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Abstract

We study how Artificial Intelligence (AI) technology relates to the returns to college ma-

jors. Using micro data from Denmark, we first rank college majors according to whether

their graduates work in AI firms. We show that AI cuts through the category of STEM de-

grees: while computer science and mathematics majors specialize in AI producer firms, we

find that the laboratory sciences concentrate in firms that only use AI. We document that

AI producer relevance correlates with higher wages, and that these earnings premiums are

rising. In contrast, AI user majors do not earn wage premiums, nor have experienced dif-

ferential earnings growth. Using a regression discontinuity design, we estimate the causal

effects of admitting students to more AI relevant college majors. We find that admission

cutoffs are effective in increasing the AI relevance of college graduates. The causal earnings

gain from higher AI producer relevance is at least as large as the correlation.

*Princeton University, Department of Economics, humlum@princeton.edu.
†University of Copenhagen, Department of Economics, bjorn.bjornsson.meyer@econ.ku.dk.

1

mailto:humlum@princeton.edu
mailto:bjorn.bjornsson.meyer@econ.ku.dk


1 Introduction

New technologies are a source of improved living standards, but may also pose risks of widen-

ing skill gaps and greater inequality. Today, Artificial Intelligence (AI) is one of the most

salient technology arrivals, and its impact on labor markets is highly anticipated.

Artificial Intelligence, or Machine Learning, refers to algorithms that learn to complete

tasks by identifying statistical patterns in data. AI is poised to be the next General Purpose

Technology that will sweep through a wide range of industries (Brynjolfsson et al., 2018; Gold-

farb et al., 2019). A distinctive feature of AI is that it may create winners and losers within

the group of highly educated workers. While AI algorithms are being developed and imple-

mented by specialized computer and data scientists, these same algorithms may be able to au-

tomate tasks done by other high-skilled workers, such as chemical engineers or optometrists

(Webb, 2020).

In this paper, we document what types of college skills firms that use or produce AI em-

ploy. We view a college major as a set of skills that may be more or less relevant to work

with AI. Using micro data from Denmark, we rank college majors according to their share of

graduates that work in AI firms. Using these AI relevance rankings, we establish new facts

about the college majors that work in AI firms, and we leverage an admission cutoff regres-

sion discontinuity (RD) design to estimate causal effects of pushing students toward more AI

relevant degrees.

Our first key finding is that AI cuts through the group of Science, Technology, Engineer-

ing, and Mathematics (STEM) degrees. While computer science and mathematics majors spe-

cialize in AI producer firms, we find that biology, chemistry, and other laboratory sciences

concentrate in firms that only use AI. We find that AI producer relevance is correlated with

higher earnings in the labor market and that these earnings premiums have increased in recent

years. In contrast, we find that AI user majors do not earn higher wages, nor have experienced

differential earnings growth recently.

Our second contribution is to provide causal evidence on an often discussed policy re-

sponse to AI, that is to adjust the supply of different college majors (President’s Council of

Advisors on Science and Technology, 2012; Trajtenberg, 2018). In Denmark, admission to col-

lege majors is based on high school GPA cutoffs. These admission cutoffs naturally give rise

2



to a regression discontinuity (RD) design, comparing outcomes of applicants around cutoffs

for AI relevant majors. The RD analysis delivers two key insights. First, we find that it indeed

is possible to push marginal students to obtain more AI relevant skills. Many students ap-

ply to majors of widely differing AI relevance, and the cutoffs create discontinuous jumps in

admission rates to these programs. We find that students comply with these discontinuities,

such that an applicant just above a cutoff has a discontinuously higher chance of graduating

in that major. Second, using these discontinuities in college major attainment rates, we find

that earnings premiums from random assignment to higher AI producer relevance are as large

as those suggested by the correlation. In contrast, we find that the returns to higher AI user

relevance is a precisely estimated zero. These estimated causal effects are informative about

policies that aim to increase the AI relevance of college students by adjusting the admission

capacity of different college majors.

We make a methodological contribution in this paper by proposing new measures of the

exposure of college majors to AI. A key advantage of our measures, which we microfound

in task-based theories of AI, is that they rely on revealed and objective information only. We

correlate our revealed measures with characteristics of the college majors to shed light on

the types of skills that are relevant for AI. First, using linked patent-occupation data from

Webb (2020), we find that application-specific breakthroughs in AI are a key driver of the AI

user relevance of different college majors. Second, we find that a core in programming or

mathematics is a necessary ingredient for work with AI production. We do not find evidence

that interpersonal skills alone qualify for work with AI, as social science and the humanities

rank as the least relevant majors for AI firms. Our measurement approach does, however,

require very detailed micro data on both AI technology by firms and the college majors held

by workers. We leverage here the unusually rich data available in the Danish setting, where

we can link register data on college diplomas of workers with a novel survey of AI production

and use by firms.

This paper combines insights from two strands of literature. The closest related work is a

recent set of papers that provide evidence on how AI relates to the demand for worker tasks

(Alekseeva et al., 2019; Goldfarb et al., 2019; Webb, 2020). We make two contributions to this

line of work. First, we use new micro data from Denmark to rank college majors according

to their relevance for AI firms. Second, we adopt an admission RD design to estimate the
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causal returns to AI relevant skills. Admissions cutoffs have been used successfully in the

literature on the returns to college field choice (Hastings et al., 2013; Kirkeboen et al., 2016). We

complement these papers by linking college majors to a specific technology using a continuous

measure that goes beyond traditional divisions of fields of study.

The remainder of the paper is structured as follows. Section 2 explains how we rank college

majors according to AI relevance. Section 3 uses the AI relevance rankings to document facts

about the college majors employed in AI firms. Section 4 conducts the admission regression

discontinuity analysis. Section 5 concludes.

2 Measuring the AI Relevance of College Majors

In this section, we rank college majors according to their share of graduates that work in AI

firms, a measure we call “AI relevance”. To measure AI relevance, we link a novel survey of

AI production and use by firms (described in Section 2.1) to register data on college diplomas

of workers (described in Section 2.2). In Section 2.3, we relate the AI relevance measures to

task-based theories of AI.

