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Coordinatizing Data With Lens Spaces and Persistent Cohomology

Luis Polanco*

Abstract

We introduce here a framework to construct coordi-
nates in finite Lens spaces for data with nontrivial 1-
dimensional Z, persistent cohomology, for ¢ > 2 prime.
Said coordinates are defined on an open neighborhood
of the data, yet constructed with only a small subset
of landmarks. We also introduce a dimensionality re-
duction scheme in $?"~1/Z, (Lens-PCA: LPCA), and
demonstrate the efficacy of the pipeline Z,-persistent
cohomology = 52"~ /7, coordinates = LPCA, for non-
linear (topological) dimensionality reduction.

1 Introduction

One of the main questions in Topological Data Analysis
(TDA) is how to use topological signatures like persis-
tent (co)homology [11] to infer spaces parametrizing a
given data set [3, 1, 4]. This is relevant in nonlinear
dimensionality reduction since the presence of nontriv-
ial topology—e.g., loops, voids, non-orientability, tor-
sion, etc—can prevent accurate descriptions with low-
dimensional Euclidean coordinates.

Here we seek to address this problem motivated by
two facts. The first: If G is a topological abelian group,
then one can associate to it a contractible space, EG,
equipped with a free right G-action. For instance, if
G = Z, then R is a model for EZ, with right Z-
action R x Z > (r,n) — r +n € R. The quotient
BG := EG/G is called the classifying space of G [8]. In
particular BZ ~ S', BZ, ~ RP*, BS! ~ CP* and
BZy ~ 8% /Z4; here ~ denotes homotopy equivalence.
The second fact: If B is a topological space and % is
the sheaf over B (defined in [9]) sending each U C B
open to the abelian group of continuous maps from U to
G, then H'(B; €¢)—the first Cech cohomology group of
B with coefficients in ¥¢—is in bijective correspondence
with [B, BG]—the set of homotopy classes of continu-
ous maps from B to the classifying space BG. This bi-
jection is a manifestation of the Brown representability
theorem [2], and implies, in so many words, that Cech
cohomology classes can be represented as coordinates
with values in a classifying space (like S* or S°/Z,).
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For point cloud data—i.e., for a finite subset X of
an ambient metric space (M,d)—one does not com-
pute Cech cohomology, but rather persistent cohomol-
ogy. Specifically, the persistent cohomology of the
Rips filtration on the data set X (or a subset of land-
marks L). The first main result of this paper contends
that steps one through three below mimic the bijection
HY(B;%y,) = [B,S*®/Z,] for B C M an open neigh-
borhood of X:

1. Let (M, d) be a metric space and let L C X C M
be finite. X is the data and L is a set of landmarks.

2. For a prime ¢ > 2 compute PH'(R(L);Z,); the
1-dim Zg-persistent cohomology of the Rips filtra-
tion on L. If the corresponding persistence diagram
dgm(L) has an element (a,b) so that 2a < b, then
let @ < e < b/2 and choose a representative cocy-
cle n € ZY(Ra.(L); Z,) whose cohomology class has
(a,b) as birth-death pair.

3. Let B¢(l) be the open ball in M of radius e centered
atl € L ={ly,...,1l,}, and let ¢ = {¢;}ic, be a
partition of unity subordinated to B = {Bc() }ieL-
If {4 # 1 is a g-th root of unity, then the cocycle
7 yields a map f: B — Ly to the Lens space
Ly = S§2n=1) Zg4, given in homogeneous coordinates
by the formula

Bo(t;) 3, () = [Ver®)¢ - Vo)

where 7, € Z4 is the value of the cocycle 1 on the
edge {l;,1} € Rac(L).

If X C UB, then f(X) =Y C L} is the represen-
tation of the data—in a potentially high dimensional
Lens space—corresponding to the cocycle . The second
contribution of this paper is a dimensionality reduction
procedure in Ly akin to Principal Component Analysis,
called LPCA. This allows us to produce from Y, a fam-
ily of point clouds P, (Y) C L’;, 1<k<n, P,(Y)=Y,
minimizing an appropriate notion of distortion. These
are the Lens coordinates of X induced by the cocycle 7.

