# SEAGBEAR Diving Technology

# **O2 Sensor Technology for Rebreathers**

# **Dr. Arne Sieber**











# Outline

#### SEARBEAR Diving Technology

#### Sensors in rebreathers

- Understanding O2 sensors
- Failure modes
- Validation versus voting

#### Electronics used in rebreathers

- CE Certification
- Liability

#### The future: Research in sensor technology

- Smart galvanic O2 sensor
- Galvanic O2 sensor alternatives
- Optical sensors
- Solid state sensors

#### Dr. Arne Sieber – O2 SENSORS FOR REBREATHERS – REBREATHER FORUM 3.0 – May 2012

Rebreathers

- Closed Circuit (long autonomy, stealth, warm breathing gas,..)
- Small lightweight systems can be designed
- O2 is added either manually (MCCR) or automatically with a microcontroller and a solenoid
- One main problem: gas sensing



#### SEARBEAR Diving Technology

# **Rebreather pO2 control**

#### SEAWBEAR Diving Technology



# **Sensor R&D for Medical Devices**

- Do not abuse the sensor
- Calibrate the sensor under similar conditions as during measurement
- Calibrate in the measurement range
- Multiple point calibration
- Same temperature

Sche Charles

SEAMBEAR

Diving Technology

# pO2 sensors in diving

- We use pO2 sensors in harsh conditions
- We abuse the sensors (shocks, high temperature, high pressure, ..... all outside of the sensor specifications)
- We calibrate the sensor at 0.2 1 bar at ambient temperature
- BUT we use the sensor up to 1.6 bar AND temperatures up to 50°C

# Rebreather divers use sensors outside the manufacturers specifications

Do not blame the sensor manufacturers for sensor cell failures

Rebreather market is small in comparison to medical market – burden of liability forces sensor manufacturers not to sell to rebreather industry

# **Understanding pO2 Sensors**

#### SEAWBEAR Diving Technology

#### Galvanic pO2 Sensor

- standard in diving
- the anode material (typical Pb is oxidized) -> limited lifetime

Cathode reaction:

$$O_2 + 2H_2O + 4e^- \Leftrightarrow 4OH^-$$

Anode reaction:

 $2Pb + 4OH^{-} \Leftrightarrow 2PbO + 2H_2O + 4e^{-}$ 

Overall cell reaction:

 $2Pb + O_2 \Rightarrow 2PbO_2$ 



### **Rebreather design:**

# Avoid any differential pressure between sensor membrane and backside

# **Diffusion limited sensor**

Electrochemical reaction is non linear

#### Trick:

- Diffusion barrier/layer / membrane layer in front of the cathode
- O<sub>2</sub> is diffusing through the diffusion limiting barrier and gets dissociated and reduced at the cathode to hydroxyl ions
- All O2 molecules get dissociated thus pO2 at the cathode is close to 0
- The sensor current becomes proportional to the diffusion of O2 molecules through the diffusion layer
- Diffusion of O2 molecules is linear to the pO2 in front of the membrane – thus there is a linear relation between pO2 and sensor current



#### **Temperature & pO2 sensors**

- In a rebreather the pO2 sensors can be exposed to temperatures from possibly 0-50°C
- Diffusion through the membrane to the cathode is temperature dependent: typical + 2-3% per °C
- Remember: The sensor current is in theory proportional to the diffusion of O2 molecules through the sensor layer
- O2 Diffusion/sensor current rises 2 3% per °C

#### **Sensor electronics**

#### SEAWBEAR Diving Technology



From Paul Raymaekers, How Oxygen Sensors Work

http://www.revo-rebreathers.com/uploads/downloadsitems/Understanding\_oxygen\_sensors.pdf

# Sensing problem: does the galvanic pO2 sensor cell have the same temperature as the sensing element?

- Typically the sensing element is mounted on the PCB behind the sensor cell
- To guarantee correct temperature of the sensing element, thermal conductive paste is applied between the sensor cell and the PCB
- However, not all sensors have paste in between, in particular some sensors used for NITROX analysis do not – thus they are not suitable for diving!
- Some sensor have the sensing element in the electrolyte (ideal, but additional manufacturing effort).

# Take Home Message 3

- The temperature compensating circuit needs to have the same temperature as the electrolyte and the sensor membrane
- Do not use medical pO2 sensors or pO2 sensors from NITROX analyzers for rebreather diving
- Rebreather design: AVOID temperature gradients in the sensors

# **Response time (t90) of pO2 sensors**

#### SEAGBEAR Diving Technology

- Response time depends on the gas diffusion through the membrane/diffusion layer
- Typical response time (t90) is 6-10s at room temperature



SEARBEAR Diving Technology

# At low temperatures galvanic pO2 sensors are slow

# Aging/Failure of pO2 sensors

- SEARBEAR Diving Technology
- anode exhaustion -> current limitation
  - pO2
  - Temperature
- cathode poisoning (cathode get's passivated)
- Mechanical problems
  - Leaking of electrolyte
  - Damage of the sensor
  - Small hole in the membrane leads to higher currents

