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Abstract

Cognitive deficits are highly comorbid with substance use disorders. Deficits span mul-
tiple cognitive domains, are associated with disease severity across substance classes,
and persist long after cessation of substance use. Furthermore, recovery of cognitive
function during protracted abstinence is highly predictive of treatment adherence,
relapse, and overall substance use disorder prognosis, suggesting that addiction may
be best characterized as a disease of executive dysfunction. While the association
between cognitive deficits and substance use disorders is clear, determining causalities
is made difficult by the complex interplay between these variables. Cognitive dysfunc-
tion present prior to first drug use can act as a risk factor for substance use initiation,
likelihood of pathology, and disease trajectory. At the same time, substance use can
directly cause cognitive impairments even in individuals without preexisting deficits.
Thus, parsing preexisting risk factors from substance-induced adaptations, and how
they may interact, poses significant challenges. Here, focusing on psychostimulants
and alcohol, we review evidence from clinical literature implicating cognitive deficits
as a risk factor for addiction, a consequence of substance use, and the role the prefrontal
cortex plays in these phenomena. We then review corresponding preclinical literature,
highlighting the high degree of congruency between animal and human studies, and
emphasize the unique opportunity that animal models provide to test causality
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between cognitive phenotypes and substance use, and to investigate the underlying
neurobiology at a cellular and molecular level. Together, we provide an accessible
resource for assessing the validity and utility of forward- and reverse-translation
between these clinical and preclinical literatures.

1. Introduction

Substance use disorders (SUDs) represent a significant global public

health crisis. In the United States alone, the societal cost of SUDs has grown

to be in excess of 740 billion dollars annually (NIDA, 2020) and worldwide

SUDs exceed all other mental health disorders in regard to premature mor-

tality due to illness (Whiteford et al., 2013).Many treatments for SUDs focus

on the management of withdrawal symptoms and the reduction of craving

(Beck, Wright, Newman, & Liese, 1993; Haass-Koffler, Leggio, & Kenna,

2014; Myrick, Brady, &Malcolm, 2001; Perkins, Conklin, & Levine, 2008;

Phillips, Epstein, & Preston, 2014; Veilleux, Colvin, Anderson, York, &

Heinz, 2010), sequelae that are also heavily emphasized in the preclinical

addiction literature (Becker, 2000; Lichtman & Martin, 2002; Markou

et al., 1993; Markou & Koob, 1991; Venniro, Caprioli, & Shaham,

2016). Although treating withdrawal symptoms in abstinent patients is a

critical step toward recovery, relapse often occurs long after these symp-

toms have subsided and therefore there is increasing interest in other mech-

anisms that outlast these processes. An ever-growing body of clinical

research indicates that the dysregulation of executive function, a diverse

set of cognitive processes responsible for purposeful, goal-directed behavior

(Diamond, 2013), plays a fundamental role in the development and main-

tenance of SUDs. The prevalence of cognitive comorbidities across sub-

stance classes, their role in the initiation and maintenance of harmful

patterns of substance use, and the long-lasting nature of these deficits com-

pared to other consequences of drug use suggests that SUD may be best

characterized as a disease of executive dysfunction.

Although it is indisputable that cognitive deficits are comorbidwith SUDs,

the relationship between the two is complex. It has long been held that pro-

longed exposure to substances of abuse, such as alcohol and psychostimulants,

promote neuroadaptations that produce cognitive abnormalities. However,

substantial evidence suggests that executive dysfunction is also a risk factor

for SUDs, therefore making it difficult to determine the direction and

nature of causality in between these variables in clinical populations.

Given this complexity, animal models, where risk factors and exposure
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can be fully measured and controlled, offer unique advantages for probing

the relationship between cognitive function and substance use.

Here we review the clinical evidence for the integral role of cognitive

deficits in both the development and maintenance of stimulant use disorder

(StUD) and alcohol use disorders (AUD), as well as survey insights from the

clinical and preclinical literatures regarding the underlying neurobiological

mechanisms mediating these deficits. We begin with an overview of clinical

research examining the interplay between SUDs and cognitive deficits (for

more exhaustive reviews see Bates, Bowden, & Barry, 2002; Domı́nguez-

Salas, Dı́az-Batanero, Lozano-Rojas, & Verdejo-Garcı́a, 2016). Guided

by this research, we then examine evidence from animal studies and discuss

potential neural circuit mechanisms underlying cognitive deficits in SUDs.

We focus on the prefrontal cortex (PFC) given its role inmediating cognitive

processes and the extensive evidence linking substance use to dysregulation

of PFC function and structure (for review of subcortical structures role in

addiction see Everitt & Robbins, 2013; Koob & Volkow, 2010; Yager,

Garcia, Wunsch, & Ferguson, 2015), and limit our discussion to literature

examining alcohol and psychostimulant use (for review of other compounds

seeCrean, Crane, &Mason, 2011;Gruber, Silveri, &Yurgelun-Todd, 2007;

Jasinska, Zorick, Brody, & Stein, 2014; Klugman &Gruzelier, 2003). While

cognitive deficits are commonly observed across SUDs (Rolland et al.,

2019), we focus on psychostimulants and alcohol because they are well char-

acterized in both the clinical and preclinical literatures, and therefore provide

a suitable platform for comparing human and animal studies.

We highlight similarities in findings between preclinical and clinical

investigations, which support the validity of animal models, and discuss areas

that are understudied regarding the neuronal basis of these phenomena. Our

goal is to provide a broad, accessible introduction to evidence from animal

and human studies as to the relationships between cognitive function and

SUDs, and to provide a resource on the translatability of specific animal

models by comparing these literatures.

2. Cognitive deficits and SUDs: Clinical findings

SUDs are often associated with cognitive impairments spanning mul-

tiple domains including attention,memory, and executive function (Rolland

et al., 2019; Stavro, Pelletier, & Potvin, 2013; Verdejo-Garcia & Rubenis,

2020). Estimates indicate that between 30 and 80% of individuals with

AUD (Bruijnen et al., 2019; Fein, Bachman, Fisher, & Davenport, 1990;
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Løberg&Miller, 1986;Martin,Adinoff,Weingartner,Mukherjee,&Eckardt,

1986; Meek, Clark, & Solana, 1989; Morgenstern & Bates, 1999) and

30–50% of individuals with StUD (Bruijnen et al., 2019; O’Malley,

Adamse, Heaton, & Gawin, 1992; Rippeth et al., 2004; Vonmoos et al.,

2013) exhibit some degree of cognitive impairment. Moreover, deficits

are observed in laboratory-based decision-making tasks utilizing non-drug

reinforcers demonstrating that these cognitive deficits represent a funda-

mental dysregulation of function that is not restricted to drug-associated

contexts or decisions involving drug (Bechara et al., 2001; Brière et al.,

2019; Stout, Busemeyer, Lin, Grant, & Bonson, 2004; Verdejo-Garcia

et al., 2007). Interest in substance-induced cognitive impairments has been

further driven by findings that deficits, particularly in cognitive processes asso-

ciated with executive function, are linked to poor clinical outcomes (Bates,

Pawlak, Tonigan, & Buckman, 2006; Czapla et al., 2016; Domı́nguez-

Salas et al., 2016; Goncalves et al., 2017). For example, deficits in basic

(e.g., response inhibition) and higher-order executive functions (e.g., prob-

lem solving, decisionmaking) are associated with early relapse and poor treat-

ment adherence in AUD and StUD populations (Rolland et al., 2019;

Rubenis, Fitzpatrick, Lubman, &Verdejo-Garcia, 2019; Stevens et al., 2014).