This work, combined with [10, 12], should be seen as
one of the final steps in completing the program of using
the classifying space BG, for GG abelian and finitely gen-
erated, to produce coordinates for data with nontrivial
underlying 1%* cohomology. Indeed, this follows from
the fact that B(G & G') ~ BG x BG’, and that if G
is finitely generated and abelian, then it is ismorphic to
2" B Ly, ®- - -D®ZLy, for unique integers n,ny,...,n, > 0.
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2 Preliminaries

2.1 Persistent Cohomology

A family K = {K, }aer of simplicial complexes is called
a filtration if K, C K, whenever a < o/. If F is
a field and ¢ > 0 is an integer, then the direct sum
PHY(K;F) := @ H'(K,;F) of cohomology groups is

called the i-th O(éiimensional F-persistent cohomol-
ogy of K. A theorem of Crawley-Boevey [5] contends
that if H'(K,;F) is finite dimensional for each a, then
the isomorphism type of PH!(K;F)—as a persistence
module—is uniquely determined by a multiset (i.e., a
set whose elements may appear with repetitions)

dgm C {(a,a’) € [~00,0)? : @ < o'}

called the persistence diagram of PH(K;F). Pairs
(a, @) with large persistence o' — «, are indicative of
stable topological features throughout the filtration /.

Persistent cohomology is used in TDA to quantify the
topology underlying a data set. There are two widely
used filtrations associated to a subset X of a metric
space (M,d), the Rips filtration R(X) = {Ro(X)}a
and the Cech filtration C(X) = {Cy(X)}s. Specifi-
cally, R, (X) is the set of nonempty finite subsets of X
with diameter less than a, and C,(X) is the nerve of
the collection B, of open balls By (x) C M of radius «,
centered at € X. In other words, Cyo(X) = N (B,).
Generally R(X) is more easily computable, but C(X)
has better theoretical properties (e.g., the Nerve theo-
rem [6, 4G.3]). Their relative weaknesses are amelio-
rated by noticing that

R (X) C N(B,) C Ron(X)

for all a, and using both filtrations in analyses: Rips for
computations, and Cech for theoretical inference.

2.2 Lens Spaces

Let ¢ € N and let {; € C be a primary g-th root of
unity. Fix n € N and let ¢1,...,¢, € N be relatively
prime to g. We define the Lens space L} (q1,---,qn)
as the quotient of S?"~! C C™ by the Z, right action

[Zl,...,Zn] g = [Zlcglga"'azn gng]

with simplified notation L := Ly(1,...,1). Notice that
when ¢ = 2 and ¢ = -+ = g, = 1, then the right
action described above is the antipodal map of S2"~1,
and therefore L3 = RP?"~!. Similarly, the infinite Lens
space Lg° = L;O(l, 1,...) is defined as the quotient of
the infinite unit sphere S°° C C*°, by the action of Z,
induced by scalar-vector multiplication by powers of (.

2.2.1 A Fundamental domain for L2(1,p)

In what follows we describe a convenient model for both
LZ(1,p) and a fundamental domain thereof. This model
will allow us to provide visualizations in Lens spaces
towards the end of the paper. Let D3 be the set of
points x € R? with [|x|| < 1, and let D4 (D_) be the
upper (lower) hemisphere of D3, including the equator.
Let rp/q : Dy — Dy be counterclockwise rotation by
27p/q radians around the z-axis, and let p: Dy — D_
be the reflection p(z,y,2) = (2,y,—z). Then, LZ(1,p)
is homeomorphic to D3/ ~, where x ~ y if and only if
x€Dyandy = poryq(x).

2.3 Principal Bundles

Let B be a topological space with base point by € B.
One of the most transparent methods for producing an
explicit bijection between H'(B;%7,) and [B, LF]is via
the theory of Principal bundles. We present a terse
introduction here, but direct the interested reader to [7]
for details. A continuous map 7w : P — B is said to
be a fiber bundle with fiber FF = 771(by) and total
space P, if 7 is surjective, and every b € B has an
open neighborhood U C B as well as a homeomorphism
pu : Ux F — 7= Y(U), so that 7 o py(x,e) = x for
every (r,e) €e U x F.

