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Coordinatizing Data With Lens Spaces and Persistent Cohomology

Luis Polanco∗ Jose A. Perea †

Abstract

We introduce here a framework to construct coordi-
nates in finite Lens spaces for data with nontrivial 1-
dimensional Zq persistent cohomology, for q > 2 prime.
Said coordinates are defined on an open neighborhood
of the data, yet constructed with only a small subset
of landmarks. We also introduce a dimensionality re-
duction scheme in S2n−1/Zq (Lens-PCA: LPCA), and
demonstrate the efficacy of the pipeline Zq-persistent
cohomology⇒ S2n−1/Zq coordinates⇒ LPCA, for non-
linear (topological) dimensionality reduction.

1 Introduction

One of the main questions in Topological Data Analysis
(TDA) is how to use topological signatures like persis-
tent (co)homology [11] to infer spaces parametrizing a
given data set [3, 1, 4]. This is relevant in nonlinear
dimensionality reduction since the presence of nontriv-
ial topology—e.g., loops, voids, non-orientability, tor-
sion, etc—can prevent accurate descriptions with low-
dimensional Euclidean coordinates.

Here we seek to address this problem motivated by
two facts. The first: If G is a topological abelian group,
then one can associate to it a contractible space, EG,
equipped with a free right G-action. For instance, if
G = Z, then R is a model for EZ, with right Z-
action R × Z 3 (r, n) 7! r + n ∈ R. The quotient
BG := EG/G is called the classifying space of G [8]. In
particular BZ ' S1, BZ2 ' RP∞, BS1 ' CP∞ and
BZq ' S∞/Zq; here ' denotes homotopy equivalence.
The second fact: If B is a topological space and CG is
the sheaf over B (defined in [9]) sending each U ⊂ B
open to the abelian group of continuous maps from U to
G, then Ȟ1(B; CG)—the first Čech cohomology group of
B with coefficients in CG—is in bijective correspondence
with [B , BG]—the set of homotopy classes of continu-
ous maps from B to the classifying space BG. This bi-
jection is a manifestation of the Brown representability
theorem [2], and implies, in so many words, that Čech
cohomology classes can be represented as coordinates
with values in a classifying space (like S1 or S∞/Zq).
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For point cloud data—i.e., for a finite subset X of
an ambient metric space (M,d)—one does not com-
pute Čech cohomology, but rather persistent cohomol-
ogy. Specifically, the persistent cohomology of the
Rips filtration on the data set X (or a subset of land-
marks L). The first main result of this paper contends
that steps one through three below mimic the bijection
Ȟ1(B; CZq

) ∼= [B,S∞/Zq] for B ⊂ M an open neigh-
borhood of X:

1. Let (M,d) be a metric space and let L ⊂ X ⊂ M
be finite. X is the data and L is a set of landmarks.

2. For a prime q > 2 compute PH1(R(L);Zq); the
1-dim Zq-persistent cohomology of the Rips filtra-
tion on L. If the corresponding persistence diagram
dgm(L) has an element (a, b) so that 2a < b, then
let a ≤ ε < b/2 and choose a representative cocy-
cle η ∈ Z1(R2ε(L);Zq) whose cohomology class has
(a, b) as birth-death pair.

3. Let Bε(l) be the open ball in M of radius ε centered
at l ∈ L = {l1, . . . , ln}, and let ϕ = {ϕl}l∈L be a
partition of unity subordinated to B = {Bε(l)}l∈L.
If ζq 6= 1 is a q-th root of unity, then the cocycle
η yields a map f :

⋃
B −! Lnq to the Lens space

Lnq = S2n−1/Zq, given in homogeneous coordinates
by the formula

Bε(`j) 3 b , f(b) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]
where ηjk ∈ Zq is the value of the cocycle η on the
edge {lj , lk} ∈ R2ε(L).

If X ⊂
⋃
B, then f(X) = Y ⊂ Lnq is the represen-

tation of the data—in a potentially high dimensional
Lens space—corresponding to the cocycle η. The second
contribution of this paper is a dimensionality reduction
procedure in Lnq akin to Principal Component Analysis,
called LPCA. This allows us to produce from Y , a fam-
ily of point clouds Pk(Y ) ⊂ Lkq , 1 ≤ k ≤ n, Pn(Y ) = Y ,
minimizing an appropriate notion of distortion. These
are the Lens coordinates of X induced by the cocycle η.