2.1 Firm Survey on Artificial Intelligence

Our micro data on AI comes from the representative VITA firm survey conducted by Statistics

Denmark in 2017. The survey questions were prepared in collaboration with the Danish Busi-

ness Authority as a supplement to Eurostat’s technology survey. The survey sampled 3,890

firms from the population of private non-agricultural, non-financial firms with more than 10

employees. The response rate was 97 percent, and the surveyed firms covered 27 percent of

total employment in Denmark.

Figure 1 shows the questionnaire on Artificial Intelligence. AI is defined as “computer

software that “thinks”, analyzes, solves problems, and recognizes patterns in data”, and ex-

amples include computer-generated annual reports, chatbots, or automated marketing. Firms

were asked if they used AI in-house and whether they sold products or services containing

AI technology.
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Figure 1: Firm Survey on Artificial Intelligence

Among the surveyed firms, 2.2 percent answered ‘yes’ to selling AI-augmented products

or services. AI producers employ 5.9 percent of workers, and 13.7 percent of college graduates.

While most AI producers also use AI (70 percent), only a third of AI users sell AI-augmented

products. For this reason, we will distinguish between firms that produce AI (henceforth, “AI

producers”) and those that use, but do not produce, AI (henceforth, “AI users”). Among the

surveyed firms, 3.0 percent use, but do not produce AI. The AI users employ 10.3 percent of

workers, and 18.9 percent of college graduates. Warzynski (2020) provides additional descrip-

tives on the sample of AI using firms, studying how AI adoption correlates with firm industry,

productivity, and workforce composition. In this paper, we use the AI survey to rank college

majors according to their relevance for AI firms, which we turn to next.

2.2 Linking the AI Survey to College Diplomas

To calculate AI relevance, we first merge the AI survey to the employer-employee link file

of the Integrated Database for Labor Market Research (IDAN). IDAN links the population of

workers to the universe of firms in November of each year, allowing us to identify employees

in AI firms. We then merge in worker diplomas from the Education Register of Statistics

Denmark, allowing us to calculate the share of college majors that work in AI firms.

A bachelor” degree in Denmark is a three year major-specific program, but most students

enroll in a two-year master’s degree directly following their bachelor’s studies. College edu-

cation is rather specialized in Denmark with 226 distinct major (AUDD) categories. To increase

the measurement accuracy of the AI relevance scores, we pool graduating cohorts of each ma-

jor into 10-year intervals. Furthermore, to reduce noise from very small cells, we require that

at least 100 graduates of a college major be present in the VITA survey before assigning the
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major an AI relevance score. For majors that do not meet this minimum criterion, we go up

one level of aggregation up (75 different categories) and assign them the more aggregated AI

relevance score of this category. In calculating the AI relevances, we use the survey weights

provided by Statistics Denmark to ensure that the distribution of survey firms reflects the

population of firms in Denmark.

2.3 A Micro Foundation for the AI Relevance Measures

How do our AI relevance measures relate to the task-based concepts of automation empha-

sized in the theoretical literature on AI? Using a task-based model of production, Acemoglu

and Restrepo (2018) show that AI have three distinct effects on labor demand: (i) a negative

displacement effect in the production tasks that AI automates, (ii) a positive reinstatement effect

in the worker tasks that are needed to facilitate AI technology, and (iii) a positive productivity

effect stemming from cost savings in the tasks that AI can do more efficiently than humans.

In Appendix B, we build on these insights to derive the following theoretical implications:

(i) AI user relevance is the theory-consistent measure of a college major’s exposure to AI’s

displacement effects, (ii) AI producer relevance is the theory-consistent measure of a college

major’s exposure to the reinstatement effects of AIs, and (iii) AI’s productivity effects raise the

demand for workers uniformly, and thus cancel out when we compare the relative wages for

different skill groups.

3 Stylized Facts on Artificial Intelligence and College Majors

In this section, we use the AI relevance rankings from Section 2 to document a series of facts

about the college majors that are employed in AI firms. Our first key finding is that AI cuts

through the group of Science, Technology, Engineering, and Mathematics (STEM) majors.

While computer science and mathematics majors specialize in AI producer firms, the labo-

ratory sciences concentrate in firms that only use AI. Our second set of facts concern the wage

premiums that accrue to AI relevant majors. We find that AI producer majors earn higher

wages and that these earnings premiums have increased in recent years. In contrast, we find

that AI user majors do not earn higher wages, nor have experienced differential earnings

growth recently.
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Fact 1: Artificial Intelligence Cuts Through the STEM Degrees

Figure 2 shows a scatter plot of college majors according to their AI relevance. The figure

highlights three key characteristics of AI relevant majors. First, computer science, mathemat-

ics, and physics are the most relevant majors for work with AI production. Second, biology,

chemistry, and other laboratory sciences are highly concentrated in firms that only use AI.

Reflecting this divide between the mathematical and laboratory sciences, engineering is also

highly polarized with chemical engineers employed in AI using firms and robotics engineers

employed with AI producers. Finally, the Arts and Humanities are the least relevant majors

for both AI using and AI producing firms.

Figure 2: AI Relevance of College Majors

Notes: This figure plots the AI shares of college majors, defined as the fraction of college major grad-
uates that work in AI user/producer firms. Majors are colored according to their one-digit Interna-
tional Standard Classification of Education (ISCED) code.

What drives the high relevance of biology and chemistry majors to AI user firms? One

hypothesis is that AI has experienced technical breakthroughs in tasks that laboratory scien-
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tists traditionally carry out. Following on this idea, Webb (2020) links AI patents to job task

descriptions and finds that important applications of AI relate to the automation of tasks by

clinical laboratory technicians and chemical engineers. To shed light on this hypothesis, Fig-

ure 3 correlates the AI user relevance of a college major with its share of graduates that work

in jobs with extreme exposure to AI applications as measured by Webb (2020). The strong pos-

itive correlation lends clear empirical support to the hypothesis that technical breakthroughs

in AI applications are important determinants of the AI user relevance of different college ma-

jors. In comparison, Appendix Figure A.1 shows that AI producer relevance is not correlated

with exposure to AI applications.