Let (G,+) be an abelian topological group. A fiber
bundle 7 : P — B is said to be a principal G-bundle
over B, if P comes equipped with a free right G-action
P x G > (e,g)— e-g € P which is transitive in 7—*(b)
for every b € B. Moreover, two principal G-bundles
m: P — B and 7’ : P’ — B are isomorphic, if there
exits a homeomorphism ® : P — P/, with 7’/ o ® =7
and so that ®(e-g) = ®(e)-g for all (e,g) € PxG. Given
an open cover U = {U;};es of B, a Cech cocycle

n={nix} € 2" U;%c)

is a collection of continuous maps 7, : U;NU, — G so
that 7,5 (0) + nk(b) = n;1(b) for every b € U; N U, N U,
Given such a cocycle, one can construct a principal G-
bundle over B with total space

Py = UUjX{j}XG / ~

jeJg

where (b,7,9) ~ (b, k, g+ njr(b)) for every b € U; N Uy,
and 7 : P, — B sends the class of (b, j,g) to b € B.

Theorem 1 If Pring(B) denotes the set of isomor-
phism classes of principal G-bundles over B, then

HI(B;%G) — Pring(B)
] = [Py

s a bijection.
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Proof. See 2.4 and 2.5 in [10] O

Now, let us see describe the relation between principal
G-bundles over B, and maps from B to the classifying
space BG. Indeed, let 3 : EG — BG = EG/G be
the quotient map. Given h : B — BG continuous,
the pullback h*EG is the principal G-bundle over B
with total space {(b,e) € B x EG : h(b) = j(e)}, and
projection map (b, e) — b. Moreover,

Theorem 2 Let [B, BG| denote the set of homotopy
class of maps from B to the classifying space BG. Then,
the function

[B,BG] — Pring(B)
m o~ [hEG

s a bijection.
Proof. See [7], Chapter 4: Theorems 12.2 and 12.4. [

In summary, given a principal G-bundle 7 : P — B,
or its corresponding Cech cocycle 7, there exists a con-
tinuous map h : B — BG so that h* EG is isomorphic
to (m, P), and the choice of h is unique up to homo-
topy. Any such choice is called a classifying map for
m: P — B.

3 Main Theorem: Explicit Classifying Maps for L;°

The goal of this section is to show how one can go from
a singular cocycle n € Z'(N(U); Z,) to an explicit map
f:UU — L. Allproofs are included in the Apendix.
Let J ={1,...,n}, let Y = {U;}jecs be an open cover
for B, and let {¢;},cs be a partition of unity dominated
by U. If n = ZY(N(U);Z,) and (, is a primitive g-th
root of unity, let f; : U; x {j} x Zy — S*"~1 C C" be

£i(b,4,9) = [\“Pl (b)¢iotmn),. -,\/son(b)CégH””)}

If b € U; N Uy, then f;(b,4,9) = fr(b, k,g+ n,x) and
we get an induced map @ : P, — S*"~1 C S taking
the class of (b, j, g) in the quotient P, to f;(b, 7, g).

Proposition 3 ® is well defined and Z,-equivariant.

Let p : S2"~1 — Ly be the quiotient map. Since
d: P, — S C S"O is Zg-equivariant, it induces a
map f B — Ly C L such that po® = fomw. By
construction of 7 : P, — B, f(w([b,j,g])) = f(b) for
any g € Zq. In particular for 0 € Z,

Ut J0) = [V s Ve hlepe]

Remark 4 The notation [ay : -+ : ap] corresponds to
homogeneous coordinates in S*"~1/Z,. In other words,
[a1: 1a,) ={[a1-a,...,a,-a] € S*" 1 € Z,}.

Theorem 5 The map f classifies the Zq-principal bun-
dle P, associated to the cocycle n € Z'(N(U);Zy).

4 Lens coordinates for data

Let (M, d) be a metric space and let L C M be a finite
subset. We will use the following notation from now on:
B(l) ={y € M : d(y,l) < €}, B = {Be(l) }1er, and
L = |JB.. Given a data set X C M, our goal will
be to choose L C X, a suitable € such that X C L€,
and a cocycle n € Z'(N(B.);Z,). Equation (1) yields
amap f: L° — Lg° defined for every point in X, but
constructed from a much smaller subset of landmarks.
Next we describe the details of this construction.