This work, combined with [10, 12], should be seen as
one of the final steps in completing the program of using
the classifying space BG, for G abelian and finitely gen-
erated, to produce coordinates for data with nontrivial
underlying 1st cohomology. Indeed, this follows from
the fact that B(G ⊕ G′) ' BG × BG′, and that if G
is finitely generated and abelian, then it is ismorphic to
Zn⊕Zn1⊕· · ·⊕Znr for unique integers n, n1, . . . , nr ≥ 0.
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2 Preliminaries

2.1 Persistent Cohomology

A family K = {Kα}α∈R of simplicial complexes is called
a filtration if Kα ⊂ Kα′ whenever α ≤ α′. If F is
a field and i ≥ 0 is an integer, then the direct sum
PHi(K;F) :=

⊕
α
Hi(Kα;F) of cohomology groups is

called the i-th dimensional F-persistent cohomol-
ogy of K. A theorem of Crawley-Boevey [5] contends
that if Hi(Kα;F) is finite dimensional for each α, then
the isomorphism type of PHi(K;F)—as a persistence
module—is uniquely determined by a multiset (i.e., a
set whose elements may appear with repetitions)

dgm ⊂ {(α, α′) ∈ [−∞,∞]2 : α ≤ α′}

called the persistence diagram of PHi(K;F). Pairs
(α, α′) with large persistence α′ − α, are indicative of
stable topological features throughout the filtration K.

Persistent cohomology is used in TDA to quantify the
topology underlying a data set. There are two widely
used filtrations associated to a subset X of a metric
space (M,d), the Rips filtration R(X) = {Rα(X)}α
and the Čech filtration Č(X) = {Čα(X)}α. Specifi-
cally, Rα(X) is the set of nonempty finite subsets of X
with diameter less than α, and Čα(X) is the nerve of
the collection Bα of open balls Bα(x) ⊂M of radius α,
centered at x ∈ X. In other words, Čα(X) = N (Bα).
Generally R(X) is more easily computable, but Č(X)
has better theoretical properties (e.g., the Nerve theo-
rem [6, 4G.3]). Their relative weaknesses are amelio-
rated by noticing that

Rα(X) ⊂ N (Bα) ⊂ R2α(X)

for all α, and using both filtrations in analyses: Rips for
computations, and Čech for theoretical inference.

2.2 Lens Spaces

Let q ∈ N and let ζq ∈ C be a primary q-th root of
unity. Fix n ∈ N and let q1, . . . , qn ∈ N be relatively
prime to q. We define the Lens space Lnq (q1, . . . , qn)
as the quotient of S2n−1 ⊂ Cn by the Zq right action

[z1, . . . , zn] · g :=
[
z1ζ

q1g
q , . . . , znζ

qng
q

]
with simplified notation Lnq := Lnq (1, . . . , 1). Notice that
when q = 2 and q1 = · · · = qn = 1, then the right
action described above is the antipodal map of S2n−1,
and therefore Ln2 = RP2n−1. Similarly, the infinite Lens
space L∞q = L∞q (1, 1, . . .) is defined as the quotient of
the infinite unit sphere S∞ ⊂ C∞, by the action of Zq
induced by scalar-vector multiplication by powers of ζq.

2.2.1 A Fundamental domain for L2
q(1, p)

In what follows we describe a convenient model for both
L2
q(1, p) and a fundamental domain thereof. This model

will allow us to provide visualizations in Lens spaces
towards the end of the paper. Let D3 be the set of
points x ∈ R3 with ‖x‖ ≤ 1, and let D+ (D−) be the
upper (lower) hemisphere of ∂D3, including the equator.
Let rp/q : D+ −! D+ be counterclockwise rotation by
2πp/q radians around the z-axis, and let ρ : D+ −! D−
be the reflection ρ(x, y, z) = (x, y,−z). Then, L2

q(1, p)
is homeomorphic to D3/ ∼, where x ∼ y if and only if
x ∈ D+ and y = ρ ◦ rp/q(x).

2.3 Principal Bundles

Let B be a topological space with base point b0 ∈ B.
One of the most transparent methods for producing an
explicit bijection between Ȟ1(B; CZq

) and [B,L∞q ] is via
the theory of Principal bundles. We present a terse
introduction here, but direct the interested reader to [7]
for details. A continuous map π : P −! B is said to
be a fiber bundle with fiber F = π−1(b0) and total
space P , if π is surjective, and every b ∈ B has an
open neighborhood U ⊂ B as well as a homeomorphism
ρU : U × F −! π−1(U), so that π ◦ ρU (x, e) = x for
every (x, e) ∈ U × F .

