by their
original definition. As others have noted, the conceptual category of platform has
enjoyed a great deal of scholarly attention, which has not been explored by that of
platform studies (Leorke, 2012). According to the more orthodox version, Twitter was
simply “software that runs on platforms,” (Montfort & Bogost, 2009, p. 3) rather than a
real platform, “[w]hatever the programmer takes for granted when developing, and
whatever from another side, the user is required to have working in order to use
particular software,” (Montfort & Bogost, 2009, pp. 2-3). Yet, what was interesting was
that as I attempted to explore Twitter games from this perspective, I increasingly
grappled with the ephemerality of precisely what a platform was. At first I assumed it was
a consequence of my analytic transgression, but in reality, similar questions could have
been leveled at any number of platforms. In my contribution to that FDG panel, I
returned to Codename Revolution: The Nintendo Wii Platform (Jones and Thuruvathukal,
2012) and began to re-ask the question, “Where is the platform?”

The ephemerality of the Wii

In the spring of 2007, Chris Hecker, a game developer long associated with the Game
Developers Conference (GDC), and in particular as part of the perennial ‘rant’ session,
spoke. He began that year’s rant with the relatively simple, but spirited statement, “The
Wii is a piece of shit!”1 This statement sent shockwaves through the enthusiast press
surrounding the game industry. Game developers present in the room at that time,
however, cheered and applauded. It was striking to see such heated enthusiast press
coverage over something, which for developers was a humorous non-event. Hecker went
further, mocking the console, presenting a slide that made it appear as if the “severely

Platforms in the cloud

	 186	

underpowered” machine was simply two GameCube consoles duct-taped together.
Again, the audience roared. What struck me as funny, at the time, was that the original
Development Kits, or DevKits, for the Wii actually were GameCube DevKits with a few
additional wired inputs. At that moment, in 2007, I was nearing the end of a three and a
half-year stint of ethnographic participant observation at a game studio working on a PS2
and Wii title. For this team, the Wii, as a platform, started as a GameCube DevKit—, not
two of them taped together, just a single GameCube DevKit. I suspect that many game
developers in the room that day were in on that aspect of the joke as well. Of course the
Wii became the more self-contained and expanded device as time moved forward.

As I read Codename Revolution, I couldn’t shake the feeling that something was missing.
Even as an attempt to explore the platform of the Wii, the device remained too
‘thingified’, too black boxed, too polished. I always perceived one of Platform Studies’
goals to be the dynamic decompression of highly black-boxed2 machines and the games
that ran on them. However, the Wii was presented very much as the device found on a
store's shelf. It was slick. It was finished. Yet, as the numerous updates issued to the
Wii’s firmware over the years ought to indicate, it was far from finished. Ultimately, it
was halfway through the text that I found the source of some of my anxiety.

Developing software for the Wii involves programming for its particular
affordances and within its particular constraints. This includes first of all
programming for the intuitive interface provided by the Wii Remote controller.
In fact, Nintendo's SDK, which a third-party developer can purchase3 after being
successfully accepted and registered as an official Nintendo developer,4 ships
with a tool called LiveMove, made by AiLive, which offers a graphic user
interface (GUI) for “training” a new game to recognize a repertoire of motions
by the Wii Remote. The programmer turns it on, repeats a series of named
sample motions (flipping a pancake, say) in various speeds and at different angles,
and the program then captures those and automates the code for integration into
a game under development (in this case, it might be a restaurant game). (Jones &
Thiruvathukal, 2012, p. 73)

I have no idea when LiveMove became a product included with the Wii DevKits, but it
certainly hadn’t been part of the platform the team of developers working on Spider Man
3 initially encountered. I recall the heady days of development; when the team working
with on the Wii dumped WiiMote data into Excel in order to do the kind of statistical
analysis that surely LiveMove was attempting to automate for the developer. So is
LiveMove part of the platform? Or is it a swerve in the platform? The ambiguity of the
data from the WiiMote is what led to the development of Motion Plus for the WiiMote.
So, which one is the platform? As a developer, what is to be assumed? With questions
like this, it was too late. I’d gone down the rabbit hole.