The PFC, a neocortical structure composed of several functionally and

structurally diverse subregions, is critically involved in executive function

(Diamond, 2013; Robbins, 1998; Stuss, 2011). In healthy adults, greater

PFC volume and thickness is associated with better executive performance

across a variety of neuropsychological tests (Burzynska et al., 2012; Yuan &

Raz, 2014). In addition, the PFC is disproportionately impacted by prolonged

use of alcohol and psychostimulants as compared to other brain regions

(Chanraud et al., 2007; Ersche, Williams, Robbins, & Bullmore, 2013;

Goldstein & Volkow, 2011; Mackey & Paulus, 2013; Oscar-Berman,

Kirkley, Gansler, & Couture, 2004; Pfefferbaum, Sullivan, Rosenbloom,

Mathalon, & Lim, 1998; Volkow, Mullani, Gould, Adler, & Krajewski,

1988). Significant physiological andmorphological differences are commonly

observed in the PFCof individualswithAUDor StUD, often coincidingwith

impaired executive function (Chanraud et al., 2007; Dao-Castellana et al.,

1998; Fein, Di Sclafani, & Meyerhoff, 2002; Goldstein & Volkow, 2002;

Hanlon, Dufault, Wesley, & Porrino, 2011; Kim et al., 2006; Le Berre

et al., 2014).

While it is clear that individuals with AUD and StUD display deficits in

cognitive function concomitant with structural and functional dysregulation

of regions involved with these processes, the extent to which deficits are
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caused by substance use can be difficult to parse. In fact, extant clinical

research suggests that deficits in executive function present prior to first

drug use (i.e., preexisting) serve as a risk factor that facilitates substance

use initiation and confers vulnerability to subsequent development of

SUDs. At the same time, these preexisting deficits may be further exacer-

bated by substance-induced neuroadaptations (Fig. 1). Thus, to understand

the complex interplay between cognitive deficits and SUDs, both direc-

tions of causality must be considered. Below we discuss the clinical evi-

dence (1) implicating cognitive deficits as a risk factor for SUDs, and (2)

as a consequence of prolonged substance use. We do not intend to be

exhaustive in our review of the clinical literature; rather, we aim to provide

an accessible overview for researchers outside of the immediate field, and to

motivate our further discussion of questions that can be uniquely addressed

by animal models (see Section 2).

Fig. 1 Interplay between cognitive function, drug use, and addiction outcomes.
Variation in cognitive function prior to initial substance use is a critical factor influencing
the likelihood of initiation and maintenance of harmful patterns of substance use.
Substance-induced neuroadaptations may exacerbate premorbid cognitive deficits or
promote the development of cognitive deficits in cognitively normal individuals.
Deficits far outlast acute phases of withdrawal and associated negative affect, serving
as an enduring risk factor in addiction recovery, and recovery of cognitive function dur-
ing abstinence is associated with lower rates of relapse; therfore, treatments targeting
cognitive dysfunction may significantly improve clinical outcomes.
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3. Clinical evidence linking executive dysfunction
and addiction vulnerability

Many individuals are exposed to or actively use illicit drugs and alco-

hol, however only a relatively small subset of these individuals will develop a

SUD in their lifetime (SAMHSA, 2019). Thus, to understand, treat, and

prevent SUDs, it is imperative to identify behavioral and neurobiological

features that may promote the initiation of substance use as well as those that

confer resilience or susceptibility to the subsequent development of SUDs.

Premorbid deficits in response inhibition (i.e., inhibitory control), one of

the core executive functions alongside working memory and cognitive flex-

ibility, have been consistently implicated in SUD vulnerability. Prospective

studies have found that relatively poor performance on measures of response

inhibition in individuals with minimal substance use history is predictive of

the frequency and intensity of later substance use (Nigg et al., 2006;

Squeglia, Jacobus, Nguyen-Louie, & Tapert, 2014). Moreover, neuroimag-

ing studies have consistently documented PFC hypofunction in individuals

with SUDs during tasks involving response inhibition (Bolla et al., 2004; Fu

et al., 2008; Morein-Zamir, Simon Jones, Bullmore, Robbins, & Ersche,

2013; Salo, Ursu, Buonocore, Leamon, & Carter, 2009) and it is thought

that decreased activation of the frontal lobe during these tasks may also serve

as an important functional marker for susceptibility to problematic substance

use. For example, during a go/no-go task in which respondents were

required to respond to certain stimuli (go trials) and inhibit responding to

others (no-go trials), decreased activity in multiple subregions of the PFC

among adolescents was associated with transition to heavy alcohol use

�3years later (Norman et al., 2011). Similarly, lower activation in the

PFC during this task also has been shown to predict heightened substance

use and SUD symptoms at an 18-month follow-up (Mahmood et al.,

2013). Importantly, differences in task performance and PFC activation in

these studies have typically been most pronounced during “no-go” trials,

where the subject is required to inhibit a response, suggesting that vulner-

ability to SUDs is related to deficits in response inhibition rather than poor

task performance in general.

For many individuals, substance use initiation begins during adolescence

( Johnston et al., 2019), a critical transition period characterized by signifi-

cant physical, social, emotional, and cognitive development as well as con-

tinued brainmaturation including the refinement of connectivity in the PFC
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(Spear, 2013). Differences in cognitive performance across development

provide a unique opportunity to examine the impact of cognitive function

on vulnerability to SUDs. For a variety of substances including alcohol and

psychostimulants, age of first substance use is correlated with SUD preva-

lence whereby younger age of onset is associated with a greater likelihood

of developing a SUD (Chen, Storr, & Anthony, 2009; Dawson, Goldstein,

Chou, Ruan, & Grant, 2008; Flory, Lynam, Milich, Leukefeld, & Clayton,

2004; King & Chassin, 2007; Li, Duncan, & Hops, 2001; Lopez-Quintero

et al., 2011). Although many PFC-mediated cognitive processes continue to

mature throughout adolescence, the protracted development of cognitive

control, juxtaposed with a fully developed and hyperactive reward system,

has been proposed to be an underlying factor in adolescent SUD vulnera-

bility (Hammond, Mayes, & Potenza, 2014). Indeed, adolescents display

high attraction to rewarding activities associated with novelty and sensation

seeking and are less sensitive to negative outcomes of risky choices

(Somerville & Casey, 2010). Moreover, prospective studies have demon-

strated that high reward-seeking in conjunction with poorer working mem-

ory performance is predictive of early substance use progression and the

ultimate development of SUDs (Khurana et al., 2015; Khurana, Romer,

Betancourt, & Hurt, 2017). While these studies implicate PFC-mediated

cognitive processes as important factors in vulnerability to problematic drug

use, they also further highlight the difficulty of precisely parsing causal rela-

tionships between these variables in human subjects.