Let (G,+) be an abelian topological group. A fiber
bundle π : P −! B is said to be a principal G-bundle
over B, if P comes equipped with a free right G-action
P ×G 3 (e, g) 7! e · g ∈ P which is transitive in π−1(b)
for every b ∈ B. Moreover, two principal G-bundles
π : P −! B and π′ : P ′ −! B are isomorphic, if there
exits a homeomorphism Φ : P −! P ′, with π′ ◦ Φ = π
and so that Φ(e·g) = Φ(e)·g for all (e, g) ∈ P×G. Given
an open cover U = {Uj}j∈J of B, a Čech cocycle

η = {ηjk} ∈ Ž1(U ; CG)

is a collection of continuous maps ηjk : Uj∩Uk −! G so
that ηjk(b) + ηkl(b) = ηjl(b) for every b ∈ Uj ∩ Uk ∩ Ul.
Given such a cocycle, one can construct a principal G-
bundle over B with total space

Pη =

⋃
j∈J

Uj × {j} ×G

 / ∼

where (b, j, g) ∼ (b, k, g + ηjk(b)) for every b ∈ Uj ∩ Uk,
and π : Pη −! B sends the class of (b, j, g) to b ∈ B.

Theorem 1 If PrinG(B) denotes the set of isomor-
phism classes of principal G-bundles over B, then

Ȟ1(B; CG) −! PrinG(B)
[η] 7! [Pη]

is a bijection.
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Proof. See 2.4 and 2.5 in [10] �

Now, let us see describe the relation between principal
G-bundles over B, and maps from B to the classifying
space BG. Indeed, let  : EG −! BG = EG/G be
the quotient map. Given h : B −! BG continuous,
the pullback h∗EG is the principal G-bundle over B
with total space {(b, e) ∈ B × EG : h(b) = (e)}, and
projection map (b, e) 7! b. Moreover,

Theorem 2 Let [B,BG] denote the set of homotopy
class of maps from B to the classifying space BG. Then,
the function

[B,BG] −! PrinG(B)
[h] 7! [h∗EG]

is a bijection.

Proof. See [7], Chapter 4: Theorems 12.2 and 12.4. �

In summary, given a principal G-bundle π : P −! B,
or its corresponding Čech cocycle η, there exists a con-
tinuous map h : B −! BG so that h∗EG is isomorphic
to (π, P ), and the choice of h is unique up to homo-
topy. Any such choice is called a classifying map for
π : P −! B.

3 Main Theorem: Explicit Classifying Maps for L∞q

The goal of this section is to show how one can go from
a singular cocycle η ∈ Z1(N (U);Zq) to an explicit map
f :
⋃
U −! L∞q . All proofs are included in the Apendix.

Let J = {1, . . . , n}, let U = {Uj}j∈J be an open cover
for B, and let {ϕj}j∈J be a partition of unity dominated
by U . If η = Z1(N (U);Zq) and ζq is a primitive q-th
root of unity, let fj : Uj × {j} × Zq −! S2n−1 ⊂ Cn be

fj(b, j, g) =
[√

ϕ1(b)ζ(g+ηj1)q , . . . ,
√
ϕn(b)ζ(g+ηjn)q

]
If b ∈ Uj ∩ Uk, then fj(b, j, g) = fk(b, k, g + ηjk) and

we get an induced map Φ : Pη −! S2n−1 ⊂ S∞ taking
the class of (b, j, g) in the quotient Pη to fj(b, j, g).

Proposition 3 Φ is well defined and Zq-equivariant.

Let p : S2n−1 −! Lnq be the quiotient map. Since
Φ : Pη −! S2n−1 ⊂ S∞ is Zq-equivariant, it induces a
map f : B −! Lnq ⊂ L∞q such that p ◦ Φ = f ◦ π. By
construction of π : Pη −! B, f(π([b, j, g])) = f(b) for
any g ∈ Zq. In particular for 0 ∈ Zq

Uj 3 b , f(b) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]
(1)

Remark 4 The notation [a1 : · · · : an] corresponds to
homogeneous coordinates in S2n−1/Zq. In other words,
[a1 : · · · : an] = {[a1 · α, . . . , an · α] ∈ S2n−1 : α ∈ Zq}.

Theorem 5 The map f classifies the Zq-principal bun-
dle Pη associated to the cocycle η ∈ Z1(N (U);Zq).

4 Lens coordinates for data

Let (M,d) be a metric space and let L ⊂M be a finite
subset. We will use the following notation from now on:
Bε(l) = {y ∈ M : d(y, l) < ε}, Bε = {Bε(l)}l∈L, and
Lε =

⋃
Bε. Given a data set X ⊂ M , our goal will

be to choose L ⊂ X, a suitable ε such that X ⊂ Lε,
and a cocycle η ∈ Z1(N (Bε);Zq). Equation (1) yields
a map f : Lε ! L∞q defined for every point in X, but
constructed from a much smaller subset of landmarks.
Next we describe the details of this construction.

4.1 Landmark selection

We select the landmark set L ⊂ X either at random
or through maxmin sampling. The latter proceeds in-
ductively as follows: Fix n ≤ |X|, and let l1 ∈ X be
chosen at random. Given l1, . . . , lj ∈ X for j < n, we
let lj+1 = argmax

x∈X
min{d(x, l1), . . . , d(x, lj)}.

