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Abstract

We study the phenomenon of merging of opinions for computationally limited Bayesian

agents from the perspective of algorithmic randomness. When they agree on which data

streams are algorithmically random, two Bayesian agents beginning the learning process

with different priors may be seen as having compatible beliefs about the global unifor-

mity of nature. This is because the algorithmically random data streams are of necessity

globally regular: they are precisely the sequences that satisfy certain important statisti-

cal laws. By virtue of agreeing on what data streams are algorithmically random, two

Bayesian agents can thus be taken to concur on what global regularities they expect to

see in the data. We show that this type of compatibility between priors suffices to ensure

that two computable Bayesian agents will reach inter-subjective agreement with increas-

ing information. In other words, it guarantees that their respective probability assignments

will almost surely become arbitrarily close to each other as the number of observations

increases. Thus, when shared by computable Bayesian learners with different subjective

priors, the beliefs about uniformity captured by algorithmic randomness provably lead to

merging of opinions.
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1 Introduction

Bayesian learning encompasses a family of probabilistic inference methods that crucially rely
on prior probability distributions, which are meant to encapsulate the learner’s background
knowledge and inductive assumptions before the beginning of the learning process—for in-
stance, before performing an experiment. This reliance on priors is often taken to be a cause for
concern: when the available background knowledge does not suffice to reach inter-subjective
agreement about which prior should be adopted, how can one be possibly guaranteed that the
inferences drawn on the basis of one’s own subjective prior provide any objective epistemic
warrant? Perhaps most alarmingly, does the use of Bayesian methods—and, thus, of prior
probability distributions—in the sciences threaten the objectivity of scientific inquiry?

According to objective Bayesians, such as Jaynes (1968) and Rosenkrantz (1981), this prob-
lem can be overcome by singling out the class of rationally permissible priors, the adoption
of which ensures the objectivity of the conclusions derived from them. For instance, some
objective Bayesians might contend that symmetry considerations play a crucial role in fixing
the collection of rationally permissible priors, or that priors should be calibrated with known
frequencies. On the other hand, subjective Bayesians such as Ramsey (1931), de Finetti (1937),
Savage (1954), and Jeffrey (1977) maintain that the only requirement that rationality imposes
on prior probability distributions is probabilistic coherence, and that there is no principled way
of arguing for the superiority of any particular prior over another.

To rebuke accusations of excessive subjectivity, subjective Bayesians often appeal to various
results from probability theory and measure theory that are meant to show that a Bayesian
agent’s initial beliefs or assumptions, in the form of a prior probability distribution, are de facto

immaterial for the purpose of successful inquiry: the dynamics of Bayesian conditioning by
themselves ensure that priors are eventually washed out by the shared evidence. Suppes, for
instance, claims that

It is of fundamental importance to any deep appreciation of the Bayesian view-
point to realize the particular form of the prior distribution expressing beliefs held
before the experiment is conducted is not a crucial matter. [...] The well-designed
experiment is one that will swamp divergent prior distributions with the clarity
and sharpness of its results, and thereby render insignificant the diversity of prior
opinion. (Suppes 1966, p. 204)

Similarly, Edwards, Lindman, and Savage maintain that

Although your initial opinion about future behavior [...] may differ radically from
your neighbor’s, your opinions and his will ordinarily be so transformed by appli-
cation of Bayes’ theorem [...] as to become nearly indistinguishable. This approxi-
mate merging of initially divergent opinions is, we think, one reason why empirical
research is called ‘objective’. (Edwards et al. 1963, p. 197)
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The theorems used to argue that initial diversity of opinions is immaterial have their roots
in Savage’s work (Savage 1954), and they fall under the umbrella of ‘Bayesian merging-of-
opinions theorems’. Roughly put, these results establish that, provided that their respective
subjective priors are sufficiently compatible, two Bayesian agents beginning the learning pro-
cess with different beliefs are guaranteed to almost surely reach a consensus: as the number of
observations increases, their beliefs, in the form of their posterior probability distributions, will
become arbitrarily close to each other with probability one (relative to the agents’ priors).1

In this article, we explore the phenomenon of merging of opinions in the context of more
realistic, less-than-ideal agents. We do so by bringing into play the theory of computation: that
is, by focusing on computationally limited Bayesian agents whose subjective priors are com-
putable probability measures. The key idea is that merging of opinions for computationally
limited Bayesian agents—computable Bayesian agents, for short—can be studied through the
prism of algorithmic randomness: a branch of computability theory aimed at formalizing the
notion of an individual mathematical object (such as a real number or a binary string—and, in
our case, a sequence of observations, a data stream) displaying no patterns or regularities dis-
cernible using algorithmic means. In particular, we will see that algorithmic randomness can be
employed to define refined notions of compatibility between priors. Given an algorithmic ran-
domness notion R, the beliefs of two computable Bayesian agents will be said to be compatible
relative to R if their respective computable priors agree on which data streams are R-random.
More precisely, given two computable priors µ and ν, ν will be said to be compatible with µ
with respect to R if the collection of R-random data streams relative to µ is a subset of the
collection of R-random data streams relative to ν.

The rationale for using algorithmic randomness to define notions of compatibility between
priors is that the algorithmically random data streams, though maximally irregular and pattern-
less when considered locally, bit by bit, are of necessity globally regular. As will be explained
in §3, in spite of being unpredictable (observing a finite initial segment of an algorithmically
random data stream does not provide any useful information for predicting what the next obser-
vation is going to be), the algorithmically random sequences must nonetheless satisfy various
effectively specifiable statistical laws (such as the Strong Law of Large Numbers when the
underlying probability measure is, for instance, a Bernoulli measure). From this perspective,
different notions of algorithmic randomness may be seen as encoding different beliefs about
the global uniformity of nature: each algorithmic randomness notion corresponds, from the
viewpoint of the computable Bayesian agent with respect to whom that randomness notion is
defined, to a precise class of effectively specifiable global regularities. So, when two com-
putable Bayesian agents agree on what data streams are algorithmically random, they can be
seen as having compatible inductive assumptions, as having compatible beliefs (or commit-
ments) about which effectively specifiable statistical properties they expect to see in the data.

1As shown by Schervish and Seidenfeld (1990), these results are generalizable to the case
where there are multiple Bayesian agents.
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In other words, they can be seen as concurring on the extent of nature’s global uniformity, where
the type of uniformity over which they agree amounts to the satisfaction of certain effectively
specifiable statistical laws.

We will then see that agreeing on which data streams are algorithmically random provably
leads to merging of opinions. Our main results establish that, when shared by computable
Bayesian agents with differing subjective priors, the inductive assumptions pertaining to the
global uniformity of nature encoded by algorithmic randomness notions guarantee the eventual
(almost-sure) attainment of inter-subjective agreement: in other words, for any two computable
priors µ and ν and canonical algorithmic randomness notion R, ν being compatible with µ with
respect to R ensures that ν will merge with µ as the learning process unfolds.

The study of the equivalence relations between probability measures induced by algorithmic
randomness notions2 has already received some attention in the literature (see (Muchnik et al.
1998) and (Bienvenu and Merkle 2009)). We will review and make use of some of these results
in what follows. Our aim in this article is to bridge the theory of algorithmic randomness and
the literature on merging of opinions by connecting algorithmic randomness to the study of
canonical notions of compatibility (and incompatibility) between subjective priors and, most
importantly, by showing that the notions of compatibility induced by algorithmic randomness
entail merging of opinions. In doing so, we hope to lay the foundations for the systematic study
of the fruitful interactions between, on the one hand, the theory of algorithmic randomness and,
on the other, work in Bayesian epistemology and probability theory on merging of opinions,
Bayesian learning, and their philosophical ramifications.

The remainder of this article is structured as follows. In §2.1, we review some canonical no-
tions of agreement and disagreement between priors. In §2.2, we discuss merging of opinions
in the classical (non-effective) setting and, in particular, what is arguably the most prominent
merging-of-opinions result: the Blackwell-Dubins Theorem (Blackwell and Dubins 1962). We
also consider the phenomenon opposite to merging of opinions: namely, polarization of opin-
ions. Our main results are in §3. We begin with a brief overview of the theory of algorithmic
randomness in §3.1. In §3.2, we explore the relations between standard notions of compati-
bility/incompatibility and the notions of agreement induced by algorithmic randomness. Then,
we show that all core algorithmic randomness notions except for weak 1-randomness generate
notions of compatibility that lead to merging in the sense of Blackwell and Dubins. In §3.3, we
conclude with some simple observations about how disagreement on which data streams are
algorithmically random leads to polarization of opinions.

2Two computable probability measures µ and ν are said to be equivalent relative to some
algorithmic randomness notion R if the collection of R-random sequences relative to µ coin-
cides with the collection of R-random sequences relative to ν—in other words, µ and ν are
compatible with each other relative to R.
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2 Merging of opinions

Recall that a probability space (Ω,E, µ) is a triple consisting of a set Ω, a σ-algebra E on
Ω, and a probability measure µ on E (since the only measures that we will be dealing with are
probability measures, we will simply call them measures from now on). The setΩ is the sample
space: the collection of all possible basic outcomes of a given experiment—or, more generally,
the collection of all possible observational data associated with the inductive problem under
consideration. The σ-algebra E, on the other hand, corresponds to the collection of all events
(involving observational data) that get assigned a probability: intuitively, all of the events that
a Bayesian learner entertains in the given situation.

We are interested in situations where the same space comes equipped with two measures µ
and ν. These measures are amenable to multiple interpretations. In this article, we will mostly
be concerned with the case where both µ and ν represent subjective priors. Of course, mea-
sures admit a non-personalist interpretation, as well: they can be taken to encode objective
distributions. For instance, a measure may be seen as representing the true chance distribution
governing some stochastic process (such as a game of chance). Merging-of-opinions theorems
apply in this context, too. When one of the measures involved is an objective chance distribu-
tion while the other one is the subjective prior of a Bayesian agent, these results establish that,
with increasing information, the agent’s beliefs will asymptotically align with the true chances
with objective probability one, provided that, to begin with, the agent’s beliefs are sufficiently
compatible with the truth. So, in what follows, µ may also be taken to represent the true distri-
bution governing some process, and ν to be the subjective prior of a Bayesian agent trying to
approximate that distribution.

In the setting of merging-of-opinions theorems, bodies of evidence are usually modelled in
terms of σ-algebras. In particular, increasing bodies of evidence can be naturally represented as
filtrations on (Ω,E): namely, as sequences {En}n∈N of sub-σ-algebras of E such that En ⊆ En+1

for all n ∈ N—where the latter condition ensures that, for each n, the information embodied by
En+1 refines the information embodied by En. Given a filtration {En}n∈N on (Ω,E), let E∞ denote
the σ-algebra σ(

⋃
n∈N En) generated by the union of the En’s. If E∞ = E, then the filtration is

complete: the cumulating evidence will eventually settle the truth of every event that a Bayesian
agent can entertain.