Figure 3: Share Employed in Jobs with Extreme Exposure to AI Applications (Webb, 2020)

Notes: This figure shows the share of workers employed in occupations with extreme ex-
posure to AI applications by AI user relevance of their college major. Extreme exposure
to AI applications is defined as occupations (6-digit ISCO08) with AI exposure scores of
95/100 or above. See Webb (2020) for details about the AI exposure measure. Majors are
colored according to their one-digit ISCED code; see Figure 2 for a color description. For
the estimated slope coefficient, college majors are weighted by their number of gradu-
ates, and standard errors are clustered by college majors. Appendix Figure A.1 shows the
corresponding figure by AI producer relevance.

What characterizes the college majors that are employed in AI producer firms? Inspec-

tion of Figure 2 suggests that a strong core in computer programming or mathematics may
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be a necessary ingredient for AI producer relevance. However, when combined with IT ca-

pabilities, business skills seems to be a complement in AI production. For example, majors

that combine business with computer science or informatics rank in the top of AI producer

relevance. Interestingly, among the top 10 for AI producer relevance, business law is the

only major that does not include a strong quantitative component. This could suggest that

AI production requires the support services of legal experts to navigate the unchartered legal

territory that surrounds AI applications.

Finally, we do not find evidence that interpersonal skills alone qualify for work with AI,

as otherwise often proclaimed in public debate (Trajtenberg, 2018; World Economic Forum,

2018). In fact, we find that social science and humanities are the least relevant majors for work

in AI firms.

Fact 2: AI Producer Majors Earn Higher Wages, AI Users Do Not

Figure 4.(a) shows that AI producer relevance is strongly correlated with higher starting

salaries when entering the labor market. A standard deviation increase in AI producer rel-

evance (6.4 pp) is associated with about $4,100 higher annual starting salary, and the rela-

tionship is linear throughout the distribution of AI producer relevances. In contrast, Figure

4.(b) shows that starting salary does not share a similar linear relationship to AI user rele-

vance. While extremely low AI user relevance (as for the Arts and Humanities) is associated

with lower earnings, extremely high AI user relevance (as for the laboratory sciences) are not

associated with correspondingly higher earnings. In fact, once we drop the Arts and Human-

ities from Figure 4.(b), there remains no statistically significant correlation between AI user

relevance and starting salary of college graduates.

9



Figure 4: Starting Salaries in 2016

(a) By AI Producer Relevance of College Major (b) By AI User Relevance of College Major

Notes: This figure shows the average starting salaries of college graduates by AI relevance of their major. Starting
salary is defined as salary eight years after the start of a bachelor’s degree. Salary includes wage compensation
for employees and net profits for self-employed. Zero incomes are included. Salary is measured in 1,000 US
dollars, using an exchange rate of 5.85 Danish Kroner per US dollar. For the estimated slope coefficients, college
majors are weighted by their number of graduates, and standard errors are clustered by college majors. Majors
are colored according to their one-digit ISCED code; see Figure 2 for a color description.

The earnings premium for AI producer skills is consistent with Alekseeva et al. (2019),

who use job posting data from the United States to document large wage premiums for AI-

specific programming skills such as proficiency in the machine learning packages TensorFlow

and PyBrain. In Appendix Table A.1, we show that the earnings premiums of AI relevance

are shared across workers with a given college major, and not confined to workers in AI firms

only. This finding highlights the importance of studying AI earnings premiums throughout

the economy, and not just in AI firms.

Finally, in Appendix Figure A.2, we document a sharp gender divide in the AI relevant

majors, wherein men select into AI producer majors, and women select into AI user majors.

For example, in the computer science degrees that are relevant for AI producers, less than ten

percent of students are female. The gender divide persists within STEM degrees and suggests

that an expansion of college majors according to AI relevance alone could exacerbate existing

gender gaps in higher education and labor market outcomes.
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Fact 3. Wage Premiums Are Rising for AI Producer Majors, Not for AI Users

To probe the timing of AI technology, Figure 5 shows that the number of Google searches on

“machine learning” increased by a six-fold from 2012 to 2017.

Figure 5: Google Searches on “Machine Learning”

Notes: This figure shows the number of monthly Google searches on “machine learning”
in the United States from January 2010 to January 2020. The units are normalized such
that the maximum monthly search activity takes a value of 100.

Motivated by this recent rise of interest in AI, Figure 6 plots the growth in starting salaries

of college major cohorts from 2012 to 2016. Salaries are deflated using the CPI with 2015 as the

base year. Panel (a) shows that AI producer majors have experienced excess earnings growth

since 2012. A standard deviation higher AI producer relevance (6.4 pp) is associated with 0.4

percent points higher annual growth in starting salaries. In contrast, Panel (b) shows that AI

user majors have not experienced differential earnings growth in recent years.

Thus, if AI producer relevance captures exposure to AI’s task reinstatement effects as im-

plied by our theory in Appendix B, then Figure 6.(a) suggests that these positive impacts are

already beginning to show in the starting salaries of college majors. In contrast, if AI user rel-

evance captures exposure to AI’s task displacement effects, then Figure 6.(b) shows that large

negative displacement impacts of AI are yet to manifest themselves in starting salaries.

In Appendix Figure A.3, we replicate Figure 6 for an earlier period of years (2007-2012),

11



showing that the differential earnings growth of AI producer majors is a recent phenomenon

closely linked in time to the recent take-off in machine learning. This finding is consistent

with Alekseeva et al. (2019), who document that the share of AI-skills in total job postings

in the United States doubled from 2012 to 2016. Having said that, we want to emphasize

that earning growth from 2012 to 2016 accounts for less than 20 percent of the observed level

differences in earnings across AI producer relevance documented in Figure 4. Put differently,

AI producer relevant skills have always been rewarded in the labor market, but the evidence

presented here suggests that AI may have exacerbated these inequalities.

Figure 6: Annualized Growth in Starting Salaries from 2012 to 2016

(a) By AI Producer Relevance of College Major (b) By AI User Relevance of College Major

Notes: This figure shows the average annualized growth rates in starting salaries of college graduates from
2012 to 2016 by AI relevance of their major. Starting salary is defined as salary eight years after the start
of a bachelor’s degree. Salary includes wage compensation for employees as well as net profits for self-
employed. Salaries are deflated using the CPI with 2015 as the base year. Zero incomes are included. For
the estimated slope coefficients, college majors are weighted by their number of graduates, and standard
errors are clustered by college majors. Majors are colored according to their one-digit ISCED code; see
Figure 2 for a color description.