4.2 A Partition of Unity subordinated to Bε
Defining f requires a partition of unity subordinated to
Bε. Since Bε is an open cover composed of metric balls,
then we can provide an explicit construction. Indeed,
for r ∈ R let |r|+ := max{r, 0}, then

ϕl(x) := |ε− d(x, l)|+
/∑
l′∈L

|ε− d(x, l′)|+ (2)

is a partition of unity subordinated to Bε.

4.3 From Rips to Čech to Rips

As we alluded to in the introduction, a persistent coho-
mology calculation is an appropriate vehicle to select a
scale ε and a candidate cocycle η. That said, determin-
ing η ∈ Z1(N (Bε),Zq) would require computing N (Bε)
for all ε, which in general is an expensive procedure.
Instead we will use the homomorphisms

H1(R2ε(L))
i∗ //

ι

22H1(N (Bε)) // H1(Rε(L))

induced by the appropriate inclusions. Indeed, let
η̃ ∈ Z1(R2ε(L);Zq) be such that [η̃] 6∈ ker(ι). This is
where we use the persistent cohomology of R(L). Since
the previous diagram commutes, then [η̃] 6∈ ker(i∗), so
i∗([η̃]) 6= 0 in H1(N (Bε);Zq). We will let [η] = i∗([η̃])
be the class that we use in Theorem 5. However,

Proposition 6 If b ∈ Bε(lj) and 1 ≤ k ≤ n, then√
ϕk(b)ζ

ηjk
q =

√
ϕk(b)ζ

η̃jk
q .

That is, we can compute Lens coordinates using only the
Rips filtration on the landmark set.
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5 Dimensionality Reduction in Lnq via Principal Lens
Components

Equation (1) gives an explicit formula for the classify-
ing map f : B −! Lnq . By construction, the dimension
of Lnq depends on the number n of landmarks selected,
which in general can be large. The main goal of this
section is to construct a dimensionality reduction pro-
cedure in Lnq to address this shortcoming. To this end,
we define the distance dL : Lnq × Lnq −! [0,∞) as

dL([x], [y]) := dH(x · Zq , y · Zq) (3)

where dH id the Hausdorff distance for subsets of S2n−1.
We will now describe a notion of projection in Lnq

onto lower-dimensional Lens spaces. Indeed, let u ∈
S2n−1. Since ζkqw ∈ spanC(u)⊥ for any k ∈ Zq and

w ∈ spanC(u)⊥, then

Ln−1q (u) := (spanC(u)⊥ ∩ S2n−1)/Zq

is isometric to Ln−1q . Let P⊥u (v) = v − 〈v, u〉Cu for
v ∈ Cn, and if v /∈ spanC(u), then we let

Pu([v]) :=
[
P⊥u (v)

/
‖P⊥u (v)‖

]
∈ Ln−1q (u)

It readily follows that Pu is well defined, and that

Lemma 7 For u ∈ S2n−1 and v /∈ spanC(u), we have

dL([v],Pu([v])) = d
(
v , P⊥u (v)

/
‖P⊥u (v)‖

)
where d is the distance on S2n−1. Furthermore, Pu([v])
is the point in Ln−1q (u) closest to [v] with respect to dL.

This last result suggests that a PCA-like approach
is possible for dimensionality reduction in Lens spaces.
Specifically, for Y = {[y1], . . . , [yN ]} ⊂ Lnq , the goal is
to find u ∈ S2n−1 such that Ln−1q (u) is the best (n−1)-
Lens space approximation to Y , then project Y onto
Ln−1q (u) using Pu, and repeat the process iteratively
reducing the dimension by 1 each time. At each stage,
the appropriate constrained optimization problem is

u∗ = argmin
u∈Cn,‖u‖=1

N∑
j=1

dL([yj ],Pu([yi]))
2

= argmin
u∈Cn,‖u‖=1

N∑
j=1

(π
2
− arccos(|〈yi, u〉|)

)2
which can be linearized using the Taylor series expan-
sion of arccos(θ) around 0. Indeed, |π2 −arccos(θ)| ≈ |θ|
to third order, and thus

u∗ ≈ argmin
u∈Cn,‖u‖=1

N∑
j=1

|〈yi, u〉|2.

This approximation is a linear least square problem
whose solution is given by the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix

Cov (y1, . . . , yN ) =

[
| |
y1 ··· yN
| |

] [− y1 −
...

− yN −

]
.

Moreover, for any α1, . . . , αN ∈ S1 ⊂ C we have that
Cov (α1y1, . . . , αNyN ) = Cov (y1, . . . , yN ), so Cov(Y ) is
well defined for Y ⊂ Lnq .

