WPI Lib

SystemCore Software

Presenters

- Kevin O’Connor

- Senior Robotics Engineer, FIRST Robotics Competition
- Danny Diaz

- Senior Engineering Manager, FIRST Tech Challenge

- Peter Johnson
- WPILib Core Developer

- Amanda Bessette
- Associate Director Robotics Resource Center, WPI

2 WPID Lib

Goals

Unify the programs

- Software experience should be largely the same across FTC and FRC, deviating only where
absolutely necessary

Lower the barrier to entry
- Software must be easier to install, configure devices and get started
Leverage new capabilities

- Utilize the performance of new controller to reduce common issues such as loop overrun, memory
constraints, and unit errors

Maintain the ceiling

- Avoid adding any significant barriers to high performing teams

3 WPI Lib

Philosophy

Software for both programs, not make WPILib work for FTC

- Existing WPILib architecture and infrastructure will still serve as the base of
the new libraries

Make the right decisions for the future
- In some cases this may mean a little more transition pain
Visible development and testing processes

- Folks can follow along and see what’s coming, even if they may not have
hardware yet

WPID Lib

What are we sharing today?

Focused on software

- Latest information on System Core hardware can be found in
March 19 Blog, more info will be released as we get closer to
team testing

Subject to change

- This information is where we think we’re headed today.
Feedback, roadblocks, and other factors can and will change
some of this as we proceed through development

High Level

- We’re going to talk more about concepts and less about syntax.

Don’t expect to walk out ready to program your 2027 robot.

o

e

WPID Lib

https://community.firstinspires.org/march-updates-on-the-future-robot-controller

WPILib Mission - Fundamentally Unchanged for 2027+

e Enable FIRST teams to focus on writing game-specific software rather than on
hardware details

e Make new robotics technologies more approachable to teams: “raise the floor, don’t

lower the ceiling”

o Enable teams with limited programming knowledge or mentor experience to be more successful

o Enable teams with intermediate programming knowledge to use powerful tools to improve their
robot performance

o Enable teams with advanced programming knowledge to use the full power of the system

e Support the Kit of Parts control system hardware (e.g. controllers, sensors)

e Provide parity across all officially supported languages
o Enable teams to pick the language of their choice without worrying about supported features

e To this end, the library and associated tools need to be robust, reliable, maintainable,
and understandable!

6 WPILD Lib

Contributing to WPILIb - It Takes a Village

- WHPILib is much more than just the robot library; the team experience includes
everything from documentation to the installer and various tools

- We're a volunteer open source project; YOU can help make a difference and
have a broad impact across thousands of FRC and FTC teams

- You don'’t need to be a C++ or Java expert to help; we're also looking for help

in these areas:
- VS Code extension, e.g. for Python integration, RobotBuilder 2.0 (TypeScript)
- Installer improvements (C# GUI)
- Controller-hosted tools (modern TS/JS web dev)
- Documentation!

- We mainly collab via GitHub, but you can also find us in community spaces
- GitHub project boards (we have a 2027 project) and allwpilib issues are good places to start
- Reach out (e.g. comment on an issue) to coordinate before diving in

7 WPILD Lib

https://github.com/wpilibsuite/

SystemCore Key Software Benefits

Powerful 64-bit processor (Raspberry Pi CM5 based) with 4 GB of RAM enables:

- Controller hosted development and other web-based tools
- Fewer loop overruns and much reduced probability of out-of-memory issues
- Performant integrated vision processing

8 WPI Lib

Topics

- Supported programming languages
- Desktop development

- Controller Hosted development

- Blockly

- Frameworks and OpModes

- Telemetry

- Dashboards and tools

- “Smart Motor” API

- Miscellania

9 WPI Lib

2027 Official WPILib Language Options

e 4 officially supported WPILib languages: C++, Java, Python, and Blockly
() ROUgth eqUivalent feature sets 2024 FRC Language Usage
o Modern language versions (C++20, Java 21, Python 3.12+)

e Primary driver of language selection is network effect
o School classes (AP CS Java)

Mentor experience

What other teams in your area use

Online support base (teams worldwide)

What other teams at competitions use

e In 2024, 89% of FRC teams used Java

o Python was at ~3% in its first official year (about the same as LabVIEW); expecting to see
future growth as an officially supported language and via Blockly onramp path

O O O O

@ Java @ LabVIEW C++ @ Python
@® Kotlin @ Unknown

10 WPILD Lib

Desktop Development

11

Similar to current WPILIib
Java, Python, and C++
All languages use Visual Studio Code for IDE

