University of Michigan researchers and engineers have developed a solution that provides negative pressure and PPE all in one.

The device enables the isolated use of a Heated High Flow Nasal Cannula (HFNC) or nebulized medications, sparing the need for a mechanical ventilator or potentially allowing earlier transition from mechanical ventilation.

The device's compact design effectively creates a personal negative pressure environment wherever the patient is, and it maintains that environment even if the patient requires movement (imaging, testing, bathroom, etc.).

UNMET NEED

Resource management and control of transmission are two of the greatest challenges faced by providers fighting the COVID-19 pandemic. Depending on the progression and severity of the disease, many patients must be placed in negative pressure rooms and/or on mechanical ventilators, which are in limited supply and pose an elevated risk to healthcare workers due to potential aerosolization of the virus.

SOLUTION

University of Michigan researchers and engineers have developed a solution that provides negative pressure and PPE all in one.

The device enables the isolated use of a Heated High Flow Nasal Cannula (HFNC) or nebulized medications, sparing the need for a mechanical ventilator or potentially allowing earlier transition from mechanical ventilation.

The device's compact design effectively creates a personal negative pressure environment wherever the patient is, and it maintains that environment even if the patient requires movement (imaging, testing, bathroom, etc.).

COMPETITIVE ADVANTAGES

- Rapid setup
- Liftable face shield allows for breaks to eat/drink and for suction with reduced risk of contamination
- Continued use possible if COVID-positive
- Comfortable: patient can recline without issue with pillow support
- Hearing can be augmented with blue tooth enabled phone, etc.

PRODUCTION TIMELINE

The team has filed a provisional patent. Quick FDA approval is anticipated as the HFNC component is already in the marketplace. The device could conceivably go to market in May 2020 with a delivery of at least 1000 units in that first quarter. Production could ramp up to 100,000 units in the quarters that follow.