Many of the cognitive phenotypes implicated in addiction vulnerability

are heritable traits and linked to family history of SUDs (Chassin, Pitts, &

Prost, 2002; Clark, Cornelius, Kirisci, & Tarter, 2005; Friedman et al.,

2008; Hill, Shen, Lowers, & Locke, 2000). Family history of SUDs is asso-

ciated with deficits across multiple domains of executive function including

cognitive flexibility, response inhibition, and working memory (Corral,

Holguı́n, & Cadaveira, 2003; Ersche, Jones, et al., 2012; Ersche, Turton,

et al., 2012; Habeych, Folan, Luna, & Tarter, 2006; Nigg et al., 2006).

For example, individuals from families with a history of alcoholism display

less improvement in cognitive flexibility during development relative to

those without a family history of alcoholism (Corral et al., 2003) as well as

aberrant patterns of frontal lobe activation during response inhibition tasks

(Schweinsburg et al., 2004; Silveri, Rogowska, McCaffrey, & Yurgelun-

Todd, 2011). Along with cognitive/behavioral traits, marked morpholog-

ical abnormalities have been observed in individuals with a family history

of alcoholism including reductions in brain volume and cortical thickness
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in frontal regions such as the orbitofrontal cortex (OFC; Henderson et al.,

2018; Hill et al., 2009). A recent, landmark longitudinal study revealed

that reduced gray matter brain volume in the dorsolateral PFC and insular

cortex, brain regions involved in cognitive processes including decision mak-

ing, reasoning, response inhibition, and working memory (Krawczyk, 2002),

was predictive of the initiation of alcohol drinking during adolescence and

increased alcohol use during early adulthood (Baranger et al., 2020). These

associations were found to be due to shared genetic factors and that geno-

mic risk for greater alcohol use was enriched in genes that were preferen-

tially expressed in the dorsolateral PFC (Baranger et al., 2020). Similarly,

lower gray matter volume in the medial PFC of occasional stimulant users

predicted future escalation of stimulant use (Becker et al., 2015), suggesting

that deficits in cortical function confer vulnerability to SUD across

substance classes.

Together, there is extensive evidence demonstrating that executive

dysfunction as well as structural and functional abnormalities in the PFC

often serve as premorbid factors that facilitate problematic substance use.

However, there is a clear need for further prospective investigations of

prexisting individual differences in executive function, their role in

SUD vulnerability, and how these phenotypes interact with substance-

induced alterations in PFC function.

4. Clinical evidence for substance-induced impairments
in executive function

Although it is accepted that prolonged substance use contributes to

functional and structural brain changes and subsequent cognitive impairments

observed in SUDs, many clinical studies have relied heavily on cross-sectional

designs that cannot fully dissociate the impact of drug-induced adaptations

from preexisting differences. A prominent and often replicated finding is

that greater substance use is associated with decline in brain volume in cor-

tical regions as well as with extent of cognitive dysfunction (Albein-Urios,

Martinez-González, Lozano, Clark, & Verdejo-Garcı́a, 2012; Bechara

et al., 2001; Bolla, Funderburk, & Cadet, 2000; Fein, Klein, & Finn, 2004;

Verdejo-Garcia et al., 2007). For example, heavy alcohol drinking in

humans has been linked to widespread reductions in brain volume (Bjork,

Grant,&Hommer, 2003; Paul et al., 2008; Pfefferbaumet al., 1998), decreased
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gray matter volume in the frontal lobe (Cardenas, Studholme, Meyerhoff,

Song, & Weiner, 2005; Kubota et al., 2001; Pfefferbaum et al., 1998), and

decreased neuronal density in the OFC (Miguel-Hidalgo, Overholser,

Meltzer, Stockmeier, & Rajkowska, 2006). Similarly, psychostimulant

use is also associated with reductions in gray matter volume in multiple

PFC subregions (Ersche et al., 2013). While there is no question that there

is a robust relationship between excessive drug use, dysregulated cortical

function, and cognitive deficits, as discussed in the previous section, it is

important to consider that some of these effects may be driven by pre-

existing differences or may be a result of complex interactions with latent

traits which ultimately determine the extent of cognitive dysregulation and

propensity to develop a SUD.

One notable study examined cognitive performance in both recreational

and dependent cocaine users who differed markedly in their patterns and

amount of cocaine use (Vonmoos et al., 2013). Dependent cocaine users

exhibited deficits in cognitive performance, including performance on tasks

of executive function, relative to recreational users and cocaine-naive indi-

viduals. Interestingly, cognitive performance in recreational cocaine users

was intermediate to that of cocaine-dependent and cocaine-naive individ-

uals (Vonmoos et al., 2013). In order to parse the contribution of preexisting

and substance-induced effects, a handful of longitudinal studies have sought

to determine whether the degree of substance use is associated with mor-

phological changes and cognitive deficits over time. A 5-year longitudinal

study that tracked cortical gray matter and ventricular changes in men with

AUD found that the amount of alcohol consumed throughout this period

was predictive of sulci expansion and cortical gray matter loss that were most

prominent in prefrontal and frontal regions (Pfefferbaum et al., 1998).

Furthermore, high levels of daily alcohol consumption in older adults has

been linked to a significant decline in global cognition, executive function,

and memory over a 10-year period relative to light-to-moderate drinkers

and alcohol abstainers (Sabia et al., 2014). Finally, in cocaine users, increased

cocaine use throughout a 1-year period was associated with a reduction in

cognitive performance with the greatest impairments observed in working

memory (Vonmoos et al., 2014).

Perhaps the strongest approach to isolating drug-induced volumetric and

cognitive deficits in SUDs from preexisting differences comes from studies

demonstrating that these deficits attenuate during protracted abstinence. In

AUD, moderate impairments across multiple cognitive domains including
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executive functions, though persistent during early and intermediate sobri-

ety, become less severe after a year (Stavro et al., 2013). This is in line with

findings that alcohol-dependent individuals with an average of 6years of

sobriety display normal cognitive functioning (Fein, Torres, Price, & Di

Sclafani, 2006). Improvements in verbal memory, executive function, and

social cognition have been observed in methamphetamine-dependent indi-

viduals after 6months of continued abstinence (Zhong et al., 2016). In

cocaine users, decreased cocaine use has been associated with minor

improvements in domains such as attention, declarative memory, and

executive function, with the greatest improvements observed in individ-

uals remaining abstinent at a one-year follow-up (Vonmoos et al., 2014).