Nintendo’s broader software SDKs, included with Wii DevKits, contain all sorts of
utility libraries that encode ideas about how games ought to be developed. Memory use
and allocation is actually quite different between games and “typical” software.5
Nintendo’s SDKs explicitly encourage the use of memory pools. The format that images
and data take within the file system, assumed by the Wii’s underlying operating system,
are also encoded in calls specific to the Wii’s SDK. The entire SDK remains a decedent
of the GameCube’s SDK. What about the wide use of the scripting language Lua by
many Nintendo developers? All of these are part of the platform according to Montfort
and Bogost, but it's most certainly not part of Codename Revolution. So, where precisely is
the platform?

O’Donnell

	 187

Once I started down this line of inquiry, it became much more difficult to isolate
platforms. But, that is precisely what makes them such interesting units to explore. They
swerve and shift throughout their lifespans. Examples abound, the Nintendo
Entertainment System’s (NES) use of various “mappers” on individual cartridges that
adjust the behavior of memory mapping as it relates to the underlying Pixel Processing
Unit. The introduction of battery aided game-save systems is also an excellent example.
The Super Nintendo Entertainment System’s (SNES) ability for cartridges to not only
contain memory mappers, and semi-volatile memory, but actual co-processing units. For
example, many developers’ realized that texture context switches were particularly
computationally expensive on Sony’s PlayStation 2, which lead to the re-discovery and
use of Atlas Texturing to work around those limitations.

Time and again, the very assumptions that developers can make about a system are
liable to shift and move under their feet throughout the creative process and over the
lifetime of a piece of hardware. Which, isn't to say that these objects aren’t important and
worthy of analysis, but that an approach that mimics those applied to the Atari VCS may
prove insufficient to unpack and explore these important artifacts. Perhaps this critique
matters doubly so as platform’s tendrils reach ever further to distributed computer
platforms.

On Twitter games

What makes Twitter an interesting platform is that it tends to exhibit many of the issues
that are core to exploring what precisely is meant by platforms and our analysis of them.
In February of 2011, the third Global Game Jam kicked off with an accompanying
‘achievement,’ titled, ‘Aggregation,’ which required that whatever game was created “uses
or combines existing web services and online data (e.g. Google Maps, Gmail, Twitter,
Facebook, airline services, news, stocks, etc.) as part of the gameplay.” Out of this a
handful of games were developed that made use of these elements. Two games, in my
opinion, stood out. Each used Twitter’s REST API6 as a means for exploring gameplay.
Twoetwy and twitapocalypse were two games, built on very different technologies, each
using Twitter as a core element of their gameplay.

Twoetwy was built using Adobe's Flash authoring system. The game connected to
Twitter's ‘firehose,’ or general public timeline. It used this data to populate a game space
where a player assembles new tweets by flying a bird around on the screen, collecting
falling words drawn from the deconstructed firehose-based tweets. Once assembled the
player could then tweet the assembled phrase accompanied by the #Twoetwy hashtag.

Twitpocalypse was built on top of the relatively new HTML5/CSS/JavaScript
standards and the Impact JS JavaScript game development library. Twitpocalypse went
further than Twoetwy, requiring the user to authorize the application, which then
allowed the game to crawl through the user’s personalized feed. The game then allowed
the player, pictured as the Grim Reaper, to harvest unsuspecting people glued to their
phone screens. The player was is rewarded for reaping those killing people that they
don't follow and are penalized for killing not of those accounts that they do follow. An
incorrectly reaped soul then displays their profile image, indicating your mistake. The
game played with what might be referred to as the “Facebook Effect;” do we know the
people we follow or have friended?

Returning to the question of platforms, however, how would one characterize either
of these game’s platform? Neither is reducible to HTML5 or JavaScript or JSON or
Flash or PHP or Twitter or Chrome or WebKit or HTTP. Even those objects have
shifted and mutated over time. What does it mean to be a platform in contexts such as
these?7

Platforms in the cloud

	 188	

Analytic Invocation

In the formulation of Racing the Beam, much of the theoretical platform is never hinted at,
ostensibly to widen the readership of the series. The lifeblood of a platform studies text
is its own platform; the assumptions made by the researchers. These assumptions are the
system through which material is made sense of and put into motion in the series. One
can only suspect what precisely that underlying system was for Bogost and Montfort,
though one rooted in Object Oriented Ontology (OOO) and Alien Phenomenology
seems most likely.8

