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Abstract

Spurred in part by growing production from renewable sources and adoption of electric
vehicles, time-variant pricing programs for electricity are increasingly being used to
influence the shape of residential demand. The most common time-variant prices are
time-of-use (TOU) prices, which vary by hour of day, and event-based prices, which take
effect during idiosyncratic “critical” events. We present evidence on the effects of TOU
prices and event-based prices when implemented in isolation versus simultaneously.
The key finding is that time-variant prices reduce demand during critical events by
19% when event-based pricing is implemented in isolation, but only 5% when TOU
and event-based prices are implemented together, despite both price schemes creating
similar financial incentives. The results suggest that price complexity may dull
consumer responsiveness to price signals.
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1 Introduction

Electric utilities are increasingly using time-variant pricing programs, in which households

pay different prices depending on when electricity is consumed, to shape residential de-

mand. Shifting demand is an important element in the transitional path toward further

integrating low-carbon renewable resources into the electric system because it can help

align consumer demand with the supply of intermittent renewable sources of power. For

example, time-variant pricing programs can be used to shift consumption toward periods

of elevated solar and wind generation and away from periods of elevated coal and natural

gas-based generation.1 While time-variant pricing has historically been used sparingly, the

installation of automatic metering infrastructure (“smart meters”), the increased prevalence

of intermittent renewables, and increased adoption of electric vehicles have sparked broad

interest in recent years. Many utilities across the country are considering or actively im-

plementing broad deployment of time-variant pricing programs. The number of consumers

on time-variant pricing globally is expected to rise to 75 million by 2025, in part because

jurisdictions, such as California and New York, are requiring utilities to shift toward time-

variant rates (Feldman, 2018).2

Time-variant prices can be implemented in a variety of ways. Real-time pricing, in which

prices continuously reflect the costs of generation, would best align prices with the costs of

generation, thereby creating large efficiency gains (Borenstein, 2005). However, due partly

to fears about price volatility, utilities and consumers have been reluctant to embrace such

programs. In contrast, time-of-use (TOU) pricing, in which consumers pay different prices

for electricity depending on the time of day when electricity is used regardless of system con-

ditions, has received relatively greater acceptance. TOU programs typically set a different

per kWh price for electricity depending on whether the electricity is consumed during “peak”

(e.g., 3:00 p.m.- 8:00 p.m.) or “off-peak” periods. A shortcoming of TOU pricing is that it is

not responsive to idiosyncratic events that affect electricity supply or demand, such as un-

1See Holland and Mansur (2008) for a discussion of how the environmental effects of time-variant pricing
depend on regional generation patterns.

2Matisoff et al. (2020) discuss the appeal of time-vary electricity prices, as well as potential barriers that
could slow its widespread adoption.
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usual weather. Event-based pricing schemes, including critical peak prices (CPP) or critical

peak rebates (CPR),3 are designed to address such events. Event-based programs provide a

large per-kWh incentive for customers to conserve electricity during “critical” events, which

utilities have traditionally called when demand is predicted to be unusually high. With

critical peak prices, consumers are charged a higher price for electricity consumed during

critical events. With critical peak rebates, consumers receive a rebate for each kWh they

conserve during critical events relative to their reference usage.4

TOU pricing and event-based pricing have been studied in isolation,5 but little research

has examined how these two types of pricing programs interact when implemented simul-

taneously. This is an important shortcoming because there are potential benefits to imple-

menting the programs simultaneously. TOU prices are oriented toward creating consistent

shifts in daily demand patterns, whereas event-based programs are designed to shift de-

mand in response to idiosyncratic events. Both types of demand changes are helpful for

decreasing peak loads and reducing reliance on generators at the end of the dispatch curve,

which tend to be inefficient and powered by fossil fuels, and are potentially important tools

as the supply of intermittent renewable generation expands. Recognizing the possible bene-

fits of using TOU and event-based programs in tandem, utilities have begun implementing

time-variant pricing programs that include both elements (e.g., Consumers Energy’s “Peak

Power Savers” program in Michigan).