In contrast to the delayed recovery of cognitive impairments in substance

users, regional brain volume increases are evident during early abstinence

and continue to improve over time. For example, volume increases occur

during alcohol abstinence in multiple brain regions including the dorsolat-

eral PFC, OFC, anterior cingulate cortex, and insula as early as 1 month

(Zou, Durazzo, & Meyerhoff, 2018), though improvements in cognitive

function do not typically appear until later (discussed above). Importantly,

while brain volume continues to increase in these brain regions during

long-term abstinence from alcohol, rates of increase are at least 2.5 times

higher during short-termvs. long-term abstinence indicating rapid abstinence-

induced recovery of frontal and insular brain volumes among individuals

with AUD (Zou et al., 2018). Furthermore, increases in gray matter in mul-

tiple cortical regions including the anterior and posterior cingulate, insula,

and PFC are apparent during early cocaine abstinence and volumetric

deficits are fully recovered in as little as 35weeks after cessation of use

(Connolly, Bell, Foxe, & Garavan, 2013). These findings suggest that cog-

nitive improvements during abstinence may be contingent on the recovery

of brain regions that subserve affected cognitive domains, but that behav-

ioral recovery may lag significantly behind these morphological changes.

Additionally, while evidence indicates that abstinence promotes the recov-

ery of these domains which may, in turn, reduce the likelihood of relapse

(Rolland et al., 2019; Rubenis et al., 2019; Stevens et al., 2014), questions

remain as to whether comorbid cognitive impairments in SUDs are fully

reversible and to what extent residual impairments are substance-induced.

It is conceivable that preexisting deficits in executive function are still pre-

sent throughout prolonged abstinence and therefore not only represent a

risk factor for the development of SUDs but also a persistent obstacle in

the path to recovery.
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5. Insights from preclinical models

As summarized above, there is strong evidence supporting causality for

cognitive deficits as a risk factor for SUDs and a consequence of substance

use that maintains harmful behavioral patterns. Both directions of causality

are accepted to be true. However, parsing the precise contributions of pre-

existing and substance-induced deficits to SUDs, and investigating the neu-

robiology underlying the two phenomena, remains a challenge. The use of

human subjects poses many roadblocks in the attempt to understand the

bidirectional relationship between cognitive dysfunction and SUDs due

to a multitude of factors, including the cross-sectional nature of most studies,

reliance on self-reports of prior substance use, and the sheer number of vari-

ables that must be controlled for. Preclinical studies in animal models,

though not without their own limitations, can provide further insight into

this relationship whereby a substance naive population can be studied lon-

gitudinally, while allowing complete experimenter control over the nature

of substance exposure and measurements of cognitive dysregulation. Here,

we review the wealth of preclinical literature that has contributed to our

understanding of this complex relationship and highlight the congruency

between animal and clinical studies.

6. Phenotypic predictors of SUD vulnerability
in animal models

While the majority of preclinical literature has examined neuro-

adaptations underlying drug-induced cognitive impairments, there has also

been substantial work probing the role of preexisting variation in a wide

array of behavioral traits as predictors of later drug and alcohol self-

administration behaviors. These investigations have implicated various

aspects of cognitive function such as response inhibition and cognitive flex-

ibility, corroborating and extending clinical findings linking preexisting

cognitive deficits with vulnerability to SUDs (for an overview of the tasks

used, see Fig. 2). Importantly, in preclinical studies history of substance use

is assured, rather than self-reported, and propensity for substance use can be

assessed independent from availability due to environmental factors.

As discussed previously, cognitive flexibility, a critical component of exec-

utive function that is broadly defined as the ability to make behavioral

381Bidirectional causality between addiction and cognitive deficits



Fig. 2 Behavioral tasks commonly used to assess cognitive function in rodents. Reversal
learning tests how quickly rodents can learn a contingency switch as a measure of cog-
nitive flexibility. In the delayedmatch/non-match to sample task, which is used tomeasure
workingmemory, animals are shown a sample stimulus and are required to remember the
sample throughout a delay period. To receive a reward, they must then return to the sam-
ple stimulus (delayed match to sample task) or avoid the sample (delayed non-match to
sample task). In delay discounting, animals choose between responding for a small reward
delivered immediately or a larger reward delivered after a delay period. Here, impulsivity is
measured by how strongly rewardmagnitude is discounted as a function of wait time. The
five-choice serial reaction time task can also be used to assess impulsivity. In this task, ani-
mals must withhold responding until the correct response is indicated by brief illumina-
tion of a port. Animals must quickly respond after the presentation and the frequency
of premature responses is used as a measure of impulsivity. Set shifting is a complex task
that requires the subject to learn a set of rules presented within complex stimuli (e.g., the
presence of parallel lines indicates the target stimulus) while ignoring irrelevant features
(e.g., the shape of the visual stimulus). Intradimensional shifts where the initial rule is
altered (e.g., perpendicular lines become the target) or extradimensional shifts where
the initial rule is replaced by an entirely new rule (e.g., stimulus shape becomes the rel-
evant feature) are introduced accross sessions and the animals’ ability to update behavior
is assessed as a measure of cognitive flexibility. Note that many variations of these tasks
exist, and exact methodologies can differ greatly.



adaptations in response to changing environmental contingencies (Ragozzino,

Detrick, & Kesner, 1999), is impaired in humans with AUD (Fein et al., 2006;

Goudriaan, Oosterlaan, Beurs, & Brink, 2006) and StUD (Ersche, Roiser,

Robbins, & Sahakian, 2008; Kim et al., 2006). In both humans and animals,

commonly used tests of cognitive flexibility include reversal learning and set

shifting (explained below). Importantly, evidence from lesion studies of

rodents, humans, and non-human primates indicate that performance on

these tasks is dependent on the OFC and dorsolateral PFC (medial PFC

in rodents) (Bissonette et al., 2008; Dias, Robbins, & Roberts, 1996a,

1996b; McAlonan & Brown, 2003), indicating that these cognitive con-

structs have validity for cross-species comparisons.

In animal models, reversal learning is typically assessed in tasks wherein

the animal learns that one type of response yields a reinforcer (e.g., food)

while the other yields a negative consequence (e.g., a timeout period where

food cannot be obtained or delivery of an electrical shock). After meeting a

learning criterion, typically a high percentage of correct responses, the con-

tingencies are then switched and the ability to quickly update behavioral

strategies to match the new rules is used as a measure of cognitive flexibility

(Fig. 2). Low cognitive flexibility indicated by poor performance in reversal

learning tasks predicts various aspects of drug-taking behaviors in multiple

model species [reviewed in (Izquierdo & Jentsch, 2012)]. For example, a

higher latency to reach criterion after a contingency switch (i.e., poor per-

formance) is associated with faster acquisition of cocaine self-administration

and higher administration rates across sessions in mice (Cervantes,

Laughlin, & Jentsch, 2013). Similarly, strain variation across recombinant

inbred mice shows phenotypic overlap between poor performance in

reversal learning and high levels of alcohol self-administration and cue-

induced reinstatement of alcohol seeking (Laughlin, Grant, Williams, &

Jentsch, 2011; Loos, Staal, Smit, De Vries, & Spijker, 2013). Together,

these findings provide further support for the idea that an impaired ability

to update responding following a contingency switch is a predictor of

heightened self-administration of both cocaine and alcohol.