We view the evidence presented in Figure 6 as consistent with Brynjolfsson et al. (2018),

who observe that firms currently are undertaking significant investments into AI, but hypoth-

esize that the productivity gains from these investments may only arrive with a delay. The

investment activities are already generating positive reinstatement effects for AI producers

(Figure 6.(a)), but the productivity gains of AI – an important source of potential displace-

ment of AI user majors – are yet to manifest themselves (Figure 6.(b)).
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4 Causal Evidence on Increasing AI Relevant College Skills

In Section 3 above, we documented that college majors that are relevant for AI producers earn

higher wages and that these earnings premiums are on the rise. On top of these expanding

wage premiums, technologists and scholars expect that the diffusion of AI will accelerate in

the years to come (Brynjolfsson et al., 2018; Goldfarb et al., 2019).

How can we prepare a future generation of college students for work with AI? An often

discussed policy is to adjust the admission capacities of different college majors (President’s

Council of Advisors on Science and Technology, 2012; Trajtenberg, 2018). However, any policy

that aims to increase the AI relevance of college students by adjusting admission criteria will

face at least two challenges.

First, will students, on the margin of attending an AI relevant major, complete the degree if

offered a seat? Second, if the students complete the degree, will they reap the positive returns

in the labor market that are suggested by the correlations in Section 3? In this section, we

study the Centralized Admission System in Denmark, where admission cutoffs allow us to

provide causal evidence to each of these questions.

In Section 4.1, we first show that a substantial number of students stand on the margins

of majors with widely differing AI relevances. Second, in Sections 4.3 and 4.4, we find that,

if offered a spot at a more AI relevant major, these marginal students will not only complete

the degree but also end up earning labor market returns that are at least as large as those

suggested by the correlations.

4.1 Centralized College Admission in Denmark

The Danish university system consists of eight bachelor’s granting institutions, all of which

are public and use the Centralized Admission System (CAS).1 A bachelor’s degree is a three-

year major-specific program, and switching between programs will, in most cases, mean reap-

plying through CAS. The admission capacities of different programs are centrally regulated

by the Danish Ministry of Higher Education and the majority of program slots are allocated

according to the high school GPA of applicants. Students can rank up to eight different major-

1All Danish university programs are free of tuition and offer the same small stipend to all students. Heinesen
(2018) provides institutional details on the Centralized Admission System.
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institution combinations on the application form.

We use CAS application data from 1996 to 2007. In these years, 52 percent of applicants

listed more than one priority.2 Among these students, Figure 7 shows the range of AI rele-

vance for their listed priorities. The takeaway from the figure is that a substantial share of

students applies to majors with widely differing relevance for AI firms. In Figure 7a, 27 per-

cent of students apply to programs that differ in AI producer relevance by more than five

percentage points (0.9 of a standard deviation). For AI user relevance in Figure 7b, the corre-

sponding share of students that apply for programs that differ by more than five percentage

points (0.6 of a standard deviation) is 32 percent. These differences indicate that many stu-

dents could have been assigned to a program of very different AI relevance had admission

capacities of different programs been different.

Figure 7: AI Relevances of Priorities on College Applications

(a) By AI Producer Relevance of College Major (b) By AI User Relevance of College Major

Notes: Color represents the total number of applications. The data is all applications from 1996-2007 with more
than one priority and AI relevance measures. If there are more than two priorities, we select the two with the
largest difference in AI relevance. In Panel (a), we exclude the outlier ‘IT Informatics’ (51 percent). Sample size
is in Panel (a) is n=84,508 and in Panel (b) n=85,3687.

2Appendix Figure C.4a shows that the distributions of AI relevance in our analysis sample are representative
of the population of applicants in CAS.

14



4.2 Regression Discontinuity Framework

This section explains how we exploit discontinuities generated by admission cutoffs to esti-

mate causal effects of being offered a seat in a college major that is more or less AI relevant.

In the CAS, admission offers are made sequentially where the order is determined by the

applicants’ GPA: the highest-ranked applicant receives an offer for her preferred program; the

second-highest applicant receives an offer for her highest-ranked program among the remain-

ing slots, and so on. This is repeated until either slots run out, or applicants run out.3 If slots

run out, a cutoff is set equal to the GPA of the last applicant accepted to the program.4

As students are choosing between many different majors and prioritize them differently, it

is not possible to assert whether crossing an admission threshold will increase or decrease AI

relevance of the offered program without information on the next-best alternative program.

Hence, we follow the approach in Kirkeboen et al. (2016) and take next-best choices into ac-

count.

We form pairs of priorities using the following rules: i) The preferred program must have

excess applicants and thus a GPA cutoff; the second-best may have a cutoff. ii) The cutoff

of the preferred program must be higher than the second-best. iii) An applicant must not be

admitted to a higher priority than the preferred program in the pair. iv) The two majors must

differ in terms of AI relevance.

Table 1a illustrates an application with three priorities. The three priorities result in two

potential pairs: 1st/2nd and 2nd/3rd. The applicant has a GPA of 10.0 and is accepted to

her first priority, program A.5 The relevant next-best program is her second priority, program

B. This is an example where the AI relevance is highest in the preferred program. Table 1b

provides an example where the applicant is accepted in her second priority, program A. In

this example, the more AI relevant major is ranked as next-best. The applicant is offered

a seat in this AI relevant major because she does not meet the GPA cutoff of her preferred

program, D.

3The allocation mechanism used in the CAS corresponds to a serial dictatorship, which is Pareto efficient and
strategy proof. Serial dictatorship mechanisms are used in many college admission systems around the world,
including Norway (Kirkeboen et al., 2016) and Chile (Hastings et al., 2013).

4The cutoffs are lax, since programs also are allowed to admit students on other criteria (Quota Two). In our
sample, these are 18.5 percent of admissions.