4.1 Landmark selection

We select the landmark set L C X either at random
or through maxmin sampling. The latter proceeds in-
ductively as follows: Fix n < |X|, and let I; € X be
chosen at random. Given [y,...,l; € X for j < n, we

let ;11 = argmax min{d(x,l1),...,d(z,[;)}.
zeX

4.2 A Partition of Unity subordinated to 5.

Defining f requires a partition of unity subordinated to
Be. Since B, is an open cover composed of metric balls,
then we can provide an explicit construction. Indeed,
for 7 € R let |r|  := max{r,0}, then

ai@) = le—d(@,Dl, /D le—d@ ), (2)

l’'eL

is a partition of unity subordinated to B..

4.3 From Rips to Cech to Rips

As we alluded to in the introduction, a persistent coho-
mology calculation is an appropriate vehicle to select a
scale € and a candidate cocycle 1. That said, determin-
ing n € ZY(N(B.),Z,) would require computing N (B.)
for all €, which in general is an expensive procedure.
Instead we will use the homomorphisms

H (Ryo(L)) = H'(N(B.) —= H'(Re(L)

L

induced by the appropriate inclusions. Indeed, let
i1 € ZY(Rae(L);Zy) be such that [7] & ker(:). This is
where we use the persistent cohomology of R(L). Since
the previous diagram commutes, then [7] & ker(i*), so
(7)) # 0 in H(N(B.): Z,). We will let [n] = i*([i])
be the class that we use in Theorem 5. However,

Proposition 6 Ifb € B.(l;) and 1 < k < n, then

Veer®)G = V)6

That is, we can compute Lens coordinates using only the
Rips filtration on the landmark set.
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5 Dimensionality Reduction in L} via Principal Lens
Components

Equation (1) gives an explicit formula for the classify-
ing map f: B — Lg. By construction, the dimension
of Ly depends on the number n of landmarks selected,
which in general can be large. The main goal of this
section is to construct a dimensionality reduction pro-
cedure in Ly to address this shortcoming. To this end,
we define the distance dy, : Ly x Ly — [0,00) as

dp([el ) == du(x - Zq, y - Zy) (3)

where dy id the Hausdorff distance for subsets of S27~1.
We will now describe a notion of projection in Ly
onto lower-dimensional Lens spaces. Indeed, let u €
52n=1. Since (fw € spanc(u)* for any k € Zg and
w € spang(u)t, then
Ly~ (u) := (spang(u)™ N S*"71) /2,

is isometric to Ly~t. Let Pj(v) = v — (v,u)cu for
v € C", and if v ¢ spang(u), then we let

Pu(]) = [Py (v)/I1Py

It readily follows that P, is well defined, and that

@] € Lg™ (w)

Lemma 7 Foru € S?"~! and v ¢ spang(u), we have

dr([v], Pu([v])) = d (v, Py (v)/I|Py(v)])

where d is the distance on S*"~1. Furthermore, P, ([v])
is the point in L}~ (u) closest to [v] with respect to dy.

This last result suggests that a PCA-like approach
is possible for dimensionality reduction in Lens spaces.
Specifically, for Y = {[y1],...,[yn]} C Ly, the goal is
to find u € S?"~! such that L" L(u) is the best (n—1)-
Lens space approximation to Y, then project Y onto
Lg_l(u) using P,, and repeat the process iteratively
reducing the dimension by 1 each time. At each stage,
the appropriate constrained optimization problem is

N

u* = argmin ZdL yils Pullyi))?
ueCn ’Hu” 1] 1

— argmin 3" (% - arccon(fon )’

weCn,||ul|= 1-7 1

which can be linearized using the Taylor series expan-
sion of arccos(f) around 0. Indeed, |5 — arccos(6)| ~ [6]
to third order, and thus

u* ~ argmin E [{ys,u)
uw€eC,||ul|= 1

This approximation is a linear least square problem
whose solution is given by the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix

Cov (1, un) = [;L y'N} [_ j :] .

! | - YN

ay € ST C C we have that
,yn), so Cov(Y) is

Moreover, for any aq, ...,

Cov (Oélyl, . 7O(Ny]\[) = Cov (yh .
well defined for Y C Ly.