Similarly, performance on set-shifting tasks is also predictive of future

aspects of substance use in preclinical models. In this task, animals learn

by trial and error to attend to a relevant cue in the environment (e.g., shape)

while ignoring irrelevant cues (e.g., color) in order to receive a food reward.

During an intradimensional shift, animals must maintain the attentional set

by learning to ignore a previously reward-paired stimuli (e.g., triangle) to
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attend to another stimulus within the same dimension (e.g., circle). This

attentional set is then challenged during the extradimensional shift wherein

a previously irrelevant dimension (e.g., color) is now relevant. Importantly,

this task can be easily applied across multiple species, including in humans as

a variation of theWisconsin Card Sorting Test, therefore presenting a highly

translatable approach (Brown & Tait, 2016). In nonhuman primates, lower

performance in set-shifting tasks is associated with higher overall preference

for alcohol, reduced latency to reach maximum alcohol consumption, and

higher overall intake (Shnitko, Gonzales, & Grant, 2019). While

these results provide strong evidence that relationships between cognitive

performance and SUD vulnerability can be faithfully recapitulated in a range

of models, relatively little preclinical work has focused on neural circuit

mechanisms mediating these effects prior to first drug use.

Response inhibition, the ability to suppress prepotent responses in order

to select more appropriate goal-directed behaviors (Diamond, 2013), has

been linked in both clinical and preclinical studies to measures of impulsiv-

ity, suggesting they may have similar underlying neural mechanisms (Dalley,

Everitt, & Robbins, 2011; Franken, van Strien, Nijs, & Muris, 2008; Horn,

Dolan, Elliott, Deakin, & Woodruff, 2003; Izquierdo & Jentsch, 2012).

Furthermore, like reversal learning performance, behavioral measures of

impulsivity also have well-studied relationships with aspects of SUD vulner-

ability in animal models, both for psychostimulants and alcohol [reviewed in

(Belin, Belin-Rauscent, Everitt, & Dalley, 2016; Winstanley, Olausson,

Taylor, & Jentsch, 2010)]. Performance in delay discounting tasks represents

one commonly utilized measurement of impulsivity in both clinical and

preclinical studies, which is shown to be predictive of aspects of substance

use (Vanderveldt, Oliveira, & Green, 2016). In this paradigm, impulsivity

is defined as the extent to which time reduces the subjective value (or reward

magnitude) of a reinforcer. This is typically assessed by allowing the choice

between a smaller reward that will be delivered immediately after the

choice is made, or a larger reward that is delivered after a delay period.

By varying the length of the delay, discounting of reward value as a func-

tion of time is assessed as a measure of impulsivity (Fig. 2) (Bizot, Le Bihan,

Puech, Hamon, & Thi�ebot, 1999; Thi�ebot, Le Bihan, Soubri�e, & Simon,

1985; Vanderveldt et al., 2016).

Early studies in the field found that impulsive performance in a delay dis-

counting paradigm predicts higher alcohol consumption in rats (Poulos,

Le, & Parker, 1995; Poulos, Parker, & Lê, 1998). Furthermore, when
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animals are selectively bred for alcohol preference, high-alcohol-preferring

mouse strains exhibit steeper delay discounting curves (i.e., small, immediate

rewards are preferred over large, delayed rewards), even when tested prior to

first alcohol exposure (Oberlin & Grahame, 2009; Wilhelm & Mitchell,

2008). Impulsivity can also be measured using the five-choice serial reaction

time task wherein an animal is required to select the correct nose-poke port

following a brief presentation of a visual cue indicating which option is

correct on that trial (typically a light in the response aperture), and withhold

responding during the intertrial interval to maximize the number of rein-

forcers earned. However, it should be noted that impulsivity in this task,

as measured by premature, anticipatory responses during the intertrial inter-

val, does not appear to be related to alcohol preference (Peña-Oliver et al.,

2015). Altogether, preexisting differences in impulsivity prior to alcohol

exposure are predictive of subsequent AUD-like phenotypes in preclinical

models, mirroring results in humans, but this relationship may be specific to

subdomains within impulsivity or to sensitive to the methodology used

to assess impulsivity.

Individual differences in impulsivity also map onto aspects of rodent psy-

chostimulant use. In this body of work, multiple subdomains of impulsivity

have been considered, such as attentional impulsivity/impulsive choice and

motor impulsivity/inhibitory failure [(Robinson et al., 2009); reviewed in

(Dalley et al., 2011)]. In rodents, attentional impulsivity is often defined

as steeper delay discounting curves, while motor impulsivity is typically

defined in reaction time tasks as high levels of anticipatory/premature

motor response behaviors prior to the presentation of stimuli indicating that

a reinforcer is available. For cocaine, high attentional impulsivity in delay

discounting predicts faster escalation of self-administration (Anker, Perry,

Gliddon, & Carroll, 2009; Perry, Larson, German, Madden, & Carroll,

2005; Perry, Nelson, & Carroll, 2008). Moreover, high motor impulsivity

in the five-choice serial reaction time task predicts risk to develop compul-

sive cocaine-taking in outbred rats (Belin, Mar, Dalley, Robbins, & Everitt,

2008; Dalley et al., 2007), mirroring the clinical findings (Nigg et al., 2006).

Impulsive performance in this task also correlates strongly with several facets

of pathology-like psychostimulant-taking behaviors, including extinction

resistance (Broos, Diergaarde, Schoffelmeer, Pattij, & De Vries, 2012), insen-

sitivity to punishment (Belin et al., 2008), as well as higher reinstatement of

cocaine-taking after punishment-induced abstinence (Economidou, Pelloux,

Robbins, Dalley, & Everitt, 2009).
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In sum, individual differences in motor and attentional components of

impulsivity appear to predict multiple aspects of drug-taking behavior across

substance classes. Specifically, variation in attentional impulsivity has a

strong relationship with the preliminary aspects of drug-taking, such as pref-

erence and escalation, while motor impulsivity predicts compulsive aspects

of drug-taking, such as persistent drug use despite negative consequences.