While there is theoretical appeal to using TOU and event-based pricing in combination,

it is unclear how well the two pricing schemes will work in combination in practice, in

part because consumers have been shown to respond in unpredictable ways in the face of

multiple financial incentives. For example, Chetty et al. (2009) show that consumers do

not fully account for sales taxes when purchasing goods for which the full price is both the

posted price and the sales tax. Similarly, Hossain and Morgan (2006) present evidence that

consumers are less sensitive to shipping costs than to posted prices in eBay auctions. As

described in DellaVigna (2009), this behavior is consistent with consumers having limited

3Critical peak rebates are sometimes referred to as “peak time rebates.”
4Reference levels that are used for calculating savings and rebates represent an estimate of the customer’s

consumption that would have occurred if the event had not been called and are typically based on weather and
customer-specific historical usage patterns.

5We discuss the literature on time-variant pricing in more detail in the next section.
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attention and being forced to develop simplifying heuristics for decision-making.

Predicting consumer decision-making related to financial incentives in the power sector

has proven particularly difficult. For example, while only indirectly related to time-variant

prices, there is evidence that consumers are weakly motivated by financial incentives that

operate through investments in energy efficiency, potentially because these investments

require consumers to undertake relatively complex decision-making that involves consider-

ation of many factors (e.g., upfront costs, future prices, projected usage, and non-monetary

factors, such as the inconvenience of a new installation).6 The layering of TOU and event-

based pricing programs may be a case in the power sector where consumer decision-making

is especially challenging because there are multiple price signals and the signals are inter-

mittently in effect across time.7

This paper evaluates how consumers respond to time-variant pricing, focusing especially

on the effectiveness of layering time-of-use pricing with event-based pricing. The specific

types of time-variant pricing that are evaluated include TOU pricing (in isolation), criti-

cal peak rebates (in isolation), and TOU and critical peak rebates offered simultaneously

(“hybrid pricing”). The analysis is based on data from a field experiment run by a vertically-

integrated electric utility in the western U.S.8 The treatments were initiated in the summer

of 2016 and included about 3,500 households.9 The key finding is that, during summer crit-

ical events, the use of rebates in isolation is highly effective and reduces consumption by 19

percent. In contrast, hybrid pricing schemes that create a nearly identical incentive to con-

serve electricity during events are much less effective, only reducing consumption by about

6Fowlie et al. (2015) present evidence that the uptake of free energy efficiency programs is extremely low
even when the programs have sizable monetary benefits. Jacobsen (2015) presents evidence that the willing-
ness of consumers to purchase high efficiency products does not change in the face of elevated energy prices.
Allcott and Greenstone (2012) provide an overview of the “energy efficiency gap,” which refers to low consumer
take-up of seemingly high-return investments in energy efficiency.

7While not the focus of our paper, layering price incentives and non-pecuniary incentives may also cre-
ate unanticipated behavioral responses. Ferraro and Price (2019) present some evidence along these lines,
showing that less price-sensitive consumers are more responsive to norm-based messaging in the context of
residential water demand.

8We coordinated with the utility on the design of the experiment and have received permission from the
utility to use the data for an academic article.

9The main analysis focuses predominantly on summer-time effects, but winter-time effects are also dis-
cussed in the Supplementary Material (SM). Winter-time effects are less pronounced and more sensitive to
modeling assumptions.
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5 percent.10,11

How should our findings—especially the reduced effectiveness of hybrid pricing—be in-

terpreted? We posit that the key results are driven by the complexity of hybrid pricing and

the response of consumers to this complexity.12 Hybrid pricing can be considered the most

complex form of time-variant pricing we evaluate based on either of the two primary ad-

jective definitions for “complex,” which are “involving a lot of different but related parts”

and “difficult to understand or find an answer to because of having many different parts”

(Cambridge Dictionary, 2020). In the context of these definitions, hybrid pricing involves

the most “parts” relative to TOU-only or event-only versions of time-variant pricing because

it includes two time-variant pricing components, as opposed to one. Relatedly, as we discuss

and show graphically in Section 3, hybrid pricing creates the most changes in the marginal

price of electricity across hours of the day. Households on the hybrid price plans we evaluate

experienced four to six changes in the marginal price of electricity on event days; whereas

households on the CPR-only price plans experienced only two changes in the marginal price

of electricity on event days. With respect to being “difficult to understand,” we present sur-

vey evidence in Section 5 that customers on hybrid pricing had weaker comprehension of

how time-variant prices operate than customers on either type of stand-alone pricing.