5GPA is measured on a 10-point scale from 0 to 13 (00,03,5,6,7,8,9,10,11,13). The lowest passing GPA is 6, and
8 represents an ‘average’ performance.
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Table 1: Application examples

(a) High AI Relevance of Preferred

Applicant GPA = 10.0

Priority Program AI Relevance Cutoff
1 A 0.17 9.9 Preferred
2 B 0.10 9.5 Next-best
3 C 0.15 8.0 N/A

(b) High AI Relevance of Second-best

Applicant GPA = 10.0

Priority Program AI Relevance Cutoff
1 D 0.08 10.5 Preferred
2 A 0.17 9.9 Next-best

The admission system creates discontinuities in the likelihood of being offered a seat around

the GPA cutoffs; see Appendix Figure C.3. These exact cutoffs are unpredictable at the time

of application as they depend on the number of seats, applicants, and GPAs. Our identify-

ing assumptions are standard for RD designs. We assume that there are no other changes

occurring at the thresholds that could confound our estimates; see Lee (2008) and Lee and

Lemieux (2010) for a thorough treatment. Figure 8 represents robustness checks, showing no

manipulation in the density of the running variable (GPA minus cutoff) and smooth behavior

of predicted earnings near the threshold.
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Figure 8: Manipulation Around the Cutoff

(a) Applicant Density (b) Predicted Earnings

Notes: We pool all admission cutoffs and normalize so that zero on the x-axis represents the admission cutoff. The
sample is all priorities of programs with cutoffs. (b) Variables used in prediction: age at the time of application,
gender, and high school GPA.

Our main estimating equation is

yi = α + βZi + α1di + α2d2
i + (α3di + α4d2

i )× Zi + ηXi + µi (1)

where yi represents an outcome of applicant i, such as degree attainment or earnings. di de-

notes the distance from applicant GPA to the program cutoff. The indicator variable Zi equals

one if the applicant’s GPA is above the program cutoff and zero otherwise. Our parameter

of interest is the causal effect of admission threshold crossing, β. We use a bandwidth of two

grade points, and a second-order polynomial interacted with Z to allow for different slopes on

each side of the cutoff. We also include gender and age as a vector of predetermined control

variables, X. In practice, these control variables have very little effect on our RD estimates,

and mainly serve to improve precision.
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4.3 AI Relevance of Completed College Major

Figure 9 shows how crossing an admission threshold impact the AI relevance of the com-

pleted major eight years later. The discontinuities around the thresholds correspond to the

RD estimates of β in Equation (1), which we also report in Table 2.(b).

Panels (a) and (b) show the impact on AI producer relevance of completed major. Crossing

an admission threshold to a more (less) AI producer relevant program raises (lowers) the AI

relevance of a student’s completed degree by 1.1 (1.9) percentage points on average. As the

discontinuities in offered programs are 2.6 and 2.9 percentage points (Panel (a) of Table 2),

this implies a passthrough rate from offered seat to completed degree of around 40 to 60

percent. Panels (c) and (d) show the threshold crossing effects on AI user relevance, which

imply similar passthrough rates of around 30 to 70 percent.

To be able to calculate an average realized AI relevance, Figure 9 focuses on applicants

who have completed some bachelor’s degree eight years later. Thus, a natural follow-up

question is whether higher AI relevance comes the price of lower bachelor’s completion rate.

In Appendix Figure C.5, we show that there is no discontinuity in completion rates, eight

years later, when crossing the admission threshold to a more AI relevant degree. However,

we estimate an increase in completion rates of around five percentage points when crossing

the threshold to a less AI relevant major. Put differently, it is only students who do not want a

more AI relevant major whose completion rates suffer when pushed toward these AI relevant

programs.

The estimated passthrough rates from offered seat to completed degree are centered around

50 percent,6 which is sizable and suggests that adjusting admission cutoffs for different majors

may be an effective way to increase the AI relevance of college graduates.7 These findings are

noteworthy, given that we in Section 3 documented that AI producer relevance requires hard

skills that could make it difficult for a marginal student to complete a program.

6In the Danish admission system, several institutional features will tend to make the passthrough rate low.
For example, applicants are free to reapply again next year or apply to their preferred program via the quota 2
system (see footnote 4)

7To evaluate any specific policy intervention that adjusts admission cutoffs, for example, by controlling the
admission capacities of different majors, one would need to take into account where in the AI relevance distri-
bution the marginal students are drawn in from. This would require a reweighting of the underlying marginal
treatment effects relative to the local average treatment effects identified by our estimation strategy. See Mogstad
et al. (2018) for a formal framework for using instrumental variables to draw inference about policy-relevant
treatment parameters.
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Figure 9: AI Relevance of Completed Degree and Threshold Crossing

(a) Preferred Degree Is More AI Producer Relevant (b) Next-Best Is More AI Producer Relevant

(c) Preferred Degree Is More AI User Relevant (d) Next-Best Is More AI User Relevant

Notes: The figures plot the mean of AI relevance of completed degrees, eight years after application, within
bins of GPA minus cutoff, and fit estimated quadratics using all the underlying data. Subsample of applicants
who eight years later has completed a bachelor’s degree categorized with the AI relevance measure. Excluding
applicants exactly on the cutoff.

4.4 AI Relevance and Earnings

Figure 9 shows how crossing admission thresholds impact early-career salaries of college

graduates. Panel (a) of the figure shows that crossing the threshold to a more AI producer

relevant major leads to a statistically significant increase in yearly earnings of $3,770. In com-

parison, Panel (b) shows that crossing the threshold to a less AI producer relevant degree

leads to an insignificant drop in yearly earnings of $1,692. In contrast, in Panels (c) and (d),
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we estimate that the causal returns to higher AI user relevance is a precisely estimated zero.

Table 2.(c) reports the corresponding regression estimates.

Table 2 shows a noteworthy asymmetry in the effects of AI producer relevance, whereby

students have higher bachelor’s completion rates and receive larger earnings gains of AI pro-

ducer relevance if they also prefer the AI relevant degree.8 The asymmetry in completion rates

can only partly explain the asymmetry in earnings, which persists even when we condition

on students who complete their bachelor’s studies. This estimated asymmetry in earnings

effects of AI producer relevance is consistent with students sorting on individual comparative

advantages, as documented in the Norwegian setting by Kirkeboen et al. (2016). If applicants

sort according to comparative advantages, it can explain why students experience larger gains

from AI producer relevance when they also rank these programs highest. From a policy per-

spective, these findings suggest that it may be more effective to expand AI relevant programs

to students who prioritize them rather than to students who list them as an alternative.