More integrated Python experience

Baseline: continue to use GradleRIO for Java and C++ build/deploy system
Open to C++ transitioning to another build system, depending on community contributions

Desktop simulation support
Want to further streamline download+install experience while maintaining
offline install capability

WPILD Lib

Controller Hosted Development

- Java, Python, and Blockly
- C++ not supported due to expected poor experience
- Java and Python use VSCode (or derivative) from browser

- Currently expect single user access, still investigating possibilities for multi-user
- Currently planning to support storage of multiple “Workspaces” with some sort of “Deploy”
button to determine currently running code

- Likely no simulation support

Limelight Systemcore Home

WPID Lib

12

Blockly

Graphical coding experience using Google Blockly
- Generates WPILib Python code

Users can view the code associated with Blockly in “real-time”
Can “generate” into a Python code project but can’t turn Python back into Blockly

- Aim to balance “limiting the ceiling” with simplifying the experience to
make things simpler
- Expecting to support splitting code into multiple subsections to make

editing more manageable

Blockly
. WPIH Lib

WPILib Frameworks

WPILib plans to offer two primary frameworks for robot code structure: 2024 Framework Dsage (Jave)

e Periodic + Linear Opmodes

o Periodic: Runs a function every 20 ms

o Linear: Runs a function; looping handled by user

o Easy to get started with, but unwieldy for complex programs
e Command Based

o Genesis was team approaches to adding structure
Structures code into “subsystems” and “commands”
Execution model is cooperative multitasking
Enables more complex programs, but has steeper learning curve 2024 Framework Usage (C++)

@ Comman d @ Timed AdvantageKit @ Other

o O O

In 2024, 63% of all FRC teams used command-based Java for their competition
robot programs

A team-created Java framework called AdvantageKit became popular in 2024.
It's important to note that AdvantageScope is a generic debugging/visualization
tool and does not require the use of AdvantageKit.

For 2027, we will extend the existing frameworks with opmodes support

14 WPILD Lib

Opmodes - Background

Purpose: Enable operator to choose what code to run for a particular robot mode (e.g. auto or teleop)

FRC today

Singleton Robot class defines actuators/sensors

Explicitly defined modes with lifecycle methods e.g. Robot.teleoplnit(), autoPeriodic()

DS has enable/disable and mode selector (teleop/auto/test/practice)

Many teams select what autonomous code to run using SendableChooser or similar via a dashboard

FTC today

- Hardware map defines actuators/sensors

- Teams define multiple teleop and periodic opmodes using annotated classes

- DS provides opmode selector; if auto opmode selected, teleop opmode can be preselected to run
after auto completes

- OpModes have a blocking initialization step that allows actuator movement

. WPICH Lib

Opmodes - Plan

General operation

Singleton Robot class defines actuators/sensors and provides robotPeriodic, disabledPeriodic

Opmodes can be named and grouped

DS has enable/disable, mode selector (teleop/auto/test/match), and opmode selector(s) filtered by robot mode
No separate opmode initialization step; robot is either enabled or disabled

Periodic/Linear structure

- Opmodes are defined via annotated classes; Robot object is passed to the constructor
- Only one opmode class is constructed/active at a time; in a match, the teleop opmode object is not constructed
until after close() is called on the auto opmode object (at the end of auto)

Command-based structure

Opmodes are defined via factory functions and provide selected, disabled, running triggers
Commands/triggers are tied to particular opmodes via these triggers or sugaring

Subsystem periodic functions always called periodically (in disabled and in all opmodes)

Note: it is not possible to mix command-based and periodic/linear opmodes in a single robot project

. WPIEH Lib

https://github.com/wpilibsuite/allwpilib/pull/7863

Driver Station Concept

17

Teleoperated Auto | Drive Forward ¥
Autonomous Teleop | Teleop \ 4
Match
Test
Enable Disable
Teleoperated Auto | Drive Forward ¥

Autonomous

Match

Test

Enable Disable

Simple

Drive Forward
Path

Drive to Zone

I<>Lib

Periodic Opmode (Linear is similar)

Robot program Robot class
starts constructed
Operator selects
opmode
New OpMode
class constructed
{
close() disabledPeriodic() .=
S =———
selects
different start()
opmode v
periodic() —
Disabled
end()
i
g close()

@Autonomous (name="“My Auto”, group=“Drive”)

public class MyAuto extends PeriodicOpMode {

}

private final Robot robot;
private final Timer timer

= new Timer();

public MyAuto(Robot robot) {

this.robot = robot;