Learning occurs by conditionalizing on the (total) available evidence. Since, in this setting,
the growing evidence is encapsulated by a filtration, we need to define conditional probabilities
given a sub-σ-algebra. Fix a filtration {En}n∈N on (Ω,E), an event A ∈ E, and a prior µ. The
conditional probability µ(A | En) of A given En is an En-measurable function µ(A | En) : Ω→ R
(a random variable) such that, for all B ∈ En, µ(A ∩ B) =

∫
B
µ(A | En) dµ. By the Radon-

Nikodym Theorem, such a function exists for any sub-σ-algebra and is unique up to sets of
µ-measure zero.3

3The standard definition of conditional probability given by Bayes’ formula only applies to
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In what follows, as often done in the literature, we shall focus on the space (2N,B(2N)), where
2N is the set of one-way countably infinite binary sequences and B(2N) is the Borel σ-algebra
on 2N. We will think of sequences in 2N as data streams. The set 2N comes equipped with a
natural topology: the topology of pointwise convergence. A basis for this topology is given by
the clopen cylinders [σ], where σ denotes a finite binary string in 2<N and [σ] ⊆ 2N is the set
of all infinite sequences that extend σ. The resulting topological space is called Cantor space.
The Borel σ-algebra B(2N) is the smallest σ-algebra on 2N containing all open sets from this
topology. For each ω ∈ 2N, ω ↾ n will denote the initial segment of ω of length n and [ω ↾ n]
the cylinder generated by the string ω ↾ n.

We will work with measures µ, ν on B(2N). Let ε denote the empty string, so that [ε] = 2N.
By Carathéodory’s Extension Theorem,4 any function m defined on cylinders that takes values
in [0, 1], and such that m([ε]) = 1 and, for all σ ∈ 2<N, m([σ]) = m([σ0]) + m([σ1]) can be
uniquely extended to a measure on B(2N). Hence, from now on, measures on B(2N) will be
identified with their restriction to cylinders. A canonical measure on B(2N) is the uniform (or
Lebsegue) measure λ, given by λ([σ]) = 2−|σ| for all σ ∈ 2<N, where |σ| denotes the length of
σ. We will also make use of the notion of a continuous semimeasure (semimeasure, for short):
namely, a function δ defined on cylinders and taking values in [0, 1] such that δ([ε]) ≤ 1 and,
for all σ ∈ 2<N, δ([σ]) ≥ δ([σ0]) + δ([σ1]).

In addition, we will restrict attention to the filtration {Fn}n∈N, where, for each n, Fn is the
sub-σ-algebra of B(2N) generated by the cylinders [σ] with σ ∈ 2<N a string of length n. Each
such algebra is induced by a finite partition of 2N (for instance, F1 is the algebra {∅, [0], [1], 2N}
induced by the finite partition {[0], [1]}). Intuitively, Fn represents all possible evidential situa-
tions that a Bayesian agent may find themselves in at the n-th stage of the learning process, after
having made n observations (after having observed the first n digits of the true data stream).
Since σ(

⋃
n∈N Fn) = B(2N), this filtration is complete. We will thus assume throughout that the

evidence is both increasing and complete.
Given that the Fn’s are generated by finite partitions, learning in this setting essentially pro-

ceeds by standard Bayesian conditioning. We can in fact almost surely recover the familiar
definition of conditional probability as follows: for any S ∈ B(2N), n ∈ N, and µ-almost every
ω ∈ 2N,

µ(S | [ω ↾ n]) =
µ(S ∩ [ω ↾ n])
µ([ω ↾ n])

=
1

µ([ω ↾ n])

∫
[ω↾n]
µ(S | Fn) dµ = µ(S | Fn)(ω),

cases where the conditioning event has positive probability. Defining conditional probabilities
in this more general setting allows to define conditionalization with respect to probability zero
events, as well. This definition also ensures that µ(A | En) is a version of the conditional
expectation Eµ[χA | En] of the indicator function χA of A ∈ E.

4See, for instance, (Williams 1991, Theorem 1.7, p. 20). This result is also known as the
Hahn-Kolmogorov Extension Theorem.

6



where the second identity follows from the definition of µ(S | Fn) and the last identity from the
fact that the value of µ(S | Fn) is constant within the partition cells generating Fn—and so, in
particular, within the cylinder [ω ↾ n].

2.1 Classical notions of compatibility/incompatibility between measures

We begin by reviewing some classical notions of compatibility (and incompatibility) between
measures, which will serve as a springboard for our study of compatibility notions induced by
algorithmic randomness.

Arguably, the most well-studied form of compatibility between measures is absolute conti-
nuity:

Definition 2.1 (Absolute continuity). Given measures µ and ν, µ is absolutely continuous with

respect to ν (µ ≪ ν) if, for every event S ∈ B(2N), µ(S) > 0 entails that ν(S) > 0.

If µ and ν encode the subjective priors of two Bayesian agents, then µ being absolutely con-
tinuous with respect to ν intuitively means that µ is at least as dogmatic as ν. All of the events
that are a priori ‘excluded’ by the agent with prior ν (by virtue of having been assigned proba-
bility zero before any observations are made) are also ‘excluded’ by the agent with prior µ. In
other words, the agent with prior ν cannot be surprised by any event to which the agent with
prior µ assigns positive probability. It is however possible for µ to be strictly more dogmatic
than ν: the agent with prior µ may assign probability zero to some events to which the agent
with prior ν assigns positive probability. On the other hand, if µ represents the true distri-
bution governing some stochastic process while ν is the subjective prior of a Bayesian agent,
then µ being absolutely continuous with respect to ν means that the agent with prior ν assigns
probability zero only to events that truly have probability zero.

Here is an example to elucidate this notion.

Example 2.2. If ν is a non-trivial convex combination of µ1 and µ2, then µ1 ≪ ν and µ2 ≪ ν.

Take, for instance, the uniform measure λ and let ν = 1
4λ +

3
4µ 1

3
, where µ 1

3
is the Bernoulli

measure given by µ 1
3
([σ]) = 1

3
k
· 2

3
n−k, with n the length of σ, k the number of 0’s occurring in

σ and n − k the number of 1’s occurring in σ. Measure ν is a convex combination of λ and µ 1
3
.

Now, let S ∈ B(2N) with λ(S) > 0. Then, 1
4λ(S) > 0 and 3

4µ 1
3
(S) ≥ 0, which together entail

that ν(S) > 0. Hence, λ ≪ ν. An analogous argument establishes that µ 1
3
≪ ν.

Next, we consider a canonical notion of incompatibility between measures, as well as its
dual notion, which yields a very minimal form of compatibility.

Definition 2.3 (Orthogonality). Two measures µ and ν are orthogonal (µ⊥ν) if there is an event

S ∈ B(2N) such that µ(S) = 1 but ν(S) = 0. If there is no such event, then µ and ν are said to

be non-orthogonal (µ��⊥ν).
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Orthogonality is diametrically opposed to absolute continuity. If µ and ν are orthogonal,
then absolute continuity fails in the most extreme way possible: the event with (without loss of
generality) ν-measure zero and positive µ-measure witnessing the failure of absolute continuity
has in fact µ-measure one. Orthogonality thus captures a radical type of disagreement.

Below is an example of two orthogonal measures, followed by an example featuring non-
orthogonal measures.

Example 2.4. Take the uniform measure λ and the Bernoulli measure µ 1
3

from Example 2.2.

Given a sequence ω ∈ 2N, let #0(ω↾n)
n denote the relative frequency of 0 in the first n digits

of ω. By the Strong Law of Large Numbers, λ
({
ω ∈ 2N : limn→∞

#0(ω↾n)
n = 1

2

})
= 1 and

µ 1
3

({
ω ∈ 2N : limn→∞

#0(ω↾n)
n = 1

3

})
= 1. So, µ 1

3

({
ω ∈ 2N : limn→∞

#0(ω↾n)
n = 1

2

})
= 0, which

shows that λ and µ 1
3

are orthogonal.

Example 2.5. Let ν = αµ1 + (1 − α)µ2, with α ∈ (0, 1). Let S ∈ B(2N). If ν(S) = αµ1(S) +
(1 − α)µ2(S) = 1, then µ1(S) = 1 and µ2(S) = 1. If µ1(S) = 1, then ν(S) ≥ α > 0, and if

µ2(S) = 1, then ν(S) ≥ (1 − α) > 0. Hence, ν and µ1 are non-orthogonal, and ν and µ2 are

non-orthogonal.

If µ ≪ ν, then µ and ν are non-orthogonal. The converse, however, does not hold: non-
orthogonality is a much weaker form of compatibility than absolute continuity.5

We conclude our review of classical compatibility notions by discussing a weaker form of
absolute continuity: local absolute continuity.

Definition 2.6 (Local absolute continuity). Given measures µ and ν, µ is locally absolutely

continuous with respect to ν (µ ≪loc ν) if, for every n ∈ N and every S ∈ Fn, µ(S) > 0 entails

that ν(S) > 0.6

Since the filtration {Fn}n∈N represents the possible evidence the agents may obtain, having
that µ ≪loc ν means that ν agrees with µ about which evidence they expect to see. In other
words, ν cannot be surprised by any piece of evidence to which µ assigns positive probability.
Another way to think about local absolute continuity is that it amounts to absolute continuity
restricted to finite-horizon events—that is, events that can be settled by a finite amount of
evidence.

A measure µ is strictly positive if it assigns positive probability to every basic open set:
namely, if µ([σ]) > 0 for all σ ∈ 2<N. Intuitively, strictly positive measures embody a certain

5For an example, let µ = 1
2λ(· | [0]) + 1

2λ(· | [11]) and ν = 1
2λ(· | [1]) + 1

2λ(· | [00]). Now,
for any S ∈ B(2N) with µ(S) = 1, λ(S | [11]) = 1. Hence, λ(S | [1]) > 0 and, so, ν(S) > 0.
Similarly, for any S ∈ B(2N) with ν(S) = 1, λ(S | [00]) = 1. Hence, λ(S | [0]) > 0 and, so,
µ(S) > 0. Therefore, µ and ν are non-orthogonal. However, neither µ ≪ ν nor ν ≪ µ, since
ν([01]) = 0 while µ([01]) = 1

4 , and µ([10]) = 0 while ν([10]) = 1
4 .