To put the effects of AI producer relevance into perspective, in Appendix Table C.2, we

compare them to the OLS earnings correlations estimated throughout the sample, and not just

around the admission thresholds. For students who rank their AI relevant major as preferred,

the causal effect of AI producer relevance is noticeable larger than the correlation. For stu-

dents who rank the AI relevant major as next-best, the causal effects of AI producer relevance

are similar to those suggested by the correlation. These findings suggest that the earnings pre-

miums of AI producer relevance documented in Section 3 reflect causal effects of obtaining AI

relevant college skills. The findings highlight that college education may be a powerful tool

to prepare future generations for work with AI.

8Figure C.5 showed that the asymmetry in completion rate only applies to students who do not prefer the AI
relevant degree
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Figure 10: Earnings and Threshold Crossing

(a) Preferred Degree Is More AI Producer Relevant (b) Next-best Is More AI Producer Relevant

(c) Preferred Degree Is More AI User Relevant (d) Next-best Is More AI User Relevant

Notes: The figures plot the mean of earnings within bins of GPA minus cutoff, and fit estimated quadratics
using all the underlying data. Excluding applicants exactly on the cutoff and restricting to earnings above zero.
Earnings are the median of wage income plus self-employed business income in the years seven to nine years
after application. Income variables are deflated using the CPI with 2015 as the base year.
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Table 2: Threshold Crossing Effects

(a) AI Relevance of Offered Degree

High AI Preferred Low AI Preferred
Producer User Producer User
Relevance Relevance Relevance Relevance

(1) (2) (3) (4)
RD Estimate 0.0261 0.0294 -0.0325 -0.0477

(0.0029) (0.0042) (0.0026) (0.0050)
Mean below cutoff 0.066 0.133 0.0936 0.133
Observations 8550 11665 12328 9221

(b) AI Relevance of Completed Degree

High AI Preferred Low AI Preferred
Producer User Producer User
Relevance Relevance Relevance Relevance

(1) (2) (3) (4)
RD Estimate 0.0112 0.00915 -0.0182 -0.0321

(0.0035) (0.0048) (0.0030) (0.0056)
Mean below cutoff 0.0922 0.140 0.0981 0.149
Observations 5990 8100 8633 6530

(c) Earnings

High AI Preferred Low AI Preferred
Producer User Producer User
Relevance Relevance Relevance Relevance

(1) (2) (3) (4)
RD Estimate 3770.4 609.84 -1592.3 357.93

(1593.6) (1378.9) (1378.9) (1494.2)
Mean below cutoff 47151.6 47334.7 46517.6 46062.3
Observations 8550 11665 12328 9221

Notes: Estimation of equation (1) with gender and age as control variables. (b)
is a subsample of applicants who, eight years later, has completed a bachelor’s
degree categorized with the AI relevance measure. Excluding applicants exactly
on the cutoff. Bandwidth is +/- 2.0 grade points.

In summary, the findings in this section suggest that AI producer relevance may be a valu-

able target for college admission policies. However, how do the AI producer earnings effects

compare to other targets that policymakers could follow when deciding which programs to

allocate slots? A commonly used target in the Danish context is to rank programs according

to their early-career average salaries (Kvalitetsudvalget, 2014). To compare our estimates to
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this benchmark, Appendix C.3 reruns our RD analysis, now ranking the majors according to

their average starting salaries. Interestingly, we find that pushing students according to AI

producer relevance yields larger causal earnings returns than simply pushing them toward

degrees with higher average salaries. This suggests that it indeed is possible to acquire AI

producer relevant skills in college, and that the earnings premiums related to these college

skills are less driven by selection than the overall earnings differences between majors. This

is a noteworthy finding, as AI producer relevance require quantitative skills that could be

difficult to acquire late in life without prior training or inclination.

5 Concluding Remarks

This paper makes two contributions to our understanding of how artificial intelligence relates

to the jobs of college majors. First, we use new micro data from Denmark to rank college

majors according to whether their graduates work in AI firms. Second, we provide causal

estimates on the effects of pushing students toward more AI relevant degrees.

A takeaway from our study is that traditional fields of study is an imperfect taxonomy for

understanding AI relevance, and that AI cuts through the group of STEM degrees in particu-

lar. In further work, we welcome efforts to understand better what exact course contents are

needed to prepare college students for work with AI.

An upshot of our regression discontinuity analysis is that adjusting admission cutoffs may

be a powerful policy margin to push students toward more AI relevant skills. Our estimated

causal effects inform policies that aim to increase the AI relevance of college students by ad-

justing admission capacities at different college majors, and we welcome further efforts to

specify and evaluate such policy interventions.

Finally, while we estimated significant positive returns to the college majors that are rel-

evant for AI producers, we also documented that men currently are heavily overrepresented

in these same programs. To ensure that the fruits of AI are shared equally among men and

women, we encourage further efforts to increase the female representation in the AI producer

majors.
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A Stylized Facts on Artificial Intelligence and College Majors

Figure A.1: Share Employed in Jobs with Extreme Exposure to AI Adoption (Webb, 2020)

Notes: This figure shows the share of workers employed in occupations with extreme exposure to
AI technologies by AI producer relevance of their college major. Extreme exposure to AI adoption
is defined as occupations (4-digit ISCO88) with AI exposure scores of 95/100 or above. See Webb
(2020) for details about the AI exposure measure. Figure 3 shows the corresponding figure by AI user
relevance.
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Table A.1: Earnings Premiums of AI Relevance and AI Firms

(a) Starting Salary in 2016 and AI Producer Relevance

(1) (2) (3) (4)
AI Producer Relevance 52.9 44.7 47.3

(16.1) (15.1) (18.6)

AI Producer Firm 9.2 6.6 8.4
(1.7) (1.6) (4.7)

AI Producer Relevance × AI Producer Firm -11.4
(23.0)