}

@0override
public void start() {
timer.start();

}

@0override
public void periodic() {

if (!timer.hasElapsed(2.0)) {
robot.drivetrain.Drive(...);

}
}

YVIiwz Ll

Command-Based Opmodes

19

// A simple autonomous opmode

CommandOpModes . autonomous (“Simple Auto”).running.whileTrue(Autos.simpleAuto(this));

// A complex autonomous opmode that loads a path when selected in the DS (while still disabled)

String pathName = “My path”;

var opmode = CommandOpModes.autonomous(pathName, “Paths”);
opmode.selected.onTrue(Commands.runOnce(() -> Paths.loadPath(pathName)));
opmode.running.whileTrue(Autos.followPath(this, pathName));

// A teleop opmode with joystick and button controls
var opmode = CommandOpModes.teleoperated(“teleop”);
var driverController = new CommandXboxController(1);

// Deploy the intake with the X button
driverController.x().whileRunning(opmode).onTrue(intake.intakeCommand());

// Control the drive with split-stick arcade controls
drive.setDefaultCommand(opmode, drive.arcadeDriveCommand(...));

WPILD Lib

Telemetry - Background

Purpose: Live display and data logging (for offline analysis) of sensors and other robot data

FRC today

Tree structured, native data; 1000+ data values becoming common

Dashboards: users choose view of subset of values and widgets to display them; only one
dashboard (Shuffleboard) has code-driven layout

SmartDashboard, Shuffleboard: mostly imperative, some callback (putData/Sendable),
bidirectional; only complex data type support is Sendable (no Struct/Protobuf)

Epilogue: annotation, with compile-time generation

NetworkTables and Datalog: low level, relatively complex APIs

Third-party: AdvantageKit (annotation & imperative), DoglLog (imperative)

FTC today

20

Telemetry: imperative, flat structure, string-based, dashboard display control

WPID Lib

Telemetry - Plan

Annotation: Epilogue

- Change from codegen to introspection for user-friendliness

Imperative: New Telemetry API (replaces SmartDashboard and Shuffleboard APIs)

- Tree structure; TelemetryTable provides subtree view (ala NetworkTable)

- Telemetry static class for root table

- Output only (inputs use a separate Tunable API)

- Primary entry point: log(name, value) method, overloaded for all data types
- Supports setting per-entry properties

- Supports complex data types and user-defined classes
- TelemetryLoggable interface (similar to Sendable, but imperative, not callback-based)
- Struct and Protobuf serialization
- Extensible via backend data type handlers (e.g. for unit types)

- Backends (e.g. NT, DataLog, mock, discard) dynamically configurable at any level of tree
- No integrated code-driven dashboard layout support

§ WPICH Lib

https://github.com/wpilibsuite/allwpilib/pull/7773

Dashboards and Tools

22

Retire SmartDashboard, Shuffleboard, RobotBuilder, PathWeaver

Add controller-hosted (web) versions of Elastic and AdvantageScope
Desktop versions will still be maintained

Make it easier for teams to create custom web-based, controller-hosted
dashboards (e.g. using FRC Web Components)
Exploring options for controller-hosted (web) path-planning and system

identification tools
Fairly significant development effort needed for this, so expect near-term to be desktop only

LiveWindow functionality replaced by SystemCore web interface
Concept for RobotBuilder v2.0, but development currently stalled

WPILD Lib

“Smart Motor” API

Single API that covers common characteristics of a “smart motor” to enable
better examples and documentation.

- Utilize Units API to reduce issues related to different devices using different

“native units”

- Reduces developer friction when swapping between different motor/controller
types

- Allows for documentation, examples, and potentially even APIs that are
applicable across motor controller types

2 WPID Lib

Miscellania

24

Package renames/restructure (edu.wpi.first.wpilibj — org.wpilib)
Math
- More powerful pose estimators

Java units
- Remove mutable units
- Due to complexity to teams, not planning on migrating broader Java API to units-only

Vendor dependencies
- Need to figure out how to nicely bundle/package for controller-hosted development

Docs
- Split tutorial and reference documentation

Improved alert/warnings (fewer console prints)

WPID Lib

Alpha Testing

- https://forms.office.com/r/kh4yq3ggH8
- Complete before May 2nd for first round beginning in June. Additional
round including MotionCore expected in September

WPILD Lib

25

https://forms.office.com/r/kh4yq3ggH8