5.1 Inductive construction of LPCA

Let v, = LastLensComp(Y) be the eigenvector of
Cov(Y') corresponding to the smallest eigenvalue. As-
sume that we have constructed vgii,...,v, € S?"~!
for 1 < k <mn, and let {uy,...,ur} be an orthonormal
basis for spanc(vii1,...,v,)". Let Uy € C™*F be the
matrix with columns wuq, ..., ug, and let U]I be its con-
jugate transpose. We define the k-th Lens Principal
component of Y as the vector
Y IIyN >
ULyl

oAl
v = Uy - LastLensComp< ]fryl e
Uyl

This inductive procedure yields a collection
[va],...,[vn] € L7, and we let v; € S**7' be
such that spanc{v;} = spanc{va, ..., v, }+. Finally

LPCA(Y) := {[v1],.- ., [va]}

are the Lens Principal Components of Y. Let V}, €
C™** be the n-by-k matrix with columns v1, . .., vy, and

t
let P,(Y) C LZ be the set of classes [H‘%ZH}’ 1<5<

N. The point clouds Py(Y), k=1,...,
Principal Coordinates of Y.

n, are the Lens

5.2 Choosing a target dimension.

The variance recovered by the first k£ Lens Principal
Components [v1], ..., [vx] € Ly is defined as

varg(Y) : NZZ ( Ll 1(61 1))

=2 j=1
where V; is the n-by-I matrix with columns vq,..., v,
1 <1<k, and ¢_; € Clis the vector [0,...,0,1,0].

Therefore, the percentage of cumulative variance
pvar(k) := varg(Y) /var,(Y), can be interpreted as the
portion of total variance of Y along LPCA(Y'), explained
by the first £ components.

Thus we can select the target dimension as the small-
est k for which p.varg(Y') is greater than a predeter-
mined value. In other words, we select the dimension
that recovers a significant portion of the total vari-
ance. Another possible guideline to choose the tar-
get dimension is as the minimum value of k£ for which
p.var(k) — pvar(k + 1) < v for a small v > 0.

VTyj
IV gl
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5.3 Independence of the cocycle representative.

Let n € ZY(N(B.);Z,) be such that [n] # 0 in
HY(N(B.);Z,), and let ¥ = n + 6°a) with a €
CON(Be); Zy). If b € Uj, then

P (0) = Wor®)C e s /o b))

If Z, is the square diagonal matrix with entries
G2 Gy then fi/(b) = Z, - f(b). Moreover,
after taking classes in Ly, this implies that f,/(X) =
Zo - f(X). Since Cov(Z, - f(X)) = ZoCov(f(X))Z]
and Z, is orthonormal, then if v is an eigenvector of
Cov(f(X)) with eigenvalue o, we also have that Z,v is
an eigenvector of Cov(Z, - f(X)) with the same eigen-

value. Therefore
LastLensComp(f,/ (X)) = Z,LastLensComp(f(X)).

Since each component in LPCA is obtained in
the same manner, we have that LPCA(f, (X)) =
ZoLPCA(f(X)). Thus, the lens coordinates from two co-
homologous cocycles n and 1 + 6%(a) (i.e., representing
the same cohomology class) only differ by the isometry
of Ly induced by the linear map Z,.

6 Examples

6.1 The Circle S!

Let S* C C be the unit circle, and let X a random
sample around S', with 10,000 points and Gaussian
noise in the normal direction. L C X is a landmark set
with 10 points obtained as described in Section 4.1.

PHi(L; Z3)

Figure 1: Left: Sample X, in black landmark set L C
X. Right: PHY(R(L);Z3) for i = 0,1,2.

Let a be the cohomological death of the most persis-
tent class PH'(R(L);Z,). For € := a+107° and n =
i*(n') € ZY(N(Be); Zy) we define the map f : B, — Li°
as in Equation (1).

After computing LPCA for f(X) C L° and the per-
centage of cumulative variance p.vary (k) we obtain the
row in Table 1 with label S (see Figure 7 for more
details). We see that dimension 1 recovers ~ 60% of
the variance. Moreover, Figure 2 shows P(f(X)) C L3

Dim. (n) | 1 2 3 4 5

St 0.62 | 0.75 | 0.81 | 0.86 | 0.89
M(Z3,1) | 056 | 0.7 | 0.76 | 0.8 | 0.83
L2 0.47 | 0.62 | 0.67 | 0.71 | 0.73

Table 1: Percentage of recovered variance in Lf.

N

e
gpic ===
Figure 2: Visualization Pp(f(X)) C L2.

in the fundamental domain described in Section 2.2.1
trough the map in Equation (4).