Observations 2,424 2,424 2,424 2,424
R2 0.028 0.018 0.037 0.037

(b) Starting Salary in 2016 and AI User Relevance

(1) (2) (3) (4)
AI User Relevance 31.6 18.6 23.2

(10.8) (10.3) (11.3)

AI User Firm 11.7 10.1 12.7
(2.0) (1.8) (3.2)

AI User Relevance × AI User Firm -12.9
(12.5)

Observations 2,424 2,424 2,424 2,424
R2 0.016 0.033 0.038 0.038

Notes: This table shows estimates from regressions of starting salaries on AI relevance of college
majors (Row 1), an indicator for working in an AI firm (row 2), and the interaction of AI relevance
and working in an AI firms (row 3). Starting salary is defined as salary eight years after the start
of a bachelor’s degree. Salary includes wage compensation for employees and net profits for self-
employed. Zero incomes are included. Standard errors are clustered at the college major level.
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Figure A.2: Male Share and AI Relevance of College Majors

(a) AI Producer Relevance (b) AI User Relevance

Notes: This figure shows the share of males by AI relevance of college majors. For the estimated
slope coefficients, college majors are weighted by their number of graduates, and standard errors are
clustered by college majors. Majors are colored according to their one-digit ISCED code; see Figure 2
for a color description.

Figure A.3: Annualized Growth in Starting Salaries from 2007 to 2012

(a) By AI Producer Relevance of College Major (b) By AI User Relevance of College Major

Notes: This figure shows the average annualized growth rates in starting salaries of college graduates from
2007 to 2012 by AI relevance of their major. Salary includes wage compensation for employees as well as net
profits for self-employed. Zero incomes are included. Salaries are deflated using the CPI with 2015 as the
base year. For the estimated slope coefficients, college majors are weighted by their number of graduates,
and standard errors are clustered by college majors. Majors are colored according to their one-digit ISCED
code; see Figure 2 for a color description.
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B A Micro Foundation for the AI Relevance Measures

This section provides a task-based micro foundation for the AI relevance measures proposed

in Section 2. In our stylized model, the economy consists of three types of firms: AI users (u),

AI producers (p), and non-AI firms (n).

AI users produce by combining a set of production tasks i

Yu = exp
(∫ 1

0
Xu(i)di

)
(2)

Production tasks can be carried out by either labor or AI. We follow Acemoglu and Restrepo

(2020) and assume that AI can automate a fraction θ of tasks

Xu(i) =

Lu(i) + γ(i)×AI(i) if i ≤ θ

Lu(i) if i > θ

(3)

where γ(i) denotes the relative productivity of AI in task i, and Lu is the labor input bundle

of AI user firms

Lu(i) = ∏
s∈S

Lαus
us (i) (4)

AI is developed, implemented, and maintained by AI producer firms, who thus reinstate the

demand for workers that are employed in these firms

AI(i) = Yp(i) = ∏
s∈S

Lαps
ps (i) (5)

Our incorporation of AI production is similar to Goldin and Katz (1998), who specify that the

adoption of advanced machinery requires specialized inputs from skilled machinists.

Final output in the economy is a bundle of output from AI-user and non-AI firms

Y = Yβ
u Y1−β

n

where non-AI firms operate a Cobb-Douglas production technology with skill shares αns.
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Product and labor markets are competitive with real wages Ws. Following Acemoglu and

Restrepo (2020), we assume that AI is cost-effective in the tasks that are technologically feasi-

ble to automate.9

From cost minimization, the demand for workers of skill s is

WsLs = Y
(
(1− β)αns + β((1− θ)αus + θαps)

)
Finally, also following Acemoglu and Restrepo (2020), we model technical progress in AI

as a shift in θ. The impact of AI on the demand for workers of skill s is then

d log(WsLs) = d log(Y)︸ ︷︷ ︸
Productivity

Effect

− Rus ×
dθ

1− θ︸ ︷︷ ︸
Displacement

Effect

+ Rps ×
dθ

θ︸ ︷︷ ︸
Reinstatement

Effect

(7)

where Rus and Rps denote the AI relevance measures proposed in Section 2. To recall, AI

relevance is defined as the share of workers of skill s who are employed in AI firms.10

Equation (7) shows that AI impacts the demand for worker skills through three channels: a

positive productivity effect, a negative displacement effect, and a positive reinstatement effect.

The equation delivers three key insights about how AI affects the demand for skills. First,

the productivity effect, which is positive because AI is cost-effective at the margin, is shared

uniformly across workers of different skills. This effect will lift all boats and cancels out when

we compare the relative demands for different skill groups. Second, AI user relevance Rus is

the theory-consistent measure of a skill group’s exposure to the negative displacement effects

of AI automation, − dθ
1−θ . Finally, AI producer relevance Rps is the theory-consistent exposure

measure to the positive reinstatement effects coming from AI production, dθ
θ .

9Formally, for AI to be cost-effective, we assume that

∏
s∈S

(
Ws

γ(i)αps

)αps

≤ ∏
s∈S

(
Ws

αus

)αus

, ∀i ≤ θ (6)

10According to our theory, the AI relevance measures have the following structural expressions

Rps =
Lps

Ls
=

βθαps

(1− β)αns + β((1− θ)αus + θαps)

Rus =
Lus

Ls
=

β(1− θ)αus

(1− β)αns + β((1− θ)αus + θαps)
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C The Danish Centralized Admission System (CAS)

C.1 CAS Data

We use CAS data from 1996-2007 merged with register data from Statistics Denmark (DST).

Programs in nursing, teaching, child care, and social work are not offered by universities,

and we do not consider these. In CAS, each program has a kotnr-code. These are not easily

converted to the field codes of DST (audd/udd). Furthermore, kotnr is not stable over time and

only unique within each application year. Hence we crosswalk from kotnr to audd with the

following procedure. We compare the kotnr with the enrolled programs in DST’s education

register (KOTRE) for all accepted applicants each year. A student does not necessarily appear

in the offered program in the DST register as it tracks actual enrollment in October. Not all

students accept the offered seat, and some are able to enroll in other programs with empty

slots. Hence, we crosswalk to the most prevalent audd code. We only crosswalk kotnrs when

there is: i) At least ten applicants ii) At least 50 percent of the students are enrolled in the

most prevalent audd code. Figure C.1 shows the distribution of match quality; the fraction of

students with the most prevalent code.