Collectively, these findings suggest that the two proposed components of

impulsive behavior are indeed dissociable and should likely be examined

separately. In further support of this notion, increased motor impulsivity

in the five-choice serial reaction time task fails to predict alcohol preference

(Peña-Oliver et al., 2015). Based on the above findings from the cocaine

literature, motor impulsivity may instead be associated with likelihood of

persistent alcohol seeking, though this remains to be tested. Overall, these

results provide strong support for the impact of underlying impulsivity

and cognitive inflexibility on vulnerability to addiction and highlight the

need for further research into the neurobiological mechanisms underlying

these relationships.

7. Substance-induced impairments in cognitive
function in animal models

Animal models have provided valuable insight into the nature of

substance-induced deficits in PFC function and associated cognitive deficits.

Importantly, these studies can definitively parse preexisting traits from

substance-induced deficits using longitudinal approaches where genetic

and environmental backgrounds can be fully observed and controlled.

Findings from this research have revealed that several facets of executive

function shown to be impaired in individuals with SUD including cogni-

tive flexibility (Chung et al., 2007; Errico, King, Lovallo, & Parsons, 2002;

Ersche et al., 2008), response inhibition (Goudriaan et al., 2006; Lawrence,

Luty, Bogdan, Sahakian, & Clark, 2009; Monterosso, Aron, Cordova,

Xu, & London, 2005), and working memory (Albein-Urios et al., 2012;

Ambrose, Bowden, &Whelan, 2001; Gonzalez, Bechara, &Martin, 2007),

are similarly disrupted in rodents and non-human primates following

exposure to substances of abuse.

Impaired cognitive flexibility has been observed in alcohol-exposed

rodents across ages of exposure, length of exposure, and withdrawal time

points. Chronic intermittent ethanol (CIE) exposure is a well-validated

model of alcohol dependence where subjects are exposed to multiple cycles
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of high concentrations of alcohol vapor followed by abstinence/withdrawal

periods (Avegno&Gilpin, 2019; Becker & Lopez, 2004; Gilpin, Richardson,

Cole, & Koob, 2008; Lopez & Becker, 2005; Vendruscolo &Roberts, 2013).

In rats, CIE exposure during adolescence produces set-shifting impairments

in adulthood, enhanced alcohol-seeking behavior, and volumetric reductions

in brain regions including the neocortex, thalamus, and hippocampus (Gass

et al., 2014). Similar studies conducted in both mice and rats have also rev-

ealed that CIE exposure causes impairments in set-shifting performance

assessed during brief abstinence (Kroener et al., 2012; Trantham-Davidson

et al., 2014) while studies involving voluntary alcohol drinking have revealed

reversal learning deficits in rats assessed following more prolonged abstinence

periods (Charlton et al., 2019). Notably, these reversal learning deficits coin-

cided with significant cortical cell loss in the OFC, medial PFC, and motor

cortex (Charlton et al., 2019).

Similar to alcohol, exposure to psychostimulants produces persistent

impairments in cognitive flexibility in rodents and non-human primates.

In monkeys, both short-term (2weeks) or long-term (�5years) exposure

to experimenter-administered or self-administered cocaine, respectively,

induced deficits in reversal learning (Gould, Gage, &Nader, 2012; Jentsch,

Olausson, De La Garza, & Taylor, 2002). Interestingly, deficits in reversal

learning following short-term exposure to cocaine were still evident after a

month of abstinence ( Jentsch et al., 2002). These findings are in agreement

with studies in rats in which experimenter-administered or self-administered

cocaine led to reversal learning deficits which persisted 1–3months after drug

cessation (Calu et al., 2007; Schoenbaum, Saddoris, Ramus, Shaham, &

Setlow, 2004). Notably, the degree of reversal learning impairment induced

by cocaine was indistinguishable from that induced by bilateral OFC lesions

(Calu et al., 2007; Schoenbaum et al., 2004; Schoenbaum, Setlow, Nugent,

Saddoris, &Gallagher, 2003), suggesting that psychostimulants result inOFC-

mediated deficits in cognitive flexibility in both rodents and non-human pri-

mates. In addition, performance on tasks of cognitive flexibility thought to be

primarilymediated by themedial PFC (i.e., set shifting) are similarly disrupted

in psychostimulant-exposed rodents. For example, in rats, methamphetamine

self-administration induced set-shifting deficits that were comparable to those

observed in animals with lesions to the dorsomedial PFC (Parsegian, Glen,

Lavin, & See, 2011). Although it is tempting to conclude from any set of stud-

ies that drug-induced deficits in cognitive function can be localized to a single

brain region, it is much more likely that deficits in the function of many

regions converge to produce rigid behavioral strategies.
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In addition to deficits in cognitive flexibility, animal models have also

faithfully reproduced substance-induced deficits in working memory com-

monly observed in individuals with AUD and StUD during protracted absti-

nence (Chanraud et al., 2007; Fein et al., 2006; Gonzalez et al., 2007;

Goudriaan et al., 2006; Rendell, Mazur, &Henry, 2009).Working memory

refers to a cognitive system that allows for the temporary storage and manip-

ulation of limited amounts of information required to perform complex cog-

nitive tasks including planning, reasoning, and problem-solving (Cowan,

2014). Lesion studies in rodents and non-human primates have revealed that

working memory is dependent on the dorsolateral PFC (medial PFC in

rodents) (Tsutsui, Oyama, Nakamura, & Iijima, 2016). In both humans

and animals, delayed match to sample and delayed non-match to sample

tasks are commonly used to assess working memory performance. These

tasks can vary significantly in exact methodology (Fitz, Gibbs, & Johnson,

2008; George et al., 2012; George, Mandyam, Wee, & Koob, 2008;

Herndon, Moss, Rosene, & Killiany, 1997; Porter et al., 2011), but typically

involve presenting the subject with a stimulus (in rodents this is often one

arm of a T-maze) referred to as the sample. In a delayed match to sample

task, the subject must then remember the sample stimulus through a given

delay period before returning to the sample stimulus to receive a reward. In a

delayed non-match to sample task, to receive a reward the subject must

avoid the sample stimulus (for example by choosing the opposite arm of

the T-maze) (Fig. 2). A similar task, termed spontaneous alternation, is also

commonly used in rodents and relies on novelty rather than a food reward to

reinforce behavior (Hughes, 2004).

Inmice, voluntary alcohol drinking produced persistent deficits in work-

ingmemory (Dominguez et al., 2017). Notably, these deficits were only evi-

dent in animals that underwent a prolonged period of abstinence and not

those with continued alcohol access at the time of testing (Dominguez

et al., 2017). Impairments in working memory performance have also been

observed in rats on a delayed non-match to sample task during acute absti-

nence after intermittent, but not continuous, access to alcohol; however,

these deficits were no longer apparent when tested during more prolonged

abstinence periods (George et al., 2012). These findings suggest that alcohol-

induced deficits in working memory in rodents may be most pronounced

during acute withdrawal, as compared to during maintenance of drinking,

but dissipate over protracted abstinence.