6Given the definition of the filtration {Fn}n∈N, in our setting this condition is equivalent to
the following: for any σ ∈ 2<N, µ([σ]) > 0 entails that ν([σ]) > 0.
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type of open-mindedness: they do not a priori rule out any finite string of observations. Clearly,
any two strictly positive measures µ and ν are mutually locally absolutely continuous (namely,
µ ≪loc ν and ν ≪loc µ)—for a concrete example, take once again the uniform measure λ and the
Bernoulli measure µ 1

3
, which are both strictly positive. While absolute continuity entails local

absolute continuity, the reverse implication does not hold: as shown in Example 2.4, λ and µ 1
3

are orthogonal and, so, neither of them is absolutely continuous with respect to the other.
Example 2.4 also shows that local absolute continuity does not entail non-orthogonality:

two measures can be locally absolutely continuous, and yet there can be an infinite-horizon
event (an event that can only be settled by an infinite amount of evidence) on which these
two measures maximally disagree. As a matter of fact, non-orthogonality and local absolute
continuity are independent notions: neither of them entails the other.7

2.2 Merging and polarization in the classical framework

We are now ready to turn our attention to the phenomenon of merging of opinions—and to the
other extreme: polarization of opinions.

The most well-studied notion of merging of opinions was introduced in a seminal article by
Blackwell and Dubins (1962):

Definition 2.7 (Merging). Given measures µ and ν, ν is said to merge with µ (ν
M
−→ µ) if, for

µ-almost every ω ∈ 2N,

lim
n→∞

sup
S∈B(2N)

∣∣∣∣ν(S | [ω ↾ n]) − µ(S | [ω ↾ n])
∣∣∣∣ = 0.8

The distance supS∈B(2N)

∣∣∣ν(S) − µ(S)
∣∣∣ between µ and ν is called the total variation distance

and it essentially amounts to the largest possible difference between the probabilities that µ and
ν can assign to the same event in B(2N). As a result, the quantity supS∈B(2N)

∣∣∣ν(S | [ω ↾ n]) −
µ(S | [ω ↾ n])

∣∣∣ intuitively represents the maximum possible disagreement between µ and ν after
having observed the outcomes of the first n experiments.

A crucial feature of this type of merging (and what makes it such a strong notion of con-
sensus) is that it requires that the agent with prior ν be eventually able to forecast the prob-

7To see that non-orthogonality fails to entail local absolute continuity, note that the example
given in footnote 5 of two non-orthogonal measures µ and ν such that µ 3 ν and ν 3 µ is also
a case where µ 3loc ν and ν 3loc µ.

8In order for ν to merge with µ in the sense of Definition 2.7, it has to be the case that, for
µ-almost every ω ∈ 2N, µ([ω ↾ n]) > 0 and ν([ω ↾ n]) > 0 for all n ∈ N. In other words,
the support of µ has to be included in the support of ν. As noted earlier, for each ω for which
µ([ω ↾ n]) > 0 and ν([ω ↾ n]) > 0 for all n ∈ N, µ(S | [ω ↾ n]) = µ(S | Fn)(ω) and
ν(S | [ω ↾ n]) = ν(S | Fn)(ω) for all n ∈ N, all S ∈ B(2N), and all versions of µ(S | Fn) and
ν(S | Fn).
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abilities of every event in agreement with µ, including the probabilities of infinite-horizon
events—more precisely, of events in the tail σ-algebra G∞ =

⋂
n∈NGn, where, for each n ∈ N,

Gn = σ(
⋃

i≥n Fi).
The following result, known as the Blackwell-Dubins Theorem, is a central result in the

foundations of probability, statistics, and Bayesian epistemology. It establishes that absolute
continuity is sufficient for merging: in other words, if ν is no more dogmatic than µ, then, with
µ-probability one, νwill eventually agree with µ on the probability of all events, as the evidence
accumulates.

Theorem 2.8 (Blackwell and Dubins 1962). Given measures µ and ν, if µ ≪ ν, then ν
M
−→ µ.

It is easy to see that merging, as defined above, entails local absolute continuity.9 But this
is not all. As shown by Kalai and Lehrer (1994), the Blackwell-Dubins Theorem admits a
converse: in our setting, it is also the case that merging entails absolute continuity. There-
fore, merging of opinions in the sense of Blackwell and Dubins and absolute continuity are
equivalent notions.

Theorem 2.9 (Kalai and Lehrer 1994). Given measures µ and ν, if ν
M
−→ µ, then µ ≪ ν.

The Blackwell-Dubins Theorem is philosophically significant because it has been argued to
provide a vindication of subjective Bayesianism by way of demonstrating that divergent initial
opinions should not be a cause for concern. Disagreement over priors does not threaten the
objectivity of learning and scientific inquiry, the argument goes, because objectivity can be
recovered in the form of inter-subjective agreement.

Yet, merging of opinions is not guaranteed to occur in all circumstances: as we have seen, it
is attained when the agents’ initial beliefs are sufficiently compatible. When the agents’ priors
are not compatible enough, disagreement may persist, even as the evidence accumulates. For
instance, it is not difficult to see that merging entails non-orthogonality, which means that if
two measures are orthogonal, then they fail to merge.10

The most radical failure of merging is polarization of opinions, which occurs when disagree-
ment, rather than being gradually eliminated by the shared evidence, becomes maximal as the
available information increases.

9Suppose that ν
M
−→ µ but µ 3loc ν. Then, there is some σ ∈ 2<N with µ([σ]) > 0 but

ν([σ]) = 0. LetM ∈ B(2N) denote the set of data streams along which ν merges with µ. For all
ω ∈ M, µ([ω ↾ n]) > 0 and ν([ω ↾ n]) > 0 for all n ∈ N. Since µ(M) = 1, µ(M∩ [σ]) > 0.
Hence,M∩ [σ] is non-empty. Take ω ∈ M ∩ [σ]. Then, ν([ω ↾ n]) = 0 for all n ≥ |σ|, which
is a contradiction.

10Suppose that µ⊥ν. Then, there is some C ∈ B(2N) with µ(C) = 0 and ν(C) = 1. As a result,
for every ω ∈ 2N with µ([ω ↾ n]) > 0 and ν([ω ↾ n]) > 0 for all n ∈ N, µ(C | [ω ↾ n]) = 0 and
ν(C | [ω ↾ n]) = 1 for all n ∈ N. Hence, ν does not merge with µ.
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Definition 2.10 (Polarization). Given measures µ and ν, ν is said to become polarized with

respect to µ (ν || µ) if, for µ-almost every ω ∈ 2N,

lim
n→∞

sup
S∈B(2N)

∣∣∣∣ν(S | [ω ↾ n]) − µ(S | [ω ↾ n])
∣∣∣∣ = 1.

Orthogonality and local absolute continuity together entail polarization of opinions: if two
agents agree on what evidence is possible but their priors are orthogonal, then, even as they
obtain more and more information, their beliefs remain maximally divergent.

Observation 2.11 (Folklore). Given measures µ and ν, if µ⊥ν and µ ≪loc ν, then ν || µ.

Proof. Suppose there is some C ∈ B(2N) with µ(C) = 0 and ν(C) = 1, and that µ ≪loc ν. LetU
be the set {ω ∈ 2N : (∀n) µ([ω ↾ n]) > 0}. Clearly, µ(U) = 1 (U is the support of µ). Moreover,
for all ω ∈ U and all n ∈ N, ν([ω ↾ n]) > 0, since µ ≪loc ν. Hence, for all ω ∈ U and all n ∈ N,
µ(C | [ω ↾ n]) = 0 and ν(C | [ω ↾ n]) = 1, so that

∣∣∣ν(C | [ω ↾ n]) − µ(C | [ω ↾ n])
∣∣∣ = 1. Then,

for all ω ∈ U and n ∈ N, supS∈B(2N)

∣∣∣ν(S | [ω ↾ n]) − µ(S | [ω ↾ n])
∣∣∣ = 1, from which it follows

that ν || µ. □

Since not all priors are guaranteed to merge, understanding under what conditions merging of
opinions occurs and under what conditions it fails to occur has been a central goal of much work
in Bayesian epistemology, the foundations of statistics, as well as game theory. Determining
exactly which types of compatibility lead to merging—and how reasonable these notions of
compatibility are—would in fact help elucidate the philosophical implications of the Blackwell-
Dubins Theorem and other related merging-of-opinions results. Our results in the remainder of
this article contribute a further step in this direction by shedding light on the phenomenon of
merging of opinions in the setting of computable Bayesian agents.

3 Merging of opinions for computable Bayesian agents

Classical merging-of-opinions results, such as the Blackwell-Dubins Theorem discussed above,
are proven for arbitrary (probability) measures. In what follows, we will restrict attention to
computable measures—and, at times, we will also make use of the more general concept of a
lower semi-computable measure. This restriction stems from the fact that our aim is to elucidate
the phenomenon of merging of opinions in the context of computationally limited Bayesian
learners, who may be identified with agents whose initial credences are given by computable
priors.

A measure µ on B(2N) is computable if the function σ 7→ µ([σ]) is computable: that is,
if µ([σ]) is a computable real, uniformly in σ.11 Analogously, µ is lower semi-computable if

11A real number r is computable if there is a computable sequence q0, q1, q2, . . . of rationals
such that |r − qn| ≤ 2−n for all n ∈ N. In other words, the qn’s approximate r at a computable
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µ([σ]) is a left-computably enumerable (left-c.e.) real, uniformly in σ.12 The uniform mea-
sure λ on B(2N) defined earlier is a simple example of a computable measure, as is every other
Bernoulli measure with a computable bias. We will indicate it explicitly when the given mea-
sures are merely lower semi-computable; otherwise, from now on, all mentioned measures
should be assumed to be computable.

While focusing on effective measures of course means losing some generality, it also allows
to draw distinctions that were previously beyond reach. Notably, this computability-theoretic
perspective allows to investigate more fine-grained notions of compatibility between priors,
and to thereby represent the corresponding agents’ inductive assumptions in a more detailed
way. From a methodological point of view, this is significant because, as mentioned earlier,
the Blackwell-Dubins Theorem and the philosophical lesson standardly drawn from it crucially
rely on absolute continuity: merging of opinions cannot be gotten for free, it follows when
the agents’ initial beliefs are sufficiently similar. Absolute continuity, however, is not without
detractors (see, for instance, (Earman 1992) and (Miller and Sanchirico 1999)). It is therefore
useful to investigate alternative forms of compatibility that lead to merging and the rationale
behind them, and, more generally, to gain a deeper understanding of exactly how similar the
initial credences of two agents have to be in order for their posterior credences to eventually
align in natural ways.