One key aspect of LC (Lens coordinates) is that it
is designed to highlight the cohomology class 1 used on
Equation (1). This is easily observed in this example;
we selected the most persistent class in PHY(R(L);Z3)
and as a consequence in Figure 2 we see how this class
is preserved while all the information in the normal di-
rection is lost in the process.

6.2 The Moore space M(Zs,1).

Let G be an abelian group and n € N. The Moore space
M(G,n) is a CW-complex such that H,(M(G,n),Z) =
G and H;(M(G,n),Z) = 0 for all i # n. A well known
construction for M(Zs,1) can be found in [6]. Equa-
tion (5) defines a metric on M (Zs, 1).

PHIX, Z3)

1 e
[

-100 -0.75 -050 -025 000 025 050 075 100 00 01 02 03 04 05 06 07 08
Birth

Figure 3: Left: X C M(Z3, 1) with landmarks in black.
Right: PH!(R(L);Zs3) for i =0, 1.

Figure 3, on the left, shows a sample X C M(Zs,1)
with |X| = 15,000 and 70 landmarks. The landmarks
were obtained by minmax sampling after feeding the
algorithm with an initial set of 10 point on the boundary
on the disc. Figure 4 shows the persistent cohomology
of R(L) with coefficients in Zy and Zg side-by-side.
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PHY(L,Z3) PH(L,Z3)

00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08
Bith Bith

Figure 4: PH'(R(L);F) for i = 0,1 and F = Zy, Zs3.

We compute f : M(Z3,1) — L% analogously to the
previous example and obtain a point cloud f(X) C LZ°.
The profile of recovered variance is shown in Table 1.
Dimension 2 provides a low dimensional representation
of f(X) inside L% with 70% of recovered variance (Fig-

ure 8).

Figure 5: Visualization of the resulting P»(f(X)) C L3.

Since f classifies the principal Zs-bundle P, over
M(Zs,1), then f must be homotopic to the inclusion
of M(Zg,1) in Ly°. Figure 5 shows X C M(Zs,1)
mapped by f in L3. Notice the identifications on X
are handled by the identification on S x {0} c D3
from the fundamental domain on Section 2.2.1. See
https://youtu.be/_Ic730_xFkw for a more complete
visualization.

6.3 The Lens space L3 = S3/Z;.

We use the metric defined in Equation (3) on L2 and
randomly sample 15,000 points to create X C L3. Fig-
ure 6(left) shows the sample set using the fundamental
domain from section 2.2.1.

Figure 6: Left: X C L3. Right: Lens coordinates.

We can use PHY(R(X);Zy) and PH'(R(X);Z3) to
verify that the sampled metric space has the expected
topological features. Figure 10 contains the correspond-
ing persistent diagrams.

Just as in the previous examples define f : L3 — L$°
using the most persistent class in PH'(R(L);Z3). The
homotopy class of f must be the same as that of the
inclusion L3 C L$°, since f classifies the Zs-principal
bundle P,. Thus we expect L3 to be preserved up to
homotopy under LPCA. Figure 6 offers a side and top
view of Py(f(X)) C L3. Here we clearly see how the
original data set X is transformed while preserving the
identifications on the boundary of the fundamental do-
main. Finally in Table 1 we show the variance profile
for the dimensionality reduction problem. We see that
for dimension 4 we have recovered more than 70% of the
total variance as seen in Table 1 and Figure 9.

6.4 Isomap dimensionality reduction

We conclude this section by providing evidence that
Lens coordinates (LC) preserve topological features
when compared to other dimensionality reduction al-
gorithms. For this purpose we use Isomap ([13]) as our
point of comparison.

The Isomap algorithm consist of 3 main steps. The
first step determines neighborhoods of each point us-
ing k-th nearest neighbors. The second step estimates
the geodesic distances between all pairs of points using
shortest distance path, and the final step applies classi-
cal MDS to the matrix of graph distances.

Let dgm be a persistent diagram. Define per; to be
the largest persistence of an element in dgm, and let per,
be the second largest persistence of an element dgm.

per, /pers Zo Zs
Isomap | 1.0105 | 1.0105
M(Zq,1) LC 1.7171 | 3.6789
12 Isomap | 1.0080 | 1.0080
3 LC 1.1592 | 2.3072

Table 2: In green we highlight the fraction that indicates
which method better identifies the topological features.