5.1 Inductive construction of LPCA

Let vn = LastLensComp(Y ) be the eigenvector of
Cov(Y ) corresponding to the smallest eigenvalue. As-
sume that we have constructed vk+1, . . . , vn ∈ S2n−1

for 1 < k < n, and let {u1, . . . , uk} be an orthonormal
basis for spanC(vk+1, . . . , vn)⊥. Let Uk ∈ Cn×k be the

matrix with columns u1, . . . , uk, and let U†k be its con-
jugate transpose. We define the k-th Lens Principal
component of Y as the vector

vk := Uk · LastLensComp

(
U†ky1

‖U†ky1‖
, . . . ,

U†kyN

‖U†kyN‖

)
This inductive procedure yields a collection

[v2], . . . , [vn] ∈ Lnq , and we let v1 ∈ S2n−1 be

such that spanC{v1} = spanC{v2, . . . , vn}⊥. Finally

LPCA(Y ) := {[v1], . . . , [vn]}

are the Lens Principal Components of Y . Let Vk ∈
Cn×k be the n-by-k matrix with columns v1, . . . , vk, and

let Pk(Y ) ⊂ Lkq be the set of classes
[
V †k yj

‖V †k yj‖

]
, 1 ≤ j ≤

N . The point clouds Pk(Y ), k = 1, . . . , n, are the Lens
Principal Coordinates of Y .

5.2 Choosing a target dimension.

The variance recovered by the first k Lens Principal
Components [v1], . . . , [vk] ∈ Lnq is defined as

vark(Y ) :=
1

N

k∑
l=2

N∑
j=1

dL

([
V †l yj

‖V †l yj‖

]
, Ll−1q (el−1)

)2

where Vl is the n-by-l matrix with columns v1, . . . , vl,
1 < l ≤ k, and el−1 ∈ Cl is the vector [0, . . . , 0, 1, 0].

Therefore, the percentage of cumulative variance
p.var(k) := vark(Y )

/
varn(Y ), can be interpreted as the

portion of total variance of Y along LPCA(Y ), explained
by the first k components.

Thus we can select the target dimension as the small-
est k for which p.vark(Y ) is greater than a predeter-
mined value. In other words, we select the dimension
that recovers a significant portion of the total vari-
ance. Another possible guideline to choose the tar-
get dimension is as the minimum value of k for which
p.var(k)− p.var(k + 1) < γ for a small γ > 0.
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5.3 Independence of the cocycle representative.

Let η ∈ Z1(N (Bε);Zq) be such that [η] 6= 0 in
H1(N (Bε);Zq), and let η′ = η + δ0(α) with α ∈
C0(N (Bε);Zq). If b ∈ Uj , then

fη′(b) = [
√
φ1(b)ζηj1+α1

q : · · · :
√
φn(b)ζηjn+αn

q ]

If Zα is the square diagonal matrix with entries
ζα1
q , ζα2

q , . . . , ζαn
q , then fη′(b) = Zα · f(b). Moreover,

after taking classes in Lnq , this implies that fη′(X) =

Zα · f(X). Since Cov(Zα · f(X)) = ZαCov(f(X))Z†α
and Zα is orthonormal, then if v is an eigenvector of
Cov(f(X)) with eigenvalue σ, we also have that Zαv is
an eigenvector of Cov(Zα · f(X)) with the same eigen-
value. Therefore

LastLensComp(fη′(X)) = ZαLastLensComp(f(X)).

Since each component in LPCA is obtained in
the same manner, we have that LPCA(fη′(X)) =
ZαLPCA(f(X)). Thus, the lens coordinates from two co-
homologous cocycles η and η + δ0(α) (i.e., representing
the same cohomology class) only differ by the isometry
of Lnq induced by the linear map Zα.

6 Examples

6.1 The Circle S1

Let S1 ⊂ C be the unit circle, and let X a random
sample around S1, with 10, 000 points and Gaussian
noise in the normal direction. L ⊂ X is a landmark set
with 10 points obtained as described in Section 4.1.

Figure 1: Left: Sample X, in black landmark set L ⊂
X. Right: PHi(R(L);Z3) for i = 0, 1, 2.

Let a be the cohomological death of the most persis-
tent class PH1(R(L);Zq). For ε := a + 10−5 and η =
i∗(η′) ∈ Z1(N (Bε);Zq) we define the map f : Bε ! L10

3

as in Equation (1).
After computing LPCA for f(X) ⊂ L10

3 and the per-
centage of cumulative variance p.varY (k) we obtain the
row in Table 1 with label S1 (see Figure 7 for more
details). We see that dimension 1 recovers ∼ 60% of
the variance. Moreover, Figure 2 shows P2(f(X)) ⊂ L2

3

Dim. (n) 1 2 3 4 5
S1 0.62 0.75 0.81 0.86 0.89
M(Z3, 1) 0.56 0.7 0.76 0.8 0.83
L2
3 0.47 0.62 0.67 0.71 0.73

Table 1: Percentage of recovered variance in Ln3 .