In what follows, we pursue this approach by defining various notions of compatibility in-
duced by algorithmic randomness—a perspective that goes hand in hand with the computability-
theoretic restrictions imposed on priors. Then, we show that agreeing on which data streams
are algorithmically random indeed leads to merging of opinions between computable Bayesian
agents, and that disagreeing on which data streams are algorithmically random leads to polar-
ization of opinions.

3.1 Algorithmic randomness

Algorithmic randomness combines measure-theoretic and computability-theoretic tools to spec-
ify what it means for an individual mathematical object (in our case, an individual data stream)
to be random relative to a given probability measure. According to a prominent paradigm for
defining algorithmic randomness, the measure-theoretic typicality paradigm, randomness is to
be equated with typicality: a sequence is random if it is a typical, or representative, outcome
from the perspective of the underlying measure. In a nutshell, a sequence is random if it does

rate, uniformly in n. Saying that µ([σ]) is a computable real uniformly in σ means that there is
a computable function f : 2<N × N → Q which, on inputs σ ∈ 2<N and n ∈ N, outputs the n-th
rational qn in the approximation that witnesses the computability of µ([σ]).

12A real number r is left-c.e. if there is a computable non-decreasing sequence of rationals
that converges to r in the limit: that is, if r can be approximated from below via a computable
sequence of rationals.
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not possess any identifying patterns or regularities that would make it stand out, that would
render it an atypical and unexpected outcome relative to the underlying measure. The only
patterns displayed by a random data stream are the ones that most sequences possess, which is
why a random data stream constitutes a representative sample.

To build some intuition, imagine tossing a fair coin an infinite number of times. By the
Strong Law of Large Numbers, we know that, with probability one relative to the uniform
measure, the limiting relative frequency of 0 in the resulting sequence is 1

2 . Many other results
in probability theory have this shape: they establish that almost every sequence satisfies a
given property of interest—namely, that the collection of sequences satisfying that property
has probability one relative to the underlying measure. For instance, it follows from the Law of
the Iterated Logarithm relative to the uniform measure that almost every sequence is such that
the relative frequency of 0 is infinitely often above 1

2 and infinitely often below it. We will refer
to properties like these that hold of almost every sequence as ‘statistical laws’ and say that a
data stream satisfies a given statistical law if it belongs to the probability-one set of sequences
displaying the corresponding property. For instance, a data stream satisfies the Strong Law of
Large Numbers relative to the uniform measure if it belongs to the set of sequences along which
the limiting relative frequency of 0 is 1

2 . Now, it stands to reason that a sequence is measure-
theoretically typical if it possesses all the properties that almost every sequence possesses and
no property that almost no sequence possesses. So, as a first pass, one may be tempted to say
that a sequence is random relative to a given measure if it satisfies all statistical laws relative to
that measure.

While intuitive, this definition leaves much to be desired. For instance, for the uniform
measure (and, in fact, every atomless measure), it leads to a vacuous definition of randomness.
Since every sequence ω ∈ 2N belongs to its own singleton set {ω}, and every singleton set has
measure zero according to the uniform measure, no sequence satisfies all statistical laws: every
ω fails to possess the probability-one property corresponding to the set 2N \ {ω}. As a result, no
sequence is random according to this definition.

The key idea behind the theory of algorithmic randomness is that this problem can be re-
solved by appealing to computability theory: in particular, by restricting attention to the statisti-
cal laws that can be effectively specified—roughly, the statistical laws that can be defined in the
language of computability theory. More precisely, to be effectively specifiable, a property has to
coincide with a subset of Cantor space with a classification in the arithmetical hierarchy. Within
the arithmetical hierarchy, a set is assigned classifications of the form Π0

n,Σ
0
n, or ∆0

n, with n ≥ 1.
A set C ⊆ 2N is aΠ0

n class if it is definable by aΠ0
n formula: that is, if there is a computable rela-

tion R such that C = {ω ∈ 2N : (∀k1)(∃k2)...(Qkn) R(ω ↾ k1, ω ↾ k2, ..., ω ↾ kn)}, where Q = ∀

if n is odd and Q = ∃ otherwise. A Σ0
n class, on the other hand, is the complement of a Π0

n class.
Equivalently, it is a set C ⊆ 2N definable by a Σ0

n formula, which means that there exists a com-
putable relation R such that C = {ω ∈ 2N : (∃k1)(∀k2)...(Qkn) R(ω ↾ k1, ω ↾ k2, ..., ω ↾ kn)},
where Q = ∃ if n is odd and Q = ∀ otherwise. Lastly, a ∆0

n class is a set C ⊆ 2N that is both a
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Π0
n class and a Σ0

n class.13

All canonical statistical laws, such as the ones discussed above, are effective in this sense.
For instance, the Strong Law of Large Numbers relative to the uniform measure corresponds to
the Π0

3 class {
ω ∈ 2N : (∀k)(∃m)(∀n ≥ m)

∣∣∣∣∣#0(ω ↾ n)
n

−
1
2

∣∣∣∣∣ < 2−k
}
,

since checking whether
∣∣∣#0(ω↾n)

n − 1
2

∣∣∣ < 2−k can be done computably. In light of this observation,
equating randomness with effective measure-theoretic typicality—that is, with the satisfaction
of statistical laws that are effectively specifiable—seems to be a natural solution. As mentioned
above, this is exactly the path taken by the theory of algorithmic randomness: given a com-
putable measure µ, a data stream ω is algorithmically µ-random if it is an effectively typical
sequence of outcomes relative to µ. As we will see, focusing on the satisfaction of effectively
specifiable statistical laws ensures that, for each measure µ, the collection of µ-random se-
quences is itself a µ-measure one set. This means that almost every sequence is µ-random, so
that random sequences are indeed typical.

Algorithmic randomness is not the theory of a single randomness notion. Rather, it studies
an infinite hierarchy of randomness concepts, each of which corresponds to the satisfaction of
a different class of effectively specifiable statistical laws. Below, we provide the definitions
of some of the most well-studied and well-behaved algorithmic randomness notions in the
literature.14 We will then see how each of them gives rise to a different type of compatibility
between priors.

We begin with one of the most prominent notions of algorithmic randomness: Martin-Löf
randomness (Martin-Löf 1966).

Definition 3.1 (Martin-Löf randomness).

(a) A sequence {Un}n∈N of Σ0
1 classes is a sequence of uniformly Σ0

1 classes if
⋂

n∈NUn is a Π0
2

class. Let {Un}n∈N be a sequence of uniformly Σ0
1 classes satisfying µ(Un) ≤ 2−n for all

n ∈ N. Such a sequence is called a µ-Martin-Löf test. Since, as n goes to infinity, µ(Un)
converges to 0 at a computable rate,

⋂
n∈NUn is said to be a set of effective µ-measure

zero.

(b) A sequence ω ∈ 2N is µ-Martin-Löf random if and only if there is no µ-Martin-Löf test

{Un}n∈N such that ω ∈
⋂

n∈NUn.

13Every Π0
n class is also a ∆0

n+1, a Π0
n+1 and a Σ0

n+1 class, and the same holds for Σ0
n classes. A

Σ0
1 class is the Cantor space analogue of a computably enumerable set of natural numbers, a Π0

1

class is the analogue of a co-computably enumerable set of natural numbers, and a ∆0
1 class is

the analogue of a computable set of natural numbers.
14For an exhaustive treatment of the theory of algorithmic randomness, see, for instance,

(Nies 2009) or (Downey and Hirschfeldt 2010).
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In short, a sequence is µ-Martin-Löf random if it does not possess any Π0
2 properties of ef-

fective µ-measure zero in the sense of Definition 3.1(a)—equivalently, if it possesses all Σ0
2

properties of effective µ-measure one. Crucially, this definition entails that, for all computable
Bernoulli measures, the Martin-Löf random sequences satisfy the Strong Law of Large Num-
bers, the Law of the Iterated Logarithm, as well as many other canonical statistical laws.15

The collection of µ-Martin-Löf random sequences, which will be denoted by µ-MLR, is
itself a set of µ-measure one (µ(µ-MLR) = 1). This is because there are only countably many
µ-Martin-Löf tests: as a result, the set of all sequences that fail at least one µ-Martin-Löf test is
a countable collection of µ-null sets and, so, itself a µ-null set (essentially the same argument
establishes that µ(µ-R) = 1 for every algorithmic randomness notion R).

Another central algorithmic randomness notion, Schnorr randomness (Schnorr 1971a; Schnorr
1971b), is obtained by considering a more restricted family of randomness tests:

Definition 3.2 (Schnorr randomness).

(a) Let {Un}n∈N be a µ-Martin-Löf test such that the measure µ(Un) of each set Un is a

computable real, uniformly in n. Then, {Un}n∈N is called a µ-Schnorr test.

(b) A sequence ω ∈ 2N is µ-Schnorr random if and only if there is no µ-Schnorr test {Un}n∈N

such that ω ∈
⋂

n∈NUn.

Just as in the case of Martin-Löf randomness, a µ-Schnorr random sequence is one that does
not possess any Π0

2 properties of effective µ-measure zero. The type of effectivity involved in
the definition of Schnorr randomness is however more stringent than the one involved in the
definition of Martin-Löf randomness. In the case of µ-Schnorr tests {Un}n∈N, we in fact have
that not only µ(Un) converges to 0 at a computable rate, but also that each µ(Un) is itself a
computable real number.

The collection of µ-Schnorr random sequences will be denoted by µ-SR. For every com-
putable measure µ, µ-MLR ⊆ µ-SR. The converse, however, does not hold in general: for
many measures, counting as Schnorr random requires passing ‘fewer’ tests than in the context
of Martin-Löf randomness, so ‘more’ sequences are random according to Schnorr’s definition.

Next, we define the weak n-randomness hierarchy (Kurtz 1981): a family of algorithmic
randomness concepts that, as we shall see, yield notions of compatibility that are very closely
connected to absolute continuity.

Definition 3.3 (Weak n-randomness). Let n ≥ 1. A sequence ω ∈ 2N is µ-weakly n-random if

and only if it belongs to every Σ0
n class of µ-measure one.16

15Given appropriate generalizations of these laws, this also holds for arbitrary (computable)
measures.

16Equivalently, if it avoids all Π0
n classes of µ-measure zero.
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In other words, a sequence is weakly n-random if it satisfies all statistical laws definable
by a Σ0

n formula (including all the Σ0
n properties of effective measure one). The collection of

µ-weakly n-random sequences will be denoted by µ-WnR. For every computable measure µ,
... ⊆ µ-W3R ⊆ µ-W2R ⊆ µ-MLR ⊆ µ-SR ⊆ µ-W1R.