Yet, by not placing such material in the text, it is excised from the platform. This lack
of conceptual nuance results in texts that explore platforms in ways that may have
proven productive for the Atari VCS, but prove inadequate for others. To return to a
concept deeply related to Latour's Actor/Actant-Networks, briefly indexed in the
development of an Alien Phenomenology: that of Law's messes.9 It is important to note,
that Law’s messes are deeply rooted in research practice (Law, 2003). Actor-Network
Theory, for Law, goes hand in hand with research methods. Theory and practice are
intertwined; they are part of his research platform. The mess, Law might argue, goes with
interesting and unexpected research findings.10 Rather than jettison the mess, I would
press with a query specific to game development.

How do game developers make sense of the mess? Clearly, if one looks at the
complexity of what massive teams of developers produce, games and the platforms they
build these systems for, it’s a mess. But, I don’t believe that messes cannot be grasped.
Even if it’s a mess, there is a system at play that can be understood by humans. In the
words of one informant, an engineer, from my early work with AAA game developers:

There is an emotional component to it. You’ll be like, “that can’t be broken.”
You gotta get over that pretty quick. You say, “well, it’s broken.” Maybe you're
afraid it’s impossible. But you know, if you take the time, the gruesome horrible
time, you can always, if you have to, map out the transistors and follow the flow
of logic. It will come out in a wash. You have to be persistent.

I like to think of this approach as one modeled on the debugger. The debugger is a
software programmer’s tool that allows them to observe the execution of a program's
code as it progresses though its execution. It is part technology, but also part mindset. It
can be mind-numbingly tedious, as my informant noted with, “the gruesome horrible
time.” Yet, it is also part intuition. Some people are better at debugging than others. The
process exemplifies what can make game development and the deconstruction of
platforms difficult. Yet, it is precisely the ability of the analyst to ‘step-into’ those areas
that intuition suggests are worthy of analysis.

There is no reason that our analysis of these large systems couldn't take on the
character of debugging. What are the interesting sub-routines worth examining? Where
are there the most bugs or glitches? Where are the fewest? Having a sense of what needs
exploration is the kind of creative analytic work that I have cited as critical to the work of
game developers. Why can’t this approach be applied to our analysis of platforms?

None of this is to say that what has been produced as part of the platform studies
series is not impressive. It certainly is and will likely continue to be. Rather, it is a
provocation to would-be platform analysts to not only explore platforms already built,
but to delve deeply into them in ways that surprise both reader and analyst. This may
prove problematic, because many platform owners do not want the buggy, glitchy, or
rough sides of their platforms made visible. Just as when Chris Hecker indexed a
perceived failing of the platform, and was disciplined for his transgression, it is possible

O’Donnell

	 189

that platform studies may reveal aspects of platforms that are less than desirable or had
unintended consequences, as noted about the NES (O’Donnell, 2011). It may also be
that platforms were intended to be one thing, but over time possibilities are scrapped for
reasons unknown, such as Mario Factory in the era of the SNES (O’Donnell, 2013).

Each platform explored by platform studies needs to debug, thoroughly and
theoretically, each object. This will require a delving into the unit, its software,
peripherals, code, and plethora of other elements. It becomes the analyst’s job to develop
an intuition for those elements of the system needing greater or lesser scrutiny. Being
clear and upfront about what guided that particular deconstruction is critical.