Regarding psychostimulants, long-term cocaine self-administration in

non-human primates induced deficits on a delayedmatch to sample task when

tested during acute abstinence (Porter et al., 2011). Furthermore, escalation of
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cocaine intake during extended access cocaine self-administration in rats was

associated with working memory deficits on a delayed non-match to sample

task, while limited access self-administration was not (George et al., 2008).

Working memory deficits during protracted abstinence from cocaine corre-

lates with a lower density of neurons and oligodendrocytes in the dorsomedial

PFC and oligodendrocytes in the OFC (George et al., 2008). As mentioned

earlier, deficits in executive functions including working memory gradually

improve with extended abstinence in human cocaine users (Vonmoos et al.,

2014). Several studies in rodents and non-human primates have also rev-

ealed improvements in cocaine-induced working memory deficits follow-

ing prolonged abstinence. For example, persistent impairments in working

memory on a delayed alternation task, a measure of spatial working mem-

ory, were observed following short-term cocaine self-administration in rats

that dissipated after 6weeks of abstinence (Fijał, Nowak, Le�skiewicz,
Budziszewska, & Filip, 2015). Additionally, non-human primates with

long-term exposure to self-administered cocaine displayed improvements

in working memory on a delayed match to sample task by 30days of absti-

nence (Gould et al., 2012).

Taken together, these findings indicate that both alcohol and psy-

chostimulant exposure across multiple animal models can induce significant

impairments in PFC-mediated executive functions. This is consistent with

clinical studies in humans that have found that individuals with SUDs com-

monly display signs of executive dysfunction and confirms that prolonged

substance abuse induces cognitive deficits in addition to those that may

be preexisting. In several animal studies, substance-induced impairments

were comparable to those observed in animals that received selective damage

to regions of the PFC that subserve these functions. Furthermore, multiple

animal studies reported substance-induced impairments coincident with loss

of cortical volume and reductions in cellular density in the PFC (Charlton

et al., 2019; Gass et al., 2014; George et al., 2008), consistent with clinical

observations (Fein et al., 2002; Kim et al., 2006; Le Berre et al., 2014). This is

in agreement with studies revealing that individuals with SUDs display

reduced markers of neuronal integrity and viability in the frontal lobe and

PFC (Chang, Ernst, Strickland, & Mehringer, 1999; Ernst, Chang,

Leonido-Yee, & Speck, 2000; Xia et al., 2012) as well as reductions in brain

volume and density in these regions (Hanlon et al., 2011; Matochik,

London, Eldreth, Cadet, & Bolla, 2003; Nakama et al., 2011; Pfefferbaum

et al., 1998; Pfefferbaum, Sullivan, Mathalon, & Lim, 1997). This suggests

that substance-induced alterations to cognitive performance in animal

models is associated with morphological and functional alterations to PFC
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with a high degree of similarity to alterations observed in individuals with

SUDs, further supporting the utility of animal models for mechanistic inves-

tigations of these phenomena.

Notably, the aforementioned animal studies utilized a variety of methods

to expose animals to alcohol and psychostimulants, and there is significant

debate within the field as to which methods are most relevant for human

addiction. While there is extensive nuances in the models used, and even

how the same model/procedure is performed between laboratories, one

major distinguishing feature is whether the drug is used voluntarily (i.e.,

the animal chooses to consume the drug, by pressing a lever to activate a

syringe pump or licking a spout) or non-voluntarily (i.e., the experimenter

chooses if the animal is exposed, via injection or filling the homecage with

vaporized drug). It is clear that the complexities of SUDs cannot be captured

in a single animal model, and that diversity of models to address specific

aspects of SUDs is a strength of the preclinical literature. That said, the dif-

ferential impact of various exposure methods on behavioral and neuronal

function is not trivial. Indeed, contingent vs. non-contingent drug exposure

can produce distinct neuroadaptations and cognitive deficits (Schweppe

et al., 2020; Wiskerke, Schoffelmeer, & De Vries, 2016). Taken together,

the ability to specifically isolate and test specific aspects of SUDs is a unique

strength of animal models, but the validity and caveats of these procedures

should continue to be a matter of discussion and results that are consistent

across models should be emphasized.

8. Circuit mechanisms of substance-induced cognitive
deficits

As summarized in the sections above, the structure and function of

PFC is heavily impacted by psychostimulant and alcohol exposure.

Animal models provide an avenue to investigate the specific neural circuits

and transmitter systems involved in these adaptations at the cellular and

molecular level (Siciliano & Tye, 2019; Spanagel, 2017). The degree of sim-

ilarity in the behavioral impact of chronic drug use in humans and animals,

discussed above, gives confidence that these models are appropriate for

investigating the neurobiology underlying these phenomena. Here we pro-

vide a brief overview of circuit-specific drug-induced adaptations that have

been linked to cognitive deficits in animal models and highlight further

convergence with findings in human subjects.
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The mesolimbic dopamine system has been extensively implicated in the

reinforcing and rewarding aspects of drugs and alcohol as well as craving and

seeking (Di Chiara & Imperato, 1988; Nestler, 2005; Siciliano, Calipari,

Ferris, & Jones, 2015). In contrast, mesocortical dopamine projections that

originate in the midbrain and terminate in the PFC are believed to serve a

crucial role in many cognitive processes and in deficits induced by chronic

psychostimulant or alcohol use. The PFC, which is composed mostly of

glutamatergic pyramidal neurons and GABAergic interneurons, relies on

a balance of excitatory and inhibitory neurotransmission for normal physi-

ological and cognitive function. Activity in both of these cell types is mod-

ulated via release of dopamine from presynaptic terminals arising from cell

bodies in the midbrain. Once released, dopamine acts on D1 and D2-type

dopamine receptors located both postsynaptically on interneurons and pyra-

midal neurons and presynaptically on cortical inputs from upstream regions

and interlaminar lateral connectivity (Benes & Berretta, 2001; Gao,

Krimer, & Goldman-Rakic, 2001; Paspalas & Goldman-Rakic, 2005;

Seamans & Yang, 2004; Vander Weele, Siciliano, & Tye, 2019). Human

neuroimaging studies have consistently demonstrated that individuals with

SUDs exhibit abnormal patterns of PFC activity under baseline conditions,

while performing cognitively demanding tasks, and during exposure to

drugs and drug-associated cues that often differ between subregions (Bolla

et al., 2003; Childress et al., 1999; Ersche et al., 2005; Goldstein et al.,

2007; Goldstein & Volkow, 2002; Grant et al., 1996; Kilts et al., 2001;

London, Ernst, Grant, Bonson, &Weinstein, 2000; Paulus et al., 2002; Salo

et al., 2009; Volkow et al., 1992, 2005). For example, stimulant-dependent

individuals commonly display greater activation in the OFC and reduced

activation in the medial and dorsolateral PFC during decision making tasks

(Bolla et al., 2003; Ersche et al., 2005). Such observations may be due, in

part, to substance-induced alterations in dopamine signaling (Volkow et al.,

2001, 1993, 1996) and further evidence suggests that preexisting variation

in dopamine signaling may confer susceptibility or resiliency to SUDs in

humans (Volkow et al., 2006).