If customers indeed found hybrid pricing to be more complex, then our findings, while

initially surprising, are consistent with predictions from the literature on behavioral eco-

nomics. Specifically, this literature has found that, when forced to make even mildly com-

plex decisions, consumers sometime choose to simply maintain the status quo (Kahneman et

10We also find that, outside of critical events, none of the pricing interventions have a statistically significant
effect on consumption. In the next section, we discuss the literature on TOU pricing and why TOU pricing may
not have triggered a change in usage in our empirical setting. In short, the literature suggests that household
electricity demand is very inelastic to TOU pricing when the ratio of peak to off-peak price ratios is low and
enabling technology (e.g., an in-home display or a programmable communicating thermostat) is not installed.

11We examine several different critical rebate levels—both as stand-alone and hybrid offerings—and there
is evidence supporting the reduced relative effectiveness of hybrid pricing during events in all cases.

12An alternative explanation for our results, rather than complexity, is that the different effects are driven
by selection in the type of customer that opted into each experimental arm (i.e. each type of time-variant
pricing we investigate) before the recruit-and-deny randomization procedure was administered. We present
evidence that this is unlikely to drive our results in Section 6. The key reason is that we document much
stronger effects from rebate-only pricing relative to hybrid pricing even across experimental arms that do not
have significant differences in pre-experiment energy consumption or other observable covariates, such as
age, income, household size, enrollment in auto-pay billing, etc., suggesting a limited role for a selection-based
mechanism.
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al., 1991; Samuelson and Zeckhauser, 1988; Clerides and Courty, 2017; Earl, 1990). In our

context, the status quo would manifest as reduced effectiveness at changing consumption

patterns. Our findings complement existing work from laboratory experiments that shows

that complex prices can confuse consumers (Kalayci and Potters, 2011), that complex mar-

ketplaces narrow the focus of consumers (Huck et al., 2016), that complex prices negatively

impact consumer decision making (Huck and Wallace, 2015); and that consumers dislike

complexity in choice settings with uncertainty (Sonsino et al., 2002).

While the findings are not a general endorsement of any specific type of time-variant

pricing and caution should be taken when applying the results to other settings, they sup-

port the notion that price interventions in the electricity sector should value simplicity and

that the optimal pricing structure may be different than what might be prescribed absent

behavioral considerations.13 This conclusion is in line with existing qualitative work that

indicates that simplicity is an important attribute in designing interventions in the energy

sector (Hobman et al., 2016). It is also related to findings from other settings that show

that simplicity can enhance the effectiveness of policy interventions for obtaining desirable

outcomes, such as increasing the uptake of tax benefits (Bhargava and Manoli, 2015), im-

proving behavior related to public health (Matjasko, 2016), increasing application rates for

college financial aid (Bettinger et al., 2012; Dynarski and Scott-Clayton, 2006), and improv-

ing understanding of financial products (Brown et al., 2020). An implication of the findings

is that policymakers and utility managers in the energy sector should weigh the benefits

of adding price complexity—which can enable financial incentives to better align with the

social costs of generation—against the costs, which may include dampened consumer re-

sponsiveness. More broadly, there is increasing interest among policymakers in employing

or mandating new types of prices in various sectors (e.g., congestion pricing during periods

of elevated traffic, dynamic curb pricing to address the increasing use of ride-hailing ser-

vices, changes in the prices observed and paid by consumers in the health sector, initiatives

to reduce the “hidden” fees in cable and wireless bills). Consideration of price complexity

may be important as policymakers and other actors consider alternative types of pricing in

13See Schneider and Sunstein (2017) for a discussion of the role of behavioral considerations in the design
of time-varying electricity prices.
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a wide array of new settings.

