Real-Time, Non-Invasive Brain Metabolism

AWARD AMOUNT: $118,666

THE TEAM

Oliver D. Kripfgans, PhD
Principal Investigator

Jonathan M. Rubin, MD, PhD
Co-Investigator

M. Hakam Tiba, MD, MS
Principal Investigator

Venkatakrishna Rajajee, MBBS
Principal Investigator

Guan (Gary) Xu, PhD
Co-Investigator

Eunjee Lee, PhD
Co-Investigator

THE PROBLEM

Though it is a vital predictive sign of secondary injury, clinical diagnosis of absolute brain blood flow and oxygen consumption at the bedside is currently not possible. Available techniques are either severely flawed, pose significant risks to the patient's condition or are otherwise impractical.

Blood pressure does not reflect blood flow
CT, PET, or MRI require transport
Blood Velocity ≠ Blood Flow

THE SOLUTION

Non-invasively measure brain blood flow and oxygen use

Tell intensivists how much blood is actually entering the brain
Provide feedback to therapeutic hyperventilation and use of vasopressors
Validate in pre-clinical model where (invasive) absolute reference measurements are available

THE TECHNOLOGY

Develop and validate an ultrasound-based non-invasive, portable, inexpensive device that measures two critical physiological parameters:

Quantify blood flow using three-dimensional ultrasound
Use photoacoustic visualization to quantify oxygen consumption