In animal models, dysregulated dopamine release and receptor function

in the medial PFC is associated with impairments in multiple cognitive

domains including working memory, cognitive flexibility, and decision

making (Floresco, 2013). Notably, mesolimbic and mesocortical dopamine

neurons undergo contrasting plasticity after exposure to substances of abuse

(Lammel, Ion, Roeper, & Malenka, 2011). Growing evidence suggests that

391Bidirectional causality between addiction and cognitive deficits



alterations in dopamine release in the PFC in conjunction with a reduced

ability of dopamine receptors to modulate neuronal activity in this region

are a major factor mediating substance-induced deficits in executive func-

tion. For example, chronic alcohol exposure is associated with reduced fir-

ing of midbrain dopamine neurons and decreased dopamine transmission in

the dorsolateral PFC, medial PFC, and OFC (Narendran et al., 2014;

Trantham-Davidson & Chandler, 2015) whereas repeated exposure to

methamphetamine is associated with progressive cell death and reductions

in dopamine terminal density in the medial PFC (Kadota & Kadota, 2004).

Amphetamine and cocaine have also been demonstrated to reduce the

influence of midbrain dopamine neuron activation on postsynaptic excit-

ability in medial PFC neurons (Nogueira, Kalivas, & Lavin, 2006; Tse,

Cantor, & Floresco, 2011). Together these data suggest that alcohol and

psychostimulants significantly disrupt dopaminergic regulation of the PFC.

Moreover, reduced expression and impaired function of dopamine receptor

subtypes in the medial PFC have been linked to deficits in executive function

in cocaine and alcohol-exposed rodents during abstinence (Briand et al.,

2008; Trantham-Davidson et al., 2014). These substance-induced deficits

are likely mediated, in part, by impaired dopamine receptor modulation of

excitatory inputs to the PFC. For example, repeated amphetamine exposure

has been shown to diminish the ability of D1 and D2 receptors to modulate

basolateral amygdala inputs to medial PFC during abstinence in rodents that

exhibited impaired decision making (Tse et al., 2011). Similar alterations may

also disrupt hippocampal- PFC circuits involved in working memory

(Seamans, Floresco, & Phillips, 1998).

Changes in dopaminergic activity as well as many other systems converge

to ultimately produce dysregulated and aberrant activity of cortical neurons.

Indeed, methamphetamine- induced alterations in neuronal firing patterns

in the dorsomedial PFC have been associated with impaired set-shifting per-

formance and enhanced drug seeking (Parsegian et al., 2011) while rescue of

cocaine-induced reductions in medial PFC excitability decreased compulsive

drug-taking behavior (Chen et al., 2013). Similarly, rescue of cocaine-

induced reductions inOFC excitability ameliorates deficits in Pavlovian sum-

mation in rats, thought to be a measure of insight or reasoning (Lucantonio

et al., 2014). Interestingly, activity and synaptic connectivity in distinct PFC

subregions are uniquely affected by psychostimulants such as cocaine and

amphetamine. For example, repeated exposure to amphetamine produced

enhanced inhibitory and excitatory responses in the medial PFC and OFC,

respectively, that were associated with progressive impairments in
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instrumental responding (Homayoun&Moghaddam, 2006). Furthermore,

amphetamine and or cocaine exposure increase the number of dendritic

branches and the density of dendritic spines on pyramidal neurons in

the medial PFC and medium spiny neurons in the nucleus accumbens,

effects that are still evident after a month of abstinence (Crombag, Gorny,

Li, Kolb, & Robinson, 2005; Robinson, Gorny, Mitton, & Kolb, 2001;

Robinson & Kolb, 1997, 1999). This is in contrast to the OFC where

amphetamine reduces spine density (Crombag et al., 2005). Mirroring find-

ings in clinical studies examining risk factors for SUDs (Baranger et al., 2020),

the activity in medial PFC during initiation of alcohol use is a marker of com-

pulsive drinking vulnerability in mice (Siciliano et al., 2019).

One plausible take away from these findings is that substance-induced

alterations to PFC structure and function commonly found in SUDs are,

in part, a consequence of impaired dopamine neuromodulation of PFC neu-

ronal networks and region-specific changes in synaptic connectivity. The

combined influence of these changes could drastically impact excitatory

drive in the PFC leading to behavioral inflexibility and impaired decision

making that may ultimately undermine rehabilitation efforts and increase

risk of relapse. While preclinical studies have consistently demonstrated that

executive functions are compromised in a variety of animal models follow-

ing both short- and long-term exposure to alcohol and psychostimulants, a

more robust understanding of the neural circuitry involved and how

substance-induced neuroadaptive changes evolve over time is needed.

9. Concluding remarks

While animal studies have greatly expanded our knowledge of the cir-

cuit mechanisms mediating drug and alcohol-induced cognitive deficits, this

realm is dramatically understudied in the preclinical literature in comparison

with drug-taking and seeking processes. Both clinical and preclinical studies

are needed to develop a comprehensive understanding of how addiction

impacts the brain to elucidate what areas of cognition are both predictive

of subsequent use and most affected by continued use. Extensive clinical

research so far has cogently demonstrated that PFC-mediated executive dys-

function and impulsivity are most heavily impacted by continued substance

use, and cross-sectional work further indicates dysfunction in these faculties

may confer individual vulnerability to SUD development, particularly dur-

ing adolescence when substance use is most often initiated. Meanwhile,

preclinical studies can effectively recapitulate these phenotypes in animal
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models, allowing us to address questions of causality, illuminate underlying

mechanisms, as well as characterize the longitudinal nature of these deficits.

However, there is still much we do not understand. While years of

research have illuminated how drugs of abuse hijack natural reinforcement

circuitry and drive maladaptive behaviors, there is still a lack of understand-

ing why only a subset of individuals that experiment with these drugs will go

on to develop an addicted phenotype. There is a strong need for more lon-

gitudinal work from the clinical research side, which contends with issues of

subject recruitment and continued retention, to understand the complex

and bidirectional factors that lead an individual to develop these problem-

atic patterns of use and identify how substances can confer vulnerability

to relapse through exacerbated executive dysfunction. Understanding

the longitudinal nature of these cognitive deficits, both prior to and after

exposure, can then inform experimental design in the preclinical realm,

and lead to greater understanding and enhanced treatment development.

Additionally, in the preclinical field, much work is needed to delineate the

distinct nature of the relationships among the various classes of drugs and

across the lifespan. Due to technical limitations, including issues with eco-

logical validity in behavioral task design and lack of complete understand-

ing for the mechanisms of these functions, While there is much more work

that needs to be done, communication between preclinical and clinical

researchers will be critical in the search for potential treatments for this

set of disorders.
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