For both M(Z3,1) and L3 it is clear that the Isomap
projection fails to preserve the difference between the
cohomology groups with coefficients in Zs and Zz. On
the other hand the LC projections maintains this differ-
ence in both examples (see Table 4 for more details).
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Appendix

Proof. [of Proposition 3] Take [b,j,9] € P, and con-
sider a different representative of the class. Namely,
an element (b,k,g + n;,) such that b € U; N Uy.
By definition of ®, we have ®([b,j,9]) = f;(b,4,9)
and ®([b,k,g + nx]) = fr(b,k,g + njr). And since
fi(b, 4, 9) = fru(b,k, g+ nji), we have that

¢([b7]7g}) - é([bvk’g + Ujk]%

which shows that ® is well defined.
To see that ® is Z,-equivariant, take m € Z, for any
m=20,...,q— 1 and compute

®([b,45,9]) - m
= {\/ST(b)CéﬁmJ”’ﬂ), s \/ng(b)qurernm)]
= f;(b,4, g +m) = ®([b, j, g +m])
= ©([b, j, g] - m).
U

Proof. [of Theorem 5] First we need to see that f is
well defined. Let b € U; N Uy, therefore

p(@(10,,0)) = [Vor®ip - Vel ]
= p(®([b, k,0)).
This shows that f(b) is independent of the open set
containing b.
Hence (®, f) : (Py, 7, B) — (S*"~!, 7, L7) is a mor-
phism of principal Z,-bundles, and by [[7], Chapter 4:

Theorem 4.2] we conclude that P, and f*(S*"~!) are
isomorphic principal Zg-bundles over B. O

Proof. [of Proposition 6] First of all, Ro (L)(® =
N(BH)O = L. If b ¢ Bc(lx), then pg(b) = 0 and
therefore the equality holds. If on the other hand
b € B.(ly) N Be(l;), then {j,k} € N (B)M) C Ro(L)M.
In which case, by definition of ¢*, we have 7, = n;r. U

Proposition 8 Let [z],[y] € Ly, then
du(fz] [v)) = d(z,y - Zg) = min d(z,y - g).

Proof. For z,y € C” let (z,y)p = real({(z,y)c). By
definition of Hausdorff distance, we have that

1l ) = max { e i avccos(( . H)s).

ax min arccos({(z - g,y - h .
max min ar s((z- g,y >R)}

Notice that
(-g,y-h)r = real (<C§w,C§y>c)

- ({00}

= (z,y-(h—9))r
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And since Z, is Abelian, then

max min arccos((z - g,y - h)r)

h€Zy gEL,
= max ;Ielizri arccos({z - (g — h),y)r)
= hmeaz):;renzn arccos((z - (—h),y - (—9))r)
= }H?Zf gng% arccos({x - ',y - ¢")r).
Thus
dr,([z], [y]) = max min arccos((z - g,y - h)R).

gEZy heZ,

Furthermore dp([z],[y]) = C 0y - Lg) =
Since ¥ - ((—g)Zq) =y - 24 for

max d(x
9€ZLq
maxd(z,y - (~g)Z).
any g € Zg, we obtain dr([z], [y]) = mz%xd(x Y- Lg) =
ge
d(x,y-Zy) = min d(x,y - h).
(2,4 - Zg) = min d(z,y - h)

Proof. [of Lemma 7] From Theorem 8 we know that

dr([v], Py ([v])) = min d(v, P ([v]) - 9)

9g€Lq
Py (v) )
=mind (v, ———-¢g ] .
9€Zq ( 1 Pa-(0)
€
Let g* := argmin d (v, % . g), so we have
Py i

@@M%@Mwm{<|ﬁg§yﬁQ.

Notice that the argument of the arccos can be simpli-
fied as follows

PR N[ )
<|W%M|g%‘<“>C+P(*w%@

since u and P (v) are orthogonal in C" then they are
also orthogonal in R?”, making the then the firs sum-
mand on the right hand side equal to zero. Additionally
since arccos as a real valued function is monotonically
decreasing we have

1

L
P (P

g* = argmax ), P (v) - g>]R.