Algorithmic randomness notions can also be defined in terms of unpredictability: that is, one
may take the essence of a random sequence to be that past observations do not provide any in-
formation that can be exploited to make better-than-chance predictions about future outcomes.
This is the central idea behind the unpredictability paradigm, according to which a sequence is
algorithmically random if it is impossible for a gambler to devise an effective betting strategy
that would allow them to gain unbounded wealth by successively wagering on the bits of that
sequence.

The betting strategies employed to define randomness are called dyadic martingales:17

Definition 3.4 (Dyadic martingale). Given a measure µ, a dyadic µ-martingale is a partial

function d :⊆ 2<N → R≥0 such that, for all strings σ ∈ 2<N,

(a) if d(σ) is undefined, then µ([σ]) = 0 (impossibility condition);

(b) d(σ)µ([σ]) = d(σ0)µ([σ0]) + d(σ1)µ([σ1]) (fairness condition), where a term of the

form d(τ)µ([τ]) is taken to be equal to 0 if µ([τ]) = 0 even when d(τ) is undefined.

A dyadic µ-martingale d is said to be normed if d(ε) = 1. It is said to succeed on a sequence

ω ∈ 2N if lim sup
n→∞

d(ω ↾ n) = ∞.

A dyadic martingale intuitively formalizes the capital fluctuations incurred by a gambler as
a result of following a certain betting strategy. For each σ ∈ 2<N on which d is defined, d(σ)
represents the capital accumulated after betting on the first n = |σ| bits of a sequence whose
initial segment of length n is σ (so d(ε) represents the initial capital available to the gambler).
The impossibility condition and the convention that d(τ)µ([τ]) = 0 whenever µ([τ]) = 0 and
d(τ) is undefined ensure that the fairness condition is well-defined. In turn, the fairness con-
dition ensures that the game is fair: it requires that, at each round of the game, the gambler’s
expected winnings equal their current capital. A dyadic martingale is successful on a sequence
if the underlying betting strategy wins an unbounded amount of wealth when played against
that sequence.

A canonical algorithmic randomness notion defined via martingales is computable random-
ness:18

17Here, in generalizing the concept of a dyadic martingale from the uniform measure to
arbitrary computable measures, we follow Rute (2016).

18Computable randomness was introduced by Schnorr (1971a) and Schnorr (1971b) in the
context of the uniform measure. Its generalization to arbitrary computable measures is due to
Rute (2016). Computable randomness can also be characterized within the measure-theoretic
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Definition 3.5 (Computable randomness). A sequence ω ∈ 2N is µ-computably random if and

only if (a) µ([ω ↾ n]) > 0 for all n ∈ N, and (b) lim sup
n→∞

d(ω ↾ n) < ∞ for all almost everywhere

computable dyadic µ-martingales d.19

The collection of µ-computably random sequences will be denoted by µ-CR. For every com-
putable measure µ, µ-MRL ⊆ µ-CR ⊆ µ-SR (but the converse inclusions do not hold in general).

The definition of a dyadic martingale can be relaxed as follows: given a measure µ, a function
d :⊆ 2<N → R≥0 is a dyadic µ-supermartingale if, for all σ ∈ 2<N, d satisfies the impossibility
condition from Definition 3.4, and d(σ)µ([σ]) ≥ d(σ0)µ([σ0]) + d(σ1)µ([σ1]). Dyadic su-
permaringales differ from dyadic martingales in that they can be wasteful: they are ‘allowed
to discard part of [the] capital, such as by buying drinks or tipping the dealer’ (Downey and
Hirschfeldt 2010, p. 235). Dyadic martingales and supermartingales can be put to use to
provide an alternative characterization of Martin-Löf randomness within the unpredictability
paradigm:20

Theorem 3.6 (Schnorr 1971b). Let ω ∈ 2N. The following are equivalent:

(1) ω is µ-Martin-Löf random;

(2) µ([ω ↾ n]) > 0 for all n ∈ N, and lim sup
n→∞

d(ω ↾ n) < ∞ for all left-c.e. dyadic µ-

martingales d.

In (2) above, the requirement that d be left-c.e. can be relaxed to the requirement that d be

almost everywhere left-c.e., and the requirement that d be a dyadic µ-martingale can be relaxed

to the requirement that d be a dyadic µ-supermartingale.21

We conclude our brief overview of the theory of algorithmic randomness with density ran-
domness, a notion that results from a natural modification of the characterization of Martin-Löf
randomness given in Theorem 3.6:

Definition 3.7 (Density randomness). A sequence ω ∈ 2N is µ-density random if and only if

(a) µ([ω ↾ n]) > 0 for all n ∈ N, and (b) lim
n→∞

d(ω ↾ n) exists and is finite for all left-c.e.

typicality paradigm in terms of the satisfaction of effective statistical laws (see, for instance,
(Downey and Hirschfeldt 2010)).

19A dyadic µ-martingale is computable if it is a total computable function and almost every-
where computable if it is a partial computable function. For strictly positive measures (mea-
sures that assign positive probability to every cylinder), computable and almost everywhere
computable dyadic martingales coincide.

20Schnorr (1971b) proved Theorem 3.6 in the context of the uniform measure, but the result
is generalizable to all computable measures.

21A dyadic µ-martingale or µ-supermartingale is left-c.e. if it is a total left-c.e. function and
almost everywhere left-c.e. if it is a partial left-c.e. function.
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dyadic µ-martingales d. Once again, we obtain the same randomness notion if the requirement

that d be left-c.e. is relaxed to the requirement that d be almost everywhere left-c.e., and if the

requirement that d be a dyadic µ-martingale is relaxed to the requirement that d be a dyadic

µ-supermartingale.

The collection of µ-density random sequences will be denoted by µ-DR. For every com-
putable measure µ, µ-DR ⊆ µ-MLR, but the reverse inclusion does not hold in general.22

3.2 Algorithmic randomness and merging

Though possibly surprising at first, algorithmic randomness offers a natural framework for
defining notions of compatibility between priors. As already suggested by Skyrms, algorithmic
randomness notions may in fact be thought of as embodying beliefs in a special version of the
principle of the uniformity of nature:

Without pursuing the matter in detail, I want to note a fact that is invariant over
questions of fine tuning the analysis. It is that random sequences must have a lim-
iting relative frequency. This is a rather spicy revelation in view of Reichenbach’s
taking the existence of limiting relative frequencies as the principle of the unifor-
mity of nature. The most chaotic and disordered alternative to uniformity that we
can find entails uniformity-in-the-sense-of-Reichenbach! [...] Randomness is in-
deed a kind of disorder, but it carries with it of necessity a kind of statistical order
in the large. (Skyrms 1984, p. 38)

In particular, algorithmic randomness notions may be taken to encode a specific type of in-
ductive assumptions—or commitments (either explicit or implicit)—that result from the subjec-
tive prior with respect to which randomness is defined. This is because algorithmic randomness
notions embody the effective statistical laws that an agent expects to see in the data by virtue of
having a certain prior. For instance, if their initial beliefs are captured by the Bernoulli measure
with bias 2

3 towards 1, the agent is (at least implicitly) making the inductive assumption that
the limiting relative frequency of 0 in the true data stream is 1

3 , in the sense that they assign
probability one to the set of data streams having this property. So, by believing that every
sequence of n observations (or outcomes of the experiment under consideration) featuring k

0’s has probability 1
3

k 2
3

(n−k), the agent is also committed to believing in the relevant version of
the Strong Law of Large Numbers. But, as we have seen, algorithmic randomness captures
inductive assumptions of exactly this type: beliefs in the fact that the data will display certain
effective statistical regularities that stem from one’s beliefs about events that can be settled with
a finite number of observations.

22See, for instance, (Miyabe et al. 2016). The fact that µ(µ-DR) = 1 follows from Doob’s
Martingale Convergence Theorem (see, for instance, (Williams 1991, Theorem 11.5)) and the
fact that dyadic µ-martingales are non-negative.
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With this motivation in place, let us turn to the properties of the notions of compatibility
induced by algorithmic randomness. First, recall that, given two computable priors µ and ν,
as well as an algorithmic randomness notion R, ν is compatible with µ with respect to R if
µ-R ⊆ ν-R. Intuitively, this indicates that the agent with prior ν cannot be surprised by a
data stream that the agent with prior µ considers typical (in the sense of R). Now, a well-
known result due to Muchnik et al. (1998) establishes that, for any two computable measures,
agreeing on which data streams are computably random entails agreeing on which data streams
are Martin-Löf random:

Proposition 3.8 (Muchnik et al. 1998). If µ-CR ⊆ ν-CR, then µ-MLR ⊆ ν-MLR.

This means that having compatible beliefs about the type of uniformity embodied by com-
putable randomness entails having compatible beliefs about the type of uniformity embodied
by Martin-Löf randomness.

As we will now show, agreeing on which data streams are Martin-Löf random in turn en-
tails agreeing on which data streams are density random (again, for all computable measures).
Hence, having compatible beliefs about the type of uniformity embodied by Martin-Löf ran-
domness in turn entails having compatible beliefs about the type of uniformity embodied by
density randomness.

Proposition 3.9. If µ-MLR ⊆ ν-MLR, then µ-DR ⊆ ν-DR.