Figure 2: Visualization P2(f(X)) ⊂ L2
3.

in the fundamental domain described in Section 2.2.1
trough the map in Equation (4).

One key aspect of LC (Lens coordinates) is that it
is designed to highlight the cohomology class η used on
Equation (1). This is easily observed in this example;
we selected the most persistent class in PH1(R(L);Z3)
and as a consequence in Figure 2 we see how this class
is preserved while all the information in the normal di-
rection is lost in the process.

6.2 The Moore space M(Z3, 1).

Let G be an abelian group and n ∈ N. The Moore space
M(G,n) is a CW-complex such that Hn(M(G,n),Z) =
G and H̃i(M(G,n),Z) = 0 for all i 6= n. A well known
construction for M(Z3, 1) can be found in [6]. Equa-
tion (5) defines a metric on M(Z3, 1).

Figure 3: Left: X ⊂M(Z3, 1) with landmarks in black.
Right: PHi(R(L);Z3) for i = 0, 1.

Figure 3, on the left, shows a sample X ⊂ M(Z3, 1)
with |X| = 15, 000 and 70 landmarks. The landmarks
were obtained by minmax sampling after feeding the
algorithm with an initial set of 10 point on the boundary
on the disc. Figure 4 shows the persistent cohomology
of R(L) with coefficients in Z2 and Z3 side-by-side.
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Figure 4: PHi(R(L);F) for i = 0, 1 and F = Z2,Z3.

We compute f : M(Z3, 1) −! L70
3 analogously to the

previous example and obtain a point cloud f(X) ⊂ L70
3 .

The profile of recovered variance is shown in Table 1.
Dimension 2 provides a low dimensional representation
of f(X) inside L2

3 with 70% of recovered variance (Fig-
ure 8).

Figure 5: Visualization of the resulting P2(f(X)) ⊂ L2
3.

Since f classifies the principal Z3-bundle Pη over
M(Z3, 1), then f must be homotopic to the inclusion
of M(Zq, 1) in L∞q . Figure 5 shows X ⊂ M(Z3, 1)
mapped by f in L2

3. Notice the identifications on X
are handled by the identification on S1 × {0} ⊂ D3

from the fundamental domain on Section 2.2.1. See
https://youtu.be/_Ic730_xFkw for a more complete
visualization.

6.3 The Lens space L2
3 = S3/Z3.

We use the metric defined in Equation (3) on L2
3 and

randomly sample 15, 000 points to create X ⊂ L2
3. Fig-

ure 6(left) shows the sample set using the fundamental
domain from section 2.2.1.

Figure 6: Left: X ⊂ L2
3. Right: Lens coordinates.

We can use PHi(R(X);Z2) and PHi(R(X);Z3) to
verify that the sampled metric space has the expected
topological features. Figure 10 contains the correspond-
ing persistent diagrams.

Just as in the previous examples define f : L2
3 ! L∞3

using the most persistent class in PH1(R(L);Z3). The
homotopy class of f must be the same as that of the
inclusion L2

3 ⊂ L∞3 , since f classifies the Z3-principal
bundle Pη. Thus we expect L2

3 to be preserved up to
homotopy under LPCA. Figure 6 offers a side and top
view of P2(f(X)) ⊂ L2

3. Here we clearly see how the
original data set X is transformed while preserving the
identifications on the boundary of the fundamental do-
main. Finally in Table 1 we show the variance profile
for the dimensionality reduction problem. We see that
for dimension 4 we have recovered more than 70% of the
total variance as seen in Table 1 and Figure 9.

6.4 Isomap dimensionality reduction

We conclude this section by providing evidence that
Lens coordinates (LC) preserve topological features
when compared to other dimensionality reduction al-
gorithms. For this purpose we use Isomap ([13]) as our
point of comparison.

The Isomap algorithm consist of 3 main steps. The
first step determines neighborhoods of each point us-
ing k-th nearest neighbors. The second step estimates
the geodesic distances between all pairs of points using
shortest distance path, and the final step applies classi-
cal MDS to the matrix of graph distances.

Let dgm be a persistent diagram. Define per1 to be
the largest persistence of an element in dgm, and let per2
be the second largest persistence of an element dgm.

per1/per2 Z2 Z3

Isomap 1.0105 1.0105
M(Zq, 1)

LC 1.7171 3.6789
Isomap 1.0080 1.0080

L2
3 LC 1.1592 2.8072

Table 2: In green we highlight the fraction that indicates
which method better identifies the topological features.