#### Electrical problems

- Corrosion
- Component failure
- Incorrect read out / problems with the pO2 meters
- Electrical interferences

# **Current limitation:**

- The anode is the fuel of the galvanic sensor cell (similar to a battery)
- Once the anode is exhausted, there is no sensor current anymore
- Current limitation describes the effect where not all available O2 molecules reaching the cathode are reduced





current as function of PPO2

# **Testing cells for current limitation:**

#### SEAGBEAR Diving Technology

#### Pressure pot method (Cell Checker):

- pressurizing sensors with O2 of air
- Checking readings for linearity in the hyperbaric range (pO2 > 1 bar)

#### Problem:

- Correct interpretation of the results !!!
- A sensor that is not current limited to f.i. 1.6 bar in the test pot is no warrantee that the sensor is also not current limited during diving !!!
- Reason: cells in the cell checker are at room temperature, in the rebreather at the exit of the scrubber possibly 40-45°C – thus diffusion of O2 to cathode is much higher, however, current limitation is caused by exhausted anode, and current limitation may start at a much lower pO2 than in the pressure pot test
- Our acceptance threshold: 2.5 bar pO2 (at room temperature)
- Better approach: testing cells at 6m with O2

**Pressure pot testing of pO2 sensors:** 

Do not use sensors in rebreathers that cannot read at least 2.5 bar pO2

Or: test pO2 sensors for current limitation at the end of the dive (as they will then be at operational temperature)

# Lifetime of pO2 sensors

How to specify the lifetime of the sensors?

- Lifetime in months at storage in air at room temperature (24-60)
- Lifetime in Vol%O2 h (500 000 1 000 000)

Example: storage of a sensor in air at 20°C / 30 °C

- 21% \* 365 \* 24h = 183960 Vol%O2 h
- $21\% * 365 * 24h * 1.03 (30^{\circ}C-20^{\circ}C) = 21\%*365*24h * 1.34 = 246506$

SEARBEAR Diving Technology

#### **Diving:**

• One dive, pO2 1,3, 20°C

130% \* 1h = 130 Vo%O2 h

• One dive, pO2 1,3, 45°C

130% \* 1h\* 1.03 <sup>(45°C-20°C)</sup> = 272 Vol% O2 h

2 years, 100 diving hours each, rest storage at room temperature:

- 54438 Vol%O2 h from diving
- 357920 Vol%O2 h from storage

In reality: sensors last typically between 12 and 18 months – thus far less than specified by industry

# Accelerated aging of pO2 sensors

#### SEAGBEAR Diving Technology

#### pO2 sensors are designed for application in:

- Standard atmospheric pressure
- Room temperature
- no CO2

#### However in diving pO2 sensors are subject to:

- High pO2
- High temperatures
- High pressures (bubble formation is also possible in the electrolyte)
- High humidity
- Increased pCO2
- Mechanical shocks (transportation on a RIB ...)
- Corrosion (salt content of gas), salt water drops.

### **Failure statistics**

#### lifetime of sensors: 1000 sensors from a any batch



# Voting algorithm

- Advocate 3 or more sensors in a rebreather
- Comparison of the sensor signals
- Statistics were presented showing that the risk of a multiple sensor failure is relatively low
- These statistics are based on the assumption, that sensor <u>fail independently</u>
- In general true, but only for laboratory conditions where sensors are used within their specifications
- Thus: incorrect approach sensor failures in a rebreather are caused by a "common" history

# Sensor failures in rebreathers are caused by abuse of the sensors

# Sensors in a rebreather have a common history

Assumption that Sensors fail independently in a rebreather is wrong

#### Checking pO2 sensors during diving SEA BEAR Diving Technology

- Manual or automatic voting algorithm (minimum 3 sensors)
- Dil/O2 flush to check pO2 sensors for function and linearity in hyperbaric O2
- Dil / O2 flush requires training and know how probably not suitable for recreational divers on a daily basis
- Automatic "true" validation of pO2 sensors

#### pO2 sensor signal validation

#### SEA BEAR Diving Technology



#### **Sensor head Poseidon MK6**

#### SEARBEAR Diving Technology





# **RoHS** directive

- Restriction of Hazardeous Substances
- Linked with the waste Electrical and Electronic Device Directive
- RoHS restricts the use of Lead (Pb)
- The anode of O2 sensor cells is made from Pb
- Recast of the RoHS directive End of 2010
- Medical consumables are now also included in this directive – thus RoHS has also to be applied to O2 sensor cells

# **RoHS directive & diving**

- There are alternative lead free O2 sensor cells that have the potential to substitute the Pb based sensors in medical applications
- The sensor cells are currently under investigation in our laboratory
- First results show that these type of new Pb free sensors cannot be directly used in a rebreather – further development is required
- There might be a major shortage in Pb sensors starting from 2013, when the recast will be in force



# **Electronics in Rebreathers**

### **Design of rebreather electronics**

- Well designed electronics
- A failure must be immediately recognizable
  - for example HUD red LED flashes in the case of a failure ... what if you have a sudden battery failure?
- 2 Approaches:
  - Redundant electronics
  - Networks, where network nodes perform data plausibility checks and each node can trigger warnings
  - -> only possible if sensor nodes are independent from each other (including electronics)

#### CE certification of rebreather electronics EAGBEAR Diving Technology

- The rebreather electronics (set point controller, etc..) has to be tested as part of the testing of the rebreather
- Case:
  - Take a CE certified MCCR rebreather
  - Take a CE certified diving computer
  - Use the diving computer as setpoint controller
  - Diving computer has CE ceritification + rebreather has a CE certification -> the combination alone without testing the whole package under EN14143 is NOT CE compliant !!!