Proof. Suppose that µ-MLR ⊆ ν-MLR and that ω ∈ µ-DR. Then, ω ∈ µ-MLR. Therefore,
ω ∈ µ-DR∩ ν-MLR. Suppose towards a contradiction that ω < ν-DR. Since ω ∈ ν-MLR, for
all n, ν([ω ↾ n]) > 0. Thus, by Theorem A.2 (see the Appendix), there must be a lower semi-

computable semi-measure ξ such that either lim
n→∞

ξ([ω ↾ n])
ν([ω ↾ n])

= ∞ or the sequence
{
ξ([ω↾n])
ν([ω↾n])

}
n∈N

does not have a limit.
Let us consider the second case first. The fact that

{
ξ([ω↾n])
ν([ω↾n])

}
n∈N

does not have a limit entails that
ξ([ω ↾ n]) > 0 for all n, and that there are reals a, b with 0 < a < b such that the number of
upcrossings of the sequence

{
ξ([ω↾n])
ν([ω↾n])

}
n∈N

across the interval [a, b] is infinite. Since ω ∈ µ-DR,

µ([ω ↾ n]) > 0 for all n. Moreover, Theorem A.2 entails that lim
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

exists and is

finite. Call this limit ℓ. We have two sub-cases to examine. First, suppose that ℓ = 0. Then,

lim
n→∞

1
/
ξ([ω ↾ n])
µ([ω ↾ n])

= ∞. For each n,

µ([ω ↾ n])
ν([ω ↾ n])

=
ξ([ω ↾ n])
ν([ω ↾ n])

/
ξ([ω ↾ n])
µ([ω ↾ n])

(all three ratios are well-defined and positive because µ([ω ↾ n]) > 0, ν([ω ↾ n]) > 0, and
ξ([ω ↾ n]) > 0 for all n). Since there are infinitely many n with ξ([ω↾n])

ν([ω↾n]) ≥ b > 0, it follows that

lim sup
n→∞

µ([ω ↾ n])
ν([ω ↾ n])

= lim sup
n→∞

ξ([ω ↾ n])
ν([ω ↾ n])

/
ξ([ω ↾ n])
µ([ω ↾ n])

≥ lim
n→∞

(
b
/
ξ([ω ↾ n])
µ([ω ↾ n])

)
= ∞.
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This, however, contradicts the fact that ω ∈ ν-MLR (Theorem A.1 in the Appendix). So,
suppose instead that ℓ > 0. Let a′ = 2

3a + 1
3b and b′ = 1

3a + 2
3b. Then, 0 < a′ < b′, and the

number of upcrossings of the sequence
{
ξ([ω↾n])
ν([ω↾n])

}
n∈N

across the interval [a′, b′] is infinite, as well.
Moreover, for each of the infinitely many n such that ξ([ω↾n])

ν([ω↾n]) ≤ a < a′, a′ − ξ([ω↾n])
ν([ω↾n]) >

1
3 (b − a),

and for each of the infinitely many n such that ξ([ω↾n])
ν([ω↾n]) ≥ b > b′, ξ([ω↾n])

ν([ω↾n]) − b′ > 1
3 (b− a). We then

have that

lim sup
n→∞

ν([ω ↾ n])
µ([ω ↾ n])

= lim sup
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

/
ξ([ω ↾ n])
ν([ω ↾ n])

≥
ℓ

a′
, and

lim inf
n→∞

ν([ω ↾ n])
µ([ω ↾ n])

= lim inf
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

/
ξ([ω ↾ n])
ν([ω ↾ n])

≤
ℓ

b′
.

Since, ℓ, a′ and b′ are all positive and a′ < b′, ℓa′ >
ℓ
b′ . Hence, the sequence

{
ν([ω↾n])
µ([ω↾n])

}
n∈N

fails to
converge, which, by Theorem A.2, contradicts the assumption that ω ∈ µ-DR.

Let us now consider the first case: that is, suppose that lim
n→∞

ξ([ω ↾ n])
ν([ω ↾ n])

= ∞. This entails that

ξ([ω ↾ n]) > 0 for all n. Since lim
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

< ∞ by Theorem A.2, it follows that

lim sup
n→∞

µ([ω ↾ n])
ν([ω ↾ n])

= lim sup
n→∞

ξ([ω ↾ n])
ν([ω ↾ n])

/
ξ([ω ↾ n])
µ([ω ↾ n])

= ∞,

which contradicts the fact that ω ∈ ν-MLR (Theorem A.1). Hence, ω ∈ ν-DR. □

Next, we will see that agreeing on which data streams are density random entails absolute
continuity: if ν is compatible with µ with respect to density randomness, then ν is no more
dogmatic than µ. A fortiori, by Proposition 3.9 and Proposition 3.8, agreeing on which data
streams are Martin-Löf random and agreeing on which data streams are computably random
entail absolute continuity, too.23

Proposition 3.10. If µ-DR ⊆ ν-DR, then µ ≪ ν.

Proof. Suppose there is some S ∈ B(2N) with ν(S) = 0 and µ(S) > 0. Then, there is some
rational q with µ(S) > q > 0. Since ν is regular,24 ν(S) = inf{ν(U) : S ⊆ U andU ∈
B(2N) is an open set}. Hence, for all n ∈ N, there is an open set Un with S ⊆ Un such that
ν(Un) < 2−n and µ(Un) > q. Every Un is of the form

⋃
i∈N[σn,i]—where, without loss of

generality, the cylinders [σn,i] can be taken to be pairwise disjoint. For eachUn, there is some
Kn such that (1) µ(

⋃
i≤Kn

[σn,i]) > q, while (2) ν(
⋃

i≤Kn
[σn,i]) < 2−n. Let Vn = {σn,0, ..., σn,Kn}

and let
⋃

i≤Kn
[σn,i] be denoted as [Vn]. For each m ∈ N, let Vm =

⋃
n>m[Vn]. Then, we have

that ν(Vm) ≤
∑

n>m ν([Vn]) ≤
∑

n>m 2−n = 2−m and, since µ([Vn]) > q for all n, µ(Vm) > q, as

23The fact that µ-MLR ⊆ ν-MLR entails that µ ≪ ν was proven by Bienvenu and Merkle
(2009). The proof of Proposition 3.10 is analogous to the proof of this fact.

24Regularity follows from the fact that ν is a Borel probability measure and Cantor space is
a locally compact Hausdorff space with a countable base.
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well. Note that sets Vn with the above properties can be chosen in such a way that {Vm}m∈N

is a sequence of uniformly Σ0
1 classes. Given n, simply enumerate the strings in 2<N (for in-

stance, in the length-lexicographic order) until conditions (1) and (2) are met. By the above,
we are guaranteed that a finite, prefix-free collection of cylinders satisfying these conditions
will eventually be found, effectively. Hence, {Vm}m∈N is a ν-Martin-Löf test. This entails that⋂

m∈NVm ∩ ν-MLR = ∅. Given that ν-DR ⊆ ν-MLR,
⋂

m∈NVm ∩ ν-DR = ∅. However, since
µ(Vm) > q for all m and the sequence {Vm}m∈N is nested, µ(

⋂
m∈NVm) ≥ q > 0. Due to the fact

that µ-DR has µ-measure one, we therefore have that
⋂

m∈NVm∩µ-DR , ∅. It then follows that
µ-DR ⊈ ν-DR. □

So, agreeing on which data streams are computably random, Martin-Löf random, or den-
sity random all entail absolute continuity. This is epistemologically significant because, by the
Blackwell-Dubins Theorem, we then have that these three forms of compatibility induced by
algorithmic randomness all ensure asymptotic merging of opinions. In other words, the induc-
tive assumptions encoded by these core algorithmic randomness notions—the commitments to
the global uniformity of nature that they each represent—when shared by computable Bayesian
agents, guarantee the attainment of inter-subjective agreement.

Corollary 3.11. If µ-DR ⊆ ν-DR, then ν
M
−→ µ. A fortiori, if µ-MLR ⊆ ν-MLR, then ν

M
−→ µ, and

if µ-CR ⊆ ν-CR, then ν
M
−→ µ.

While it does not entail the other notions of compatibility induced by randomness, agreeing
on which data streams are Schnorr random entails absolute continuity, too:

Proposition 3.12 (Bienvenu and Merkle 2009). If µ-SR ⊆ ν-SR, then µ ≪ ν.

Thus, the inductive assumptions encapsulated by Schnorr randomness lead to almost-sure
inter-subjective agreement, as well.

Corollary 3.13. If µ-SR ⊆ ν-SR, then ν
M
−→ µ.

Note that the implications between the notions of compatibility induced by algorithmic ran-
domness presented above cannot be reversed: that is, for each of them, it is possible to find
two computable measures for which the converse implication fails.25 This means that these
notions of compatibility are all different from each other, as well as from absolute continuity.
Hence, approaching the question of when inter-subjective agreement is attainable from the per-
spective of algorithmic randomness indeed affords a richer, more fine-grained analysis of the
type of commitments and inductive assumptions that a (computable) Bayesian agent can have.
The compatibility notions generated by algorithmic randomness give rise to a novel hierarchy
of notions of agreement between priors that refine the type of agreement captured by absolute
continuity.

25See (Bienvenu and Merkle 2009) and (Zaffora Blando 2020).
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Next, we turn our attention to the weak n-randomness hierarchy. In the effective setting, it
is natural to consider the following version of absolute continuity, which only applies to Π0

n

classes:

Definition 3.14 (Π0
n-absolute continuity). Given measures µ and ν, µ is Π0

n-absolutely contin-

uous with respect to ν (µ ≪Π0
n
ν) if, for every Π0

n class S ∈ B(2N), µ(S) > 0 entails that

ν(S) > 0.26

If µ is Π0
n-absolutely continuous with respect to ν, then the agent with prior ν cannot be sur-

prised by any event definable by a Π0
n formula to which the agent with prior µ assigns positive

probability. This, however, leaves open the possibility that there might be more complex events
that have µ-positive probability and, yet, ν-probability zero.

For each n, it is easy to see that the notion of compatibility yielded by weak n-randomness
coincides with Π0

n-absolute continuity:

Observation 3.15. For all n ≥ 1, µ ≪Π0
n
ν if and only if µ-WnR ⊆ ν-WnR.

Proof. For the left-to-right direction, suppose that ω ∈ µ-WnR and let C be a Σ0
n class of ν-

measure one. Then, C is a Π0
n class of ν-measure zero. Since µ ≪Π0

n
ν, it follows that µ(C) = 0

and µ(C) = 1. Then, given that ω ∈ µ-WnR, ω ∈ C. But since C was an arbitrary Σ0
n class of

ν-measure one, we can conclude that ω ∈ ν-WnR. So, µ-WnR ⊆ ν-WnR.
For the right-to-left direction, suppose that there is a Π0

n class A such that ν(A) = 0, but
µ(A) > 0. Then, A is a Σ0

n class of ν-measure one, which entails that ν-WnR ⊆ A. However,
µ(A) < 1, so µ-WnR ⊈ A, because the collection of µ-weakly n-random sequences has µ-
measure one. Hence, µ-WnR ⊈ ν-WnR. □

The type of compatibility induced by weak n-randomness is thus but a variant of absolute
continuity—arguably, the most canonical notion of agreement between priors.

As a matter of fact, the connections between weak n-randomness and absolute continuity
are deeper than the above observation lets out. Recall that a Π0

2 class is the effective analogue
of a Gδ subset of Cantor space—where a Gδ set is a countable intersection of open sets. The
proposition below is the effective version (in the context of computable measures) of the well-
known equivalence of absolute continuity and absolute continuity restricted to Gδ sets.27

26One could also consider the notion of Σ0
n-absolute continuity: namely, absolute continuity

restricted to Σ0
n classes. Without loss of generality, we can however focus on Π0

n-absolute
continuity, since Π0

n-absolute continuity is equivalent to Σ0
n+1-absolute continuity.