For both M(Z3, 1) and L2
3 it is clear that the Isomap

projection fails to preserve the difference between the
cohomology groups with coefficients in Z2 and Z3. On
the other hand the LC projections maintains this differ-
ence in both examples (see Table 4 for more details).
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Appendix

Proof. [of Proposition 3] Take [b, j, g] ∈ Pη and con-
sider a different representative of the class. Namely,
an element (b, k, g + ηjk) such that b ∈ Uj ∩ Uk.
By definition of Φ, we have Φ([b, j, g]) = fj(b, j, g)
and Φ([b, k, g + ηjk]) = fk(b, k, g + ηjk). And since
fj(b, j, g) = fk(b, k, g + ηjk), we have that

Φ([b, j, g]) = Φ([b, k, g + ηjk]),

which shows that Φ is well defined.
To see that Φ is Zq-equivariant, take m ∈ Zq for any

m = 0, . . . , q − 1 and compute

Φ([b, j, g]) ·m

=
[√

ϕ1(b)ζ(g+m+ηj1)
q , . . . ,

√
ϕn(b)ζ(g+m+ηjn)

q

]
= fj(b, j, g +m) = Φ([b, j, g +m])

= Φ([b, j, g] ·m).

�

Proof. [of Theorem 5] First we need to see that f is
well defined. Let b ∈ Uj ∩ Uk, therefore

p(Φ([b, j, 0])) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]
= p(Φ([b, k, 0)).

This shows that f(b) is independent of the open set
containing b.

Hence (Φ, f) : (Pη, π,B) ! (S2n−1, π, Lnq ) is a mor-
phism of principal Zq-bundles, and by [[7], Chapter 4:
Theorem 4.2] we conclude that Pη and f∗(S2n−1) are
isomorphic principal Zq-bundles over B. �

Proof. [of Proposition 6] First of all, R2ε(L)(0) =
N (Bε)(0) = L. If b 6∈ Bε(lk), then ϕk(b) = 0 and
therefore the equality holds. If on the other hand
b ∈ Bε(lk)∩Bε(lj), then {j, k} ∈ N (Bε)(1) ⊂ R2ε(L)(1).
In which case, by definition of i∗, we have η̃jk = ηjk. �

Proposition 8 Let [x], [y] ∈ Lnq , then

dL([x], [y]) = d(x, y · Zq) = min
g∈Zq

d(x, y · g).

Proof. For x, y ∈ Cn let 〈x, y〉R := real(〈x, y〉C). By
definition of Hausdorff distance, we have that

dL([x], [y]) = max

{
max
g∈Zq

min
h∈Zq

arccos(〈x · g, y · h〉R) ,

max
h∈Zq

min
g∈Zq

arccos(〈x · g, y · h〉R)

}
.

Notice that

〈x · g, y · h〉R = real
(〈
ζgq x, ζ

h
q y
〉
C

)
= real

(〈
x, ζ(h−g)q y

〉
C

)
= 〈x, y · (h− g)〉R

http://dx.doi.org/10.1007/s11263-007-0056-x
http://dx.doi.org/10.1007/s11263-007-0056-x
https://books.google.com/books?id=DPr_BSH89cAC
https://books.google.com/books?id=DPr_BSH89cAC
https://arxiv.org/abs/1809.03624
https://arxiv.org/abs/1809.03624
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And since Zq is Abelian, then

max
h∈Zq

min
g∈Zq

arccos(〈x · g, y · h〉R)

= max
h∈Zq

min
g∈Zq

arccos(〈x · (g − h), y〉R)

= max
h∈Zq

min
g∈Zq

arccos(〈x · (−h), y · (−g)〉R)

= max
h′∈Zq

min
g′∈Zq

arccos(〈x · h′, y · g′〉R).

Thus

dL([x], [y]) = max
g∈Zq

min
h∈Zq

arccos(〈x · g, y · h〉R).

Furthermore dL([x], [y]) = max
g∈Zq

d(x · g, y · Zq) =

max
g∈Zq

d(x, y · (−g)Zq). Since y ·
(
(−g)Zq

)
= y · Zq for

any g ∈ Zq, we obtain dL([x], [y]) = max
g∈Zq

d(x, y · Zq) =

d(x, y · Zq) = min
h∈Zq

d(x, y · h). �

Proof. [of Lemma 7] From Theorem 8 we know that

dL([v], P⊥u ([v])) = min
g∈Zq

d(v, P⊥u ([v]) · g)

= min
g∈Zq

d

(
v,

P⊥u (v)

‖P⊥u (v)‖
· g
)
.

Let g∗ := argmin
g∈Zq

d
(
v,

P⊥u (v)
‖P⊥u (v)‖ · g

)
, so we have

dL([v], P⊥u ([v])) = arccos

(〈
v,

P⊥u (v)

‖P⊥u (v)‖
· g∗
〉

R

)
.