EN13193:2000 (depth and time measurement, robustness)

- EN13319:2000 was prepared by the CEN/TC136 group for "Sports, playground and other recreational equipment"
- EN13319:2000 is not listed under Directive 89/686/EEC for Personal protective equipment
- Decompression calculations are excluded from the standard
- pO2 control is not even mentioned

#### Other standards for Diving computer? SEA BEAR Diving Technology

- EMC 89/336/EEC: electromagnetic compatibility
- EN250: tank pressure reading
- ISO 1413: Horology Shock resistant watches

#### Certification of Rebreather electroncis 2 EA BEAR Diving Technology

- The rebreather together with the electronics have to fulfill EN14143
- What about EN61508 ?
  - EN61508 is references in EN14143:2003
  - It is an application independent standard
  - Enhances safety by risk reduction
  - The standard describes a general development life cycle required for building a safe system
  - EN61508 is not included in the updated preliminary version of EN14143
  - Widely discussed



- CE and Liability are two different things
- State of the art product live cycles have to be applied (otherwise it is gross negligence)
- EN61508 is state of the art (as it is included in EN14143:2003)
- To be legally on the safe side, manufacturers should apply EN61508, a tailored standard or an equivalent standard.

Research

SEARBEAR Diving Technology

# The future pO2 sensors

# Smart galvanic pO2 sensor

#### SEAWBEAR Diving Technology

- Microcontroller based
- Integrated oxygen hour meter
- Calibration history stored on the sensor
- Unique digital sensor id
- Can electronically check for current limitation
- Can electronically check cathode



# **Optical sensors - OPTODES**

- Measurement of O2 with an optical sensor
- Illumination of a fluorescenting oxygen indicator
- Fluorescence is maximum in the absence of O2
- O2 molecules quench fluorescence
- No linear sensor response sensors are most sensitive at low pO2s (traces of pO2)
- For long, sensors were not able to measure with an acceptable precision above 0.5-1 bar pO2
- Stern-Volmer relationship

#### **OPTODES** – recent advances / breakthrough

- Research Group at the Technical University of Graz, Austria under Prof. Klimant has developed a new sensor material (REDFLASH technology)
- Sensor material can be used for measuring pO2 > 1 bar with sufficient accuracy
- Response time in air 1-3 s (dependent on thickness of sensor spot)
- Technology is now expolited by german company
- All research background data about optical indicators and their synthesis are published in open scientific literature

**Optical sensor consists of 2 components:** 

- sensor spot
- sensor optics/electronics (contactless sensor, no corrosion problems, etc..)
- sensor spot is cheap (can be sprayed, painted,...)
- sensor spot can be a single use sensor (one sensor for each dive) -> aging problem is overcome
- sensor spot can be combined for example with a single use scrubber cartridge

#### **O2 Solid State Sensors Technology**

- Based on the ionic conductivity of solid ceramics
- Well established application: Combustion control: O2 measurment O2 in cars
- Zirconia/Ceria
- Require heating
- Due to their size require large heating power
- Potentiometric sensor principle requires reference gas

SEANBEAR

Diving Technology

02-

Pt

 $O_2$ 

 $O_2$ 

Pt

 $O_2$ 

 $O_2$ 

#### Micro Solid State Sensors for O2 and CO2

SEARBEAR Diving Technology

- Based on the ionic conductivity of Zirconia/Ceria (for O2) and NASICON (for CO2)
- Sensorelement require heating to 650°C/550°C
- Microfabricated small size
- Sensor element: 2.5 x 2.5 x 1 mm<sup>3</sup>
- Non consuming / quasi indefinite lifetime
- Amperometric sensor principle (O2)
- Potentiometric sensor (CO2)



#### **Prototype sensor system integration**

#### SEARBEAR Diving Technology



#### O2 sensor, hyperbaric test in 100% O2

#### SEARBEAR Diving Technology



#### Signals of solid state sensors in a rebreather SEARBEAR Diving Technology



### Acknowledgments

SEARBEAR Diving Technology

- EU FP7-People-IEF-2008 action: Project LifeLoop (nr. 237128)
- EU FP7-People-ITN-2010 action:Project PHYPODE
- Center for applied technology, Leoben, Austria
- Austria Wirtschaftsservice AWS
- my co workers at IMEGO
- my research group in Austria



SEAWBEAR Diving Technology

Based in Graz, Austria

Diving Instrumentation Underwater research Diving Physiology Decompression theory Diving Computers Head up Displays Rebreathers Sensor technologies