27The proof of the non-trivial direction of Proposition 3.16 is the same as the first part of the
proof of Proposition 3.10. Again, Proposition 3.16 is but an effective analogue of a canonical
alternative characterization of absolute continuity in terms of a simple continuity condition:
µ ≪ ν if and only if, for all ϵ > 0, there is δ > 0 such that, for all S ∈ B(2N), µ(S) < δ entails
that ν(S) < ϵ (see, for instance, (Royden and Fitzpatrick 2010, Proposition 19, p. 381)).
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Proposition 3.16 (Folklore). Given measures µ and ν, µ ≪ ν if and only if µ ≪Π0
2
ν.

Proposition 3.16 establishes that, past the second level, the Π0
n-absolute continuity hierarchy

collapses: that is, for all n ≥ 2, Π0
n-absolute continuity is not a weaker form of absolute conti-

nuity, it actually coincides with it. So, for n ≥ 2, ν is no more dogmatic than µ when it comes
to events definable by Π0

n formulas if and only if ν is no more dogmatic than µ simpliciter. By
Observation 3.15 and Proposition 3.16, we then have that, for every n ≥ 2, having compatible
beliefs about which data streams are weakly n-random is the same as absolute continuity.

Corollary 3.17. For all n ≥ 2, µ ≪ ν if and only if µ-WnR ⊆ ν-WnR.

An immediate consequence of this equivalence is that, for all n ≥ 2, the type of compatibility
yielded by weak n-randomness guarantees merging of opinions and, vice-versa, merging of
opinions guarantees agreement on the weakly n-random data streams.

Corollary 3.18. For all n ≥ 2, µ-WnR ⊆ ν-WnR if and only if ν
M
−→ µ.

In light of the above, it is natural to ask whether Π0
1-absolute continuity coincides with abso-

lute continuity, as well. This question, originally raised by Gaifman and Snir (1982), was given
a negative answer by Bienvenu and Merkle (2009):

Proposition 3.19 (Bienvenu and Merkle 2009). There exist measures µ and ν such that µ-W1R

⊆ ν-W1R, but µ 3 ν.

This establishes that the notion of compatibility induced by weak 1-randomness is the only
one, among the compatibility concepts generated by the weak n-randomness hierarchy, that is
strictly weaker than absolute continuity.

In spite of not entailing absolute continuity, agreement on weak 1-randomness does entail
local absolute continuity—this simply follows from the fact that cylinders, being ∆0

1 classes,
are also Π0

1 classes. The entailment is strict, as shown by the following example:

Example 3.20. Take the uniform measure λ and the Bernoulli measure µ 1
3
. Then, λ ≪loc µ 1

3
,

since both measures are strictly positive. Let C =
{
ω ∈ 2N : (∃m)(∀n ≥ m) #0(ω↾n)

n > 7
20

}
.

Clearly, µ 1
3
(C) = 0, while λ(C) = 1. Since C is a Σ0

2 class, we then have that λ 3Σ0
2
µ 1

3

and, consequently, that λ-W1R ⊈ µ 1
3
-W1R (by Observation 3.15 and the fact that Σ0

2-absolute

continuity is equivalent to Π0
1-absolute continuity).28

28A more general reason for why local absolute continuity does not entail agreement on weak
1-randomness is that the latter entails non-orthogonality (see Proposition 40 and Corollary 41
in (Bienvenu and Merkle 2009)), while, as seen earlier, local absolute continuity does not.
Bienvenu and Merkle (2009) also show that non-orthogonality does not entail agreement on
weak 1-randomness (see Proposition 54).
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Crucially, the fact that agreement on weak 1-randomness is strictly weaker than absolute
continuity allows to conclude that the type of compatibility induced by weak 1-randomness is
too weak to entail merging of opinions in the sense of Blackwell and Dubins:

Corollary 3.21. There exist measures µ and ν such that µ-W1R ⊆ ν-W1R, and yet ν��
M
−→µ.

Therefore, while agreement on algorithmic randomness generally entails merging, weak 1-
randomness is the exception: making compatible inductive assumptions about the global regu-
larities encoded by weak 1-randomness does not suffice to attain inter-subjective agreement in
the strong sense of Blackwell and Dubins. This observation is in itself interesting because weak
1-randomness is a bit of an outlier within the algorithmic randomness hierarchy. In particular,
weak 1-randomness does not entail several fundamental statistical laws, such as the Strong
Law of Large Numbers and the Law of the Iterated Logarithm discussed earlier. Hence, it is
perhaps not so surprising that agreeing on which data streams are weakly 1-random does not
ensure merging. In fact, this failure, together with Corollary 3.18, can be taken to corroborate
our explanation for why it is reasonable to use algorithmic randomness to define notions of
compatibility, in that it shows that having compatible inductive assumptions about the global
uniformity of nature—about sufficiently many statistical laws—is not only sufficient but also
necessary for merging.

Since the type of compatibility induced by weak 1-randomness does not entail merging in
the sense of Blackwell and Dubins, an immediate question is whether there is some weaker
type of merging that agreement on weak 1-randomness might nonetheless guarantee. After
all, the notion of merging of opinions introduced by Blackwell and Dubins, which requires
eventual agreement on all events, including tail events, may be deemed excessively demanding,
especially in the context of computationally limited agents. From this perspective, a natural,
less demanding alternative is the following notion of merging, first investigated by Kalai and
Lehrer (1993) and Kalai and Lehrer (1994), which requires alignment of opinions only on
finite-horizon events:

Definition 3.22 (Weak merging). Given measures µ and ν, ν is said to weakly merge with µ

(ν
WM
−−−→ µ) if, for µ-almost every ω ∈ 2N and all k ∈ N,

lim
n→∞

sup
S∈Fn+k

∣∣∣∣ν(S | [ω ↾ n]) − µ(S | [ω ↾ n])
∣∣∣∣ = 0.

The type of compatibility induced by weak 1-randomness targets statistical laws that cor-
respond to Σ0

1 classes: namely, statistical laws whose satisfaction can be verified with a finite
number of observations. This is because a Σ0

1 class is an (effectively) open set: that is, a count-
able union of cylinders—and membership in a cylinder can be decided after a finite number
of observations. The fact that weak 1-randomness does not entail some crucial statistical reg-
ularities prevents it from yielding a type of compatibility strong enough to ensure merging in
the sense of Blackwell and Dubins; yet, the inductive assumptions captured by Σ0

1 classes of
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measure one might nonetheless suffice for weak merging, which only requires the attainment
of inter-subjective agreement on short-run events. We leave it as an open question whether this
is indeed the case.

µ-CR ⊆ ν-CR

µ-MLR ⊆ ν-MLR

µ-DR ⊆ ν-DR

µ ≪ ν

µ-SR ⊆ ν-SR

µ-WnR ⊆ ν-WnR (n ≥ 2)

µ-W1R ⊆ ν-W1R ν
M
−→ µ

µ��⊥ν ν
WM
−−−→ µµ ≪loc ν

Figure 1: Logical dependencies between the notions of compatibility induced by algorithmic
randomness, some classical notions of compatibility, merging in the sense of Blackwell and
Dubins (1962), and weak merging in the sense of Kalai and Lehrer (1993).

3.3 Algorithmic randomness and polarization

Algorithmic randomness can be used to define not only notions of compatibility between com-
putable priors, but also notions of incompatibility or disagreement. Just as orthogonality cor-
responds to the most radical failure of absolute continuity, for any algorithmic randomness
notion R, two computable measures µ and ν are radically incompatible with respect to R when
µ-R ∩ ν-R = ∅.

Surprisingly, as we have seen, the logical dependencies between the compatibility notions
yielded by algorithmic randomness are very different from the logical relations that hold among
the underlying randomness concepts. We conclude by noting that the logical dependencies
between the types of incompatibility induced by algorithmic randomness are instead a mirror
image of the algorithmic randomness hierarchy.

Observation 3.23. Given measures µ and ν, the following hold:

(i) if µ-W1R ∩ ν-W1R = ∅, then µ-SR ∩ ν-SR = ∅;
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(ii) if µ-SR ∩ ν-SR = ∅, then µ-CR ∩ ν-CR = ∅;

(iii) if µ-CR ∩ ν-CR = ∅, then µ-MLR ∩ ν-MLR = ∅;

(iv) if µ-MLR ∩ ν-MLR = ∅, then µ-DR ∩ ν-DR = ∅;

(v) if µ-MLR ∩ ν-MLR = ∅, then µ-W2R ∩ ν-W2R = ∅;

(vi) if µ-WnR ∩ ν-WnR = ∅, then µ-Wn+1R ∩ ν-Wn+1R = ∅ for all n ≥ 1.

Proof. All of the above cases are proved in the same way: they rely on the logical depen-
dencies between the algorithmic randomness notions involved. As an example, consider case
(i). Suppose that µ-W1R ∩ ν-W1R = ∅. Since µ-SR ⊆ µ-W1R and ν-SR ⊆ ν-W1R, we can
immediately conclude that µ-SR ∩ ν-SR = ∅. □

It is also immediate to see that, for any algorithmic randomness notion R and computable
measures µ, ν, if µ and ν are radically incompatible with respect to R (if µ-R ∩ ν-R = ∅),
then µ and ν are orthogonal. This follows from the fact that µ(µ-R) = ν(ν-R) = 1, which,
together with the fact that µ-R ∩ ν-R = ∅, entails that ν(µ-R) = 0 and µ(ν-R) = 0. Hence, the
type of incompatibility induced by algorithmic randomness entails one of the most canonical
classical notions of incompatibility between priors: orthogonality. As a result, if µ and ν are
radically incompatible with respect to R, then ν does not merge with µ and µ does not merge
with ν (in the sense of Blackwell and Dubins). Moreover, if µ and ν are radically incompatible
relative to R and µ is locally absolutely continuous with respect to ν, then ν becomes polarized
with respect to µ: radical disagreement over which data streams are algorithmically random
and local absolute continuity entail the most radical failure of merging of opinions. For an
example, take once again λ, µ 1

3
, and Martin-Löf randomness. Since λ-MLR is a subset of the

set of sequences along which the limiting relative frequency of 0 is 1
2 and µ 1

3
-MLR is a subset

of the set of sequences along which the limiting relative frequency of 0 is 1
3 , it follows that

λ-MLR ∩ µ 1
3
-MLR = ∅. And since λ and µ 1

3
are mutually locally absolutely continuous, both

agents (the one with prior λ and the one with prior µ 1
3
) expect their beliefs to be and remain

maximally divergent with probability one.

4 Conclusion

The key idea behind the present work is that two computationally limited Bayesian agents be-
ginning the learning process with different priors, but who nonetheless agree on which data
streams are algorithmically random, may be thought of as having compatible inductive as-
sumptions about the uniformity of nature. This is because the algorithmically random data
streams, while individually chaotic and patternless, display of necessity important global regu-
larities: they have to satisfy various effectively specifiable statistical laws—where the class of
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effectively specifiable statistical laws to be satisfied varies depending on the algorithmic ran-
domness notion under consideration. As a result, by virtue of agreeing on which data streams
are algorithmically random, two computable Bayesian agents may be seen as concurring on
what global, effectively specifiable regularities they expect to see in the data.