9€Zq

Using the fact that the action of Z, is an isometry
(and therefore an operator of norm one) as well as the

Cauchy-Schwartz inequality we obtain

(PHOLPEW) )y | 1.
2200 T

Pl(v)-g)g
< i IPEIIPE) -l
[1Pa-()] ™ * “
=P (v) - gll = 1P ().
And the equality holds whenever g = e € Z4, so we
must have g* = e.

Let [w] € L7 (u), so w € spang(u) which implies
that for any h € Z,

=g Zukwk =

In other words w - h € spang (u) for any h € Z,.
Thus by the Cauchy-Schwartz inequality

“hu, w) = 0.

(u, wh)c = Z uk(Chwy,)
k

(v,w-h)gr = <<v,u>cu—|—Pj‘( ),w - hyg = <PJ‘( ),w - h)g
< (Py(v),w - h)g| < ||Py(v)|[|w - Al
= 1Pz () llw]l = [Py ()],

since the action of Z, is an isometry and w € S*"~1.
Finally since arccos is decreasing

dp([v], Py ([v])) = arccos(|| P, (v)]]) < arccos((v, w-h)r)
for all h € Zy, thus dr,([v], PL([v])) < dp([v], [w]). O

Visualization map for L3. Given vy, ...,v, € S?"71
representatives for the classes in LPCA(Y). We want
to visualize P,(Y) C L2 in the fundamental domain
described in Section 2.2.1. Let

{[<yi7U1>Ca <yi702>c] esdcC?:
and define G : P,(Y) — S3 C C? to be

Glz,w) = (g;kz, (arg(w) - g) V1— |z|2> (4)

where arg(w) €

Py(Y) = [yi] €Y}

[0,27), and k an integer such that
2
arg(z) = k% +0,
where 6 is the remainder after division by %

Metric on the Moore space M (Zs3,1). For

x,y € C with |z|, |y| <1, we let

(2, y)rl if [af, Jw| <1

min arccos(|{x
min arceos(| (. Cy)z)

if |zg]=1or |w|=1
if |zg]=1and |w| =1
(5)
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Profiles of recovered variance.

Recovered variance of LPCA on S*.

Percentage of cumulative variance

Recovered variance of LPCA on M (Zs, 1).

Percentage of cumulative variance

Figure 8: Profile of recovered variance on M (Zs,1).

Recovered variance of LPCA on L3.

1.0

o
=
L

e
o
L

e
S
L

e
[N}
L

0.0

Figure 7: Profile of recovered variance on S!.
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Figure 9: Profile of recovered variance on L2.
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Coefficients Zo

Coeflicients Z3

PH(Iso(X) c &%, Z3)

PH(Iso(X) c »*, Z3)

0.8 0.8
- —_— ———
0.7 4 0.7 4 .
//,
0.6 - 0.6 4 X
L
- -
0.5 4 - 0.5 4 s
e e
e e
<044 P < 04 -
- 0.4 ‘,,I ) 0.4 ’,‘1
& - & -
] - ] -
03 o 03 e
l,f r’f
027 e 02 -
-~ -
-
0.1 ,,/ —— 0.1 // [
F . Hy 7 o Ho
004 Hy 004 *° Hi
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.0 01 0.2 03 0.4 05 0.6 0.7 o8
. Birth Birth
Isomap
PHY(fiX) cc?,22) PHYfIX) cC?,Z3)
0.8 0.8
- —_— v
o
0.7 4 0.7 4 L
/)’
-
0.6 - 0.6 4 ad
g
/l’
0.5 4 0.5 4 e
-
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& & -
-
034 0.3 e
- d
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027, e 024 3
e
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L . Ho - o Ho
004 ¥ Hi 004 3 Hi
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Table 3:

0.0 01 02 03 0.4 05 0.6 0.7 08
Birth

Coefficients Zo

Birth

Persistent homology of the Isomap vs. LPCA for M(Zs,1) into a 4 dimensional space.

Coefficients Zg

PH(Iso(X) c R*, Z5)

PH(Iso(X) € R, Z5)

0.8 0.8
- — -]
0.7 0.7 1 s
/’)’
] 1 .
0.6 0.6 “/
s tl’
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P P
e e
£ 044 el £ 041 e
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Table 4:

0.0 01 02 03 0.4 05 0.6 07 08
Birth

0z 03 04 0.5 0.6 07 08

Persistent homology of the Isomap vs. LPCA for L3 into a 4 dimensional space.
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