Notes

1 It is interesting to note that the rants of GDC often serve as important markers
throughout recent game development history. They serve as an important release valve,
or moment to index important shifts or issues facing the worlds of game developers. I
have found them to be telling moments throughout my research on game developer
practice and culture.
2 While I respect the desire for platform studies to remain accessible, by not tipping their
hat to the literature that supports the analytical framework of the texts, the render their
platform opaque. It is critically important to what made Racing the Beam impressive and is
lost to the lay reader. By disconnecting the text from those theoretical works, it renders
the role it played in the analysis mute.
3 DevKits are actually leased devices. They are not bought or sold. Because the hardware
distributed along with the SDKs, often have capabilities (such as ROM writers) that the
manufacturers do not want to have “in the wild.” The devices remain owned by the
company that created it. Developers lease the devices and the software through licensing
agreements.
4 This process is actually quite fraught and subject to a variety of rules and regulations
that are largely undocumented, but well known to established developers (O’Donnell,
2011). Interestingly, in the case of the Wii and all of Nintendo’s consoles, the developer
licensing portal is known as “Wario World.” Quite humorously, the landing pad for
third-party developers for Nintendo is named after the annoying antihero of the
Nintendo world.
5 While a game’s engine may be thought of as software, games should not be thought of
as “just” software (O’Donnell, 2012). Many practices that are deployed within game
development would be frowned upon by “traditional” software development practices.
Because games often have the luxury of taking over a device, it isn't necessary for them
to behave like traditional desktop software.
6 Representational State Transfer (REST) Application Programming Interfaces (API) are
one of the most widely used by web-based service providers.
7 And these contexts also shift over time. Facebook or Twitter may make changes to
their API that require modifications to existing games, or they may simply stop
functioning. In some cases, these changes are made with little or no warning provided to
developers. Games may stop working and it becomes the job of developers to respond
to users frustrated with a broken game.
8 My assumption comes from comments found in: (Bogost, 2012, pp. 131-132). What I
like about the particular section noted is the chapter's entitlement “wonder,” which is
what makes Racing the Beam such a compelling text. It is clear from the material that both
authors are in wonder and wondering with the Atari VCS. Codename Revolution: The
Nintendo Wii Platform, however, leaves me less with a sense of wonder and more a sense
of closure, something that would puzzle any scholar exploring socio-technical systems.

Platforms in the cloud

	 190	

9 As far as Actor-Network Theory theorists go, Law has proven very productive for my
work. From heterogeneous engineering (Law, 1989) to monsters (Law, 1991) to messes
(Law, 2003).
10 Rheinberger (1997) has noted that it is actually the potential for noise or new messes
that make experimental systems useful. If they are completely incapable of providing
unexpected results, they become simply tools, rather than part of the experimental
system groping to understand new and interesting things.

References

Bogost, I. (2012). Alien Phenomenology: or What It’s Like to Be a Thing. Minneapolis:
University of Minnesota Press.

Jones, S. E., & Thiruvathukal, G. K. (2012). Codename Revolution: The Nintendo Wii Platform.
Cambridge: MIT Press.

Law, J. (1989). Technology and Heterogeneous Engineering: The Case of Portuguese
Expansion. In W. Bijker, T. P. Hughes, & T. Pinch (Eds.), The Social Construction
of Technological Systems: New Directions in the Sociology and History of Technology (pp.
111-134). Cambridge: MIT Press.

Law, J. (1991). A Sociology of Monsters: Essays on Power, Technology and Domination. New York:
Routledge.

Law, J. (2003). Making a Mess with Method. Retrieved from
http://www.comp.lancs.ac.uk/sociology/papers/Law-Making-a-Mess-with-
Method.pdf

Leorke, D. (2012). Rebranding the Platform: The Limitations of ‘Platform Studies’.
Digital Culture & Education, 4(3), 257-268.

Montfort, N., & Bogost, I. (2009). Racing the Beam: The Atari Video Computer System.
Cambridge: MIT Press.

O’Donnell, C. (2012). This Is Not a Software Industry. In P. Zackariasson & T. L.
Wilson (Eds.), The Video Game Industry: Formation, Present State and Future (pp. 17-
33). New York: Routledge.

O’Donnell, C. (2013). Wither Mario Factory? The Role of Tools in Constructing
(Co)Creative Possibilities on Videogame Consoles. Games and Culture, 8(3), 161-
180. doi:10.1177/1555412013493132

O’Donnell, C. (2011). The Nintendo Entertainment System and the 10NES Chip:
Carving the Videogame Industry in Silicon. Games and Culture, 6(1), 83-100.

Rheinberger, H.-J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins in the Test
Tube. Stanford: Stanford University Press.

Biographical information

Casey O’Donnell is an Associate Professor in the Department of Media and
Information at Michigan State University. His research examines the creative
collaborative work of videogame design and development. This research examines the
cultural and collaborative dynamics that occur in both professional “AAA” organizations
and formal and informal “independent” game development communities. His research
has spanned game development companies from the United States to India. His first
book, Developer’s Dilemma is published by MIT Press.

Contact: caseyod@msu.edu

	o'donnell
	ODonnell_platforms in the cloud_final