We saw that using algorithmic randomness to define notions of agreement between com-
putable priors leads to a hierarchy of compatibility notions that provably lead to merging of
opinions. More precisely, we focused on the strong notion of merging of opinions introduced
by Blackwell and Dubins (1962), and we showed that, apart from weak 1-randomness, all
core algorithmic randomness notions give rise to forms of doxastic compatibility that ensure
this type of merging (and, a fortiori, the weaker type of merging studied by Kalai and Lehrer
(1993) and Kalai and Lehrer (1994)). We also saw that disagreement on which data streams
are algorithmically random leads to polarization of opinions. This suggests that the theory
of algorithmic randomness provides a fruitful framework for identifying and classifying the
inductive assumptions of computable Bayesian agents, and for understanding how said induc-
tive assumptions contribute to or hinder the attainment of successful learning in the form of
inter-subjective agreement.

We take these results to be but the first step in the systematic study of merging and polar-
ization of opinions through the prism of computability theory and algorithmic randomness. A
natural next step is to consider notions of compatibility intermediate between absolute con-
tinuity and agreement on weak 1-randomness, to determine exactly what kind of merging of
opinions is achievable with weaker assumptions.

Appendix A

In addition to its characterizations in terms of tests and dyadic martingales/supermartingales,
Martin-Löf randomness can also be characterized in terms of semi-measures as follows (note
that we will once again use the term ‘measure’ to refer to probability measures):

Theorem A.1 (Folklore). Let ω ∈ 2N and µ a computable measure. The following are equiva-

lent:

(1) ω is µ-Martin-Löf random;

(2) µ([ω ↾ n]) > 0 for all n ∈ N, and lim sup
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

< ∞ for all lower semi-computable

semi-measures ξ.

In what follows, we will prove that density randomness has a natural characterization in
terms of semi-measures, as well:

Theorem A.2. Let ω ∈ 2N and µ a computable measure. The following are equivalent:

(1) ω is µ-density random;
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(2) µ([ω ↾ n]) > 0 for all n ∈ N, and lim
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

exists and is finite for all lower semi-

computable semi-measures ξ.

The proof of Theorem A.2 relies on the following auxiliary lemma:

Lemma A.3. For all computable measures µ, the following holds.

(i) If d is a normed dyadic µ-martingale, then ξ([σ]) = d(σ)µ([σ]) defines a measure. If d is

left-c.e. or almost-everywhere left-c.e., then ξ is lower semi-computable, uniformly from

d.

(ii) If ξ is a semi-measure, then

d(σ) =


ξ([σ])
µ([σ]) if µ([σ]) > 0,

undefined if µ([σ]) = 0

is a dyadic µ-supermartingale. If ξ is a lower semi-computable semi-measure, then d is

an almost-everywhere left-c.e dyadic µ-supermaringale. If ξ is lower semi-computable

and µ is strictly positive, then d is a left-c.e dyadic µ-supermaringale.

Proof. (i) First, note that ξ is well-defined: if d(σ) is undefined, then µ([σ]) = 0 and d(σ)µ([σ]) =
0. Now, d being normed means that d(ε) = 1. Hence, ξ([ε]) = d(ε)µ([ε]) = 1. Moreover, for
all σ ∈ 2<N,

ξ([σ]) = d(σ)µ([σ])

= d(σ0)µ([σ0]) + d(σ1)µ([σ1])

= ξ([σ0]) + ξ([σ1]),

where the second identity follows from the fairness condition. Given that d and µ are both
non-negative, so is ξ. So, all that we have left to show is that ξ([σ]) ≤ 1 for all σ ∈ 2<N. This
follows from a simple argument by induction. We already know that ξ([ε]) = 1. Now, suppose
that ξ([σ]) ≤ 1. Then, ξ([σ0]) = ξ([σ]) − ξ([σ1]) ≤ ξ([σ]) ≤ 1. The reasoning is analogous in
the case of ξ([σ1]). Hence, ξ is a measure.
Next, suppose that d is left-c.e. (and, thus, total). Let h : 2<N × N → Q be a total computable
function such that, for all (σ, n) ∈ 2<N × N, the sequence {h(σ, n)}n∈N is non-decreasing and
lim
n→∞

h(σ, n) = d(σ). Without loss of generality, h can be assumed to be non-negative. Since µ is

computable, it is also lower semi-computable. Therefore, for each σ ∈ 2<N, µ([σ]) is a left-c.e.
real, uniformly in σ. For each σ ∈ 2<N, let {qσ,n}n∈N be a uniformly computable non-decreasing
sequence of rationals with lim

n→∞
qσ,n = µ([σ]). Without loss of generality, the qσ,n’s can be as-

sumed to be non-negative. For each σ ∈ 2<N, {h(σ, n) · qσ,n}n∈N is thus a uniformly computable
non-decreasing sequence of rational numbers such that lim

n→∞
h(σ, n) ·qσ,n = d(σ)µ([σ]) = ξ([σ]).
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Hence, ξ([σ]) is a left-c.e. real, uniformly in σ, which means that ξ is lower semi-computable.
If, on the other hand, d is merely almost-everywhere left-c.e., then it is a partial left-c.e. func-
tion. Let h :⊆ 2<N × N→ Q be a non-negative partial computable function such that (1) for all
σ ∈ 2<N, d(σ) is defined if and only if h(σ, n) is defined for all n ∈ N, and (2) for all σ ∈ 2<N

such that d(σ) is defined, {h(σ, n)}n∈N is a non-decreasing sequence with lim
n→∞

h(σ, n) = d(σ).

As before, for each σ ∈ 2<N, let {qσ,n}n∈N be a uniformly computable non-decreasing sequence
of non-negative rationals with lim

n→∞
qσ,n = µ([σ]). Now, for each n ∈ N and each σ ∈ 2<N, let

q′σ,n =

h(σ, n) · qσ,n if qσ,n > 0;

0 otherwise.

Then, {q′σ,n}n∈N is a uniformly computable non-decreasing sequence of rational numbers such
that lim

n→∞
q′σ,n = d(σ)µ([σ]) = ξ([σ]), which establishes that ξ is lower semi-computable.

(ii) If d(σ) is undefined, then µ([σ]) = 0 by definition. Hence, the impossibility condition is
satisfied. If µ([σ]) = 0, then µ([σ0]) = µ([σ1]) = 0. Hence, d(σ)µ([σ]) = 0 = d(σ0)µ([σ0]) +
d(σ1)µ([σ1]) (again, recall that we follow the convention that d(τ)µ([τ]) = 0 if µ([τ]) = 0 even
when d(τ) is undefined). If, on the other hand, µ([σ]) > 0, then we have two cases to consider.
First, suppose that µ([σ0]) > 0 and µ([σ1]) > 0. Then,

d(σ)µ([σ]) =
ξ([σ])
µ([σ])

µ([σ])

≥ ξ([σ0]) + ξ([σ1])

=
ξ([σ0])
µ([σ0])

µ([σ0]) +
ξ([σ1])
µ([σ1])

µ([σ1])

= d(σ0)µ([σ0]) + d(σ1)µ([σ1]),

where the inequality holds because ξ is by assumption a semi-measure. Second, suppose that
either µ([σ0]) = 0 or µ([σ1]) = 0. Without loss of generality, assume that µ([σ0]) = 0. Then,

d(σ)µ([σ]) =
ξ([σ])
µ([σ])

µ([σ])

≥ ξ([σ0]) + ξ([σ1])

≥ 0 + ξ([σ1])

= d(σ0)µ([σ0]) + d(σ1)µ([σ1]).

Hence, the version of the fairness condition for dyadic supermartingales is satisfied in all cases.
Now, suppose that ξ is lower semi-computable. Define the function h :⊆ 2<N × N → Q as
follows. If µ([σ]) = 0, let h(σ, n) be undefined for all n ∈ N. If µ([σ]) > 0, on the other
hand, we do the following. Let {qσ,n}n∈N be a uniformly computable non-decreasing sequence
of (without loss of generality) non-negative rationals witnessing the fact that ξ([σ]) is a left-

29



c.e. real, uniformly in σ. Since µ is a computable measure, it is also upper semi-computable,
which means that µ([σ]) is a right-c.e. real, uniformly in σ.29 Let {q′σ,n}n∈N be a uniformly
computable non-increasing sequence of positive rationals witnessing the fact that µ([σ]) is
right-c.e., uniformly in σ. Then, lim

n→∞
q′σ,n = µ([σ]). Hence,

{ 1
q′σ,n

}
n∈N is a uniformly computable

non-decreasing sequence of positive rationals that converges to 1
µ([σ]) . Define h(σ, n) as qσ,n

q′σ,n
for

all n. Then, h is a partial computable function, and the sequence {h(σ, n)}n∈N is non-decreasing
and converges to ξ([σ])

µ([σ]) = d(σ) for all σ ∈ 2<N such that d(σ) is defined (namely, all σ ∈ 2<N

such that µ([σ]) > 0). Hence, d is almost-everywhere left-c.e. (and it is left-c.e. if µ is strictly
positive). □

We are now ready to prove Theorem A.2, which offers a useful alternative characterization
of density randomness.

Proof of Theorem A.2. For the (1)-to-(2) direction, suppose that ω is µ-density random. Then,
µ([ω ↾ n]) > 0 for all n ∈ N. Now, let ξ be a lower semi-computable semi-measure. By Lemma
A.3(ii), ξ

µ
is an almost everywhere left-c.e. dyadic µ-supermartingale. Since ω is µ-density

random, we have that lim
n→∞

d(ω ↾ n) exists and is finite for all almost everywhere left-c.e. dyadic

µ-supermartingales d. Hence, lim
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

exists and is finite.

For the (2)-to-(1) direction, suppose that ω < µ-DR. If µ([ω ↾ n]) = 0 for some n ∈ N, then
we are done. So, suppose that µ([ω ↾ n]) > 0 for all n ∈ N. Then, there is a left-c.e. dyadic
µ-martingale d that fails to converge to a finite value along ω. Without loss of generality, we
can assume d to be normed. For each σ ∈ 2<N, let ξ([σ]) = d(σ)µ([σ]). Then, by Lemma
A.3(i), ξ is a lower semi-computable measure. But then the sequence

{
ξ([ω↾n])
µ([ω↾n])

}
n∈N

either does

not have a limit or lim
n→∞

ξ([ω ↾ n])
µ([ω ↾ n])

= ∞. □
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