Figure C.1: Crosswalk Match Quality Distribution

Notes: The figure shows a histogram fraction of students who are enrolled in
the most typical field code (audd) by CAS program code (kotnr). We only cross-
walk codes with a better match fraction than 0.5.
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Table C.1: Applications in CAS

Complete applications 1996-2007 274,067
High School GPA available 233,502
Income data available 229,811
More than one priority 119,715
At least one priority with cutoff 102,599

Forming pairs within applications:
Relevant pairs 56,941
Both priorities crosswalked and classified in VITA firm survey 37,327

Final samples:
i) Priorities differ in AI produce relevance 26,842
ii) Priorities differ in AI use relevance 26,850

Notes: Complete applications are applications with at least one priority
crosswalked to a university program and does not include students with
standby priority from the year before (as these have priority regardless of
cutoffs). Only applicants with high school GPA and income data in DST’s
registers. This implies that we only use applicants with a Danish High
School exam, who are living in the country seven to nine years later. When-
ever a program has fewer applicants than slots; there is no cutoff. The
amount of relevant pairs is the result of the first three rules described in
section 4. The loss of observations in the crosswalk to AI relevance step is
mainly due to certain audd-codes not being well represented in the VITA
firm survey.
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C.2 Figures and Tables

Figure C.2: Offered Program and Threshold Crossing

(a) Preferred Degree Is More AI Producer Relevant (b) Next-Best Is More AI Producer Relevant

(c) Preferred Degree Is More AI User Relevant (d) Next-Best Is More AI User Relevant

Notes: The figures plot the mean of AI relevance of offered degrees from the CAS system within bins
of GPA minus cutoff, and fit estimated quadratics using all the underlying data. Excluding applicants
exactly on the cutoff.
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Figure C.3: Distance to Cutoff and Acceptance

Notes: The figure shows the mean of an indicator for acceptance binned by tenths of a grade point on the
x-axis. If students also apply for a standby seat (granted enrollment latest one year later), the standby cutoff
is used. The accepted applicants below the cutoff are Quota Two. Applicants not accepted above the cutoff
are due to lack of program-specific prerequisites. We are forced to exclude applicants exactly on the cutoff,
as we only have GPAs and cutoffs with the first one decimal place in our data. CAS uses a lottery if there
is a tie on the second decimal place.
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Figure C.4: Comparison of AI relevance distributions
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Notes: The figures plot epanechnikov kernel density estimates with a bandwidth of 2. The blue is the distribution
of AI relevance among all bachelor’s graduates in the country. The red line is all priorities listed by all applicants
in the CAS system 1996-2007. The green line is the restricted CAS dataset used for RD estimation.

Table C.2: Correlation Between Earnings and AI Relevance in RD Samples

High AI Preferred Low AI Preferred
(1) Produce (2) Use (3) Produce (4) Use

OLS Estimate (scaled) 1065.8 442.3 1547.5 708.4
(75.43) (34.63) (106.9) (115.3)

Observations 5990 8100 8633 6530
Notes: Estimation of a linear regression of earnings and AI relevance within RD sam-
ples. We use gender, age at application, and high school GPA as control variables.
To compare with the results in Table 2c, we scale the OLS coefficient with the change
in AI relevance of completed degrees from Table 2b. Subsample of applicants who
eight years later has completed a bachelor’s degree categorized with the AI relevance
measure. Excluding applicants exactly on the cutoff.
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Figure C.5: Completion of Degree and Threshold Crossing

(a) Preferred Degree Is More AI Producer Relevant (b) Next-Best Is More AI Producer Relevant

(c) Preferred Degree Is More AI User Relevant (d) Next-Best Is More AI User Relevant

Notes: The figures plot completion rate of any bachelor’s program, eight years after application, within
bins of GPA minus cutoff, and fit estimated quadratics using all the underlying data. Excluding applicants
exactly on the cutoff.

C.3 Causal Effects of Admitting Students to Majors With Higher Average

Earnings

A useful benchmark for the causal earnings effects of AI relevance is to be more agnostic about

what types of degrees that lead to higher earnings. In this section, we rerun our RD analysis,

now ranking majors according to their average earnings.

Instead of forming pairs with different AI relevances, we form pairs where average earn-

ings differ between the preferred and next-best priorities. When the preferred program has
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the highest expected earnings, the difference in earnings between the preferred and second-

best programs is $15,562 on average. In comparison, when ranking on AI producer relevance,

this difference is only $3,788. Put differently, the agnostic ranking pushes students between

majors of very different average earnings.

However, in Figure C.6 and Table C.3, we estimate that the causal effects of being admit-

ted to a higher (lower) earnings degree only increase average earnings by $2,098 ($-452). The

estimates, which are not statistically different from zero, are smaller than the AI producer

relevance premiums estimated in Table 2c, despite the larger difference in average earnings

between priorities. These results suggest that pushing students according to AI producer rel-

evance, yields larger causal earnings returns than simply pushing them toward degrees with

higher average salaries. One interpretation of the discrepancy between the causal earnings

effects and the average earnings differences between majors is that earnings premiums on the

AI producer margin are less driven by selection than the general earnings premiums between

college majors.

Figure C.6: Earnings and Threshold Crossing - Expected Earnings Ranking

(a) Preferred is Higher Earning (b) Next-Best is Higher Earning

Notes: The figures plot the mean of earnings within bins of GPA minus cutoff, and fit estimated quadratics
using all the underlying data. Excluding applicants exactly on the cutoff and restricting to earnings above zero.
Earnings are the median of wage income plus self-employed business income in the years seven to nine years
after application. Income variables are deflated using the CPI with 2015 as the base year.
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Table C.3: Earnings and Threshold Crossing - Expected Earnings Ranking

High Earning Major Preferred Low Earning Major Preferred
(1) (2)

RD Estimate 2097.7 -451.8
(1343.0) (1189.7)

Mean below cutoff 42898.6 45486.0
Observations 12208 15850

Notes: Estimation of equation (1) with gender and age as control variables. Excluding applicants
exactly on the cutoff. Bandwidth is +/- 2.0 grade points.
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