Notice that the argument of the arccos can be simpli-
fied as follows〈
v,

P⊥u (v)

‖P⊥u (v)‖
· g∗
〉

R
=

〈
〈v, u〉Cu+ P⊥u (v),

P⊥u (v)

‖P⊥u (v)‖
· g∗
〉

R

=

〈
〈v, u〉Cu,

P⊥u (v)

‖P⊥u (v)‖
· g∗
〉

R

+

〈
P⊥u (v),

P⊥u (v)

‖P⊥u (v)‖
· g∗
〉

R
.

since u and P⊥u (v) are orthogonal in Cn then they are
also orthogonal in R2n, making the then the firs sum-
mand on the right hand side equal to zero. Additionally
since arccos as a real valued function is monotonically
decreasing we have

g∗ = argmax
g∈Zq

1

‖P⊥u (v)‖
〈
P⊥u (v), P⊥u (v) · g

〉
R .

Using the fact that the action of Zq is an isometry
(and therefore an operator of norm one) as well as the

Cauchy-Schwartz inequality we obtain〈
P⊥u (v), P⊥u (v) · g

〉
R

‖P⊥u (v)‖
≤
∣∣∣∣ 1

‖P⊥u (v)‖
〈
P⊥u (v), P⊥u (v) · g

〉
R

∣∣∣∣
≤ 1

‖P⊥u (v)‖
‖P⊥u (v)‖‖P⊥u (v) · g‖

= ‖P⊥u (v) · g‖ = ‖P⊥u (v)‖.

And the equality holds whenever g = e ∈ Zq, so we
must have g∗ = e.

Let [w] ∈ Ln−1q (u), so w ∈ span⊥C (u) which implies
that for any h ∈ Zq

〈u,w·h〉C =
∑
k

uk(ζhq wk) = ζ−hq
∑
k

ukwk = ζ−hq 〈u,w〉 = 0.

In other words w · h ∈ span⊥C (u) for any h ∈ Zq.
Thus by the Cauchy-Schwartz inequality

〈v, w · h〉R = 〈〈v, u〉Cu+ P⊥u (v), w · h〉R = 〈P⊥u (v), w · h〉R
≤ |〈P⊥u (v), w · h〉R| ≤ ‖P⊥u (v)‖‖w · h‖
= ‖P⊥u (v)‖‖w‖ = ‖P⊥u (v)‖,

since the action of Zq is an isometry and w ∈ S2n−1.
Finally since arccos is decreasing

dL([v], P⊥u ([v])) = arccos(‖P⊥u (v)‖) ≤ arccos(〈v, w ·h〉R)

for all h ∈ Zq, thus dL([v], P⊥u ([v])) ≤ dL([v], [w]). �

Visualization map for L2
3. Given v1, . . . , vn ∈ S2n−1

representatives for the classes in LPCA(Y ). We want
to visualize P2(Y ) ⊂ L2

3 in the fundamental domain
described in Section 2.2.1. Let

P2(Y ) =
{[
〈yi, v1〉C, 〈yi, v2〉C

]
∈ S3 ⊂ C2 : [yi] ∈ Y

}
and define G : P2(Y ) −! S3 ⊂ C2 to be

G(z, w) :=

(
ζ−k3 z,

(
arg(w)− π

3

)√
1− |z|2

)
(4)

where arg(w) ∈
[
0, 2π3

)
, and k an integer such that

arg(z) = k
2π

3
+ θ,

where θ is the remainder after division by 2π
3 .

Metric on the Moore space M(Z3, 1). For
x, y ∈ C with |x|, |y| ≤ 1, we let

d(x, y) =


√
|〈x, y〉R| if |x| , |w| < 1

min
ζ∈Z3

√
|〈x, ζy〉R| if |x| = 1 or |w| = 1

min
ζ∈Z3

arccos(|〈x, ζy〉R|) if |x| = 1 and |w| = 1

.

(5)
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Profiles of recovered variance.

Recovered variance of LPCA on S1.

Figure 7: Profile of recovered variance on S1.

Recovered variance of LPCA on M(Z3, 1).

Figure 8: Profile of recovered variance on M(Z3, 1).

Recovered variance of LPCA on L2
3.

Figure 9: Profile of recovered variance on L2
3.

Figure 10: PHi(R(L);Z3) for i = 0, 1. PHi(R(L);Z2)
for i = 0, 1.



31st Canadian Conference on Computational Geometry, 2019

Coefficients Z2 Coefficients Z3

Isomap

LC

Table 3: Persistent homology of the Isomap vs. LPCA for M(Z3, 1) into a 4 dimensional space.

Coefficients Z2 Coefficients Z3

Isomap

LC

Table 4: Persistent homology of the Isomap vs. LPCA for L2
3 into a 4 dimensional space.
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