2 Findings in the Context of Existing Research on Time-Variant
Pricing

A large body of research now exists on the effects of time-variant pricing.14 Much of the em-

pirical evidence is comprised of pilot studies funded through Department of Energy grants

or initiated internally by utilities as part of resource plans submitted to utility commissions

or other regulatory bodies. Most of these pilots have not been peer-reviewed, but they still

represent a potentially valid source of information. Faruqui et al. (2017) provide a meta-

analysis of these pilots, focusing on 63 studies that took place between 1997 and 2017. They

find that time-variant pricing changes consumption and that the effect is larger when the

peak-to-off-peak price ratio is larger and if enabling technology, such as a programmable

communicating thermostat or an in-home display, is present. For example, absent enabling

technology, a consumer facing TOU pricing with a 2:1 peak-to-off-peak price ratio is ex-

pected to decrease peak demand by 5% relative to peak demand for consumers on standard

pricing, whereas a consumer facing a 4:1 peak-to-off-peak price ratio is expected to reduce

peak consumption by 10%.

A variety of time-variant pricing experiments have also been studied in the academic

literature. For example, in a relatively early study, Allcott (2011) evaluates the response

of Chicago households to real-time pricing and estimates a demand elasticity of -.06 to -.08.

Subsequent studies have frequently focused on identifying how the response to time-variant

prices differs depending on whether certain complementary types of technology are present

in the home. Jessoe and Rapson (2014) evaluate a CPP program based on an experiment

in Connecticut. They find that households without in-home displays (IHD) communicat-

ing real-time feedback on consumption only reduce their consumption by 0-7% (depending

on how long in advance households were notified of the critical event). For households

with IHDs, effects are larger at 8-22%. Bollinger and Hartman (2019) and Harding and

14There is also a substantial literature that examines the price elasticity of demand for non-time-variant
rate schedules. For example, Deryugina et al. (2019) present evidence that consumers on standard electricity
rates are mostly inelastic to price changes, with estimated elasticities falling at -0.27. Auffhammer and Rubin
(2018) estimate a similar elasticity for residential natural gas (-0.23 to -0.17).
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Lamarche (2016) evaluate the effect of TOU and variable peak pricing (VPP) based on an

experiment implemented with a utility in the southern United States.15 Both price interven-

tions are effective at changing consumption. Households are most responsive to short-term

price fluctuations induced through VPP if they are equipped with programmable communi-

cating thermostats that can automatically turn-off air conditioning systems in response to

price changes. Gillan (2018) examines incentives similar to critical peak rebates and finds

that the incentives are effective at reducing consumption, especially if programmable com-

municating thermostats are present in the household. Most recently, Burkhardt et al. (2019)

present evidence from Texas that critical peak pricing reduces electricity consumption by

14% and that three quarters of the response can be attributed to reduced air-conditioning.

Fowlie et al. (2021) provide an additional study related to time-variant pricing. They

examine the effects of time-of-use pricing and critical peak pricing when each type of pro-

gram is offered in isolation. The study focuses specifically on how the effects of the pricing

programs vary depending on whether the programs are structured as “opt-in” programs, in

which participants must voluntarily enroll, or “opt-out” programs, in which participants are

automatically enrolled. They find that, while all interventions are effective, opt-out pro-

grams create the largest aggregate demand reductions because they have higher levels of

participation.

How do our estimates fit into the existing literature? Our average treatment effect for

critical peak rebates (19%) is in the expected range based on critical peak rebate interven-

tions, which have fallen in the 0-40% range (see Figure 11 of Faruqui et al., 2017). Our

TOU effects, which are insignificant, are a bit more surprising, at least upon initial inspec-

tion, considering that most studies have found a significant effect. However, the TOU prices

in our intervention used a relatively low peak-to-off-peak ratio of about 2:1. For interven-

tions of this size, the expected reduction in peak consumption is only about 5% (Faruqui

et al., 2017), which is inside the confidence interval for most of the models that we esti-

mate. Several other pilots using low peak-to-off-peak ratios have also found insignificant

effects.16 Additionally, the TOU pricing intervention we evaluate may have been muted or

15Variable peak pricing is similar to critical peak pricing, with the exception that the price can vary across
critical events.

16See Faruqui (2018), which reports a more detailed version of Figures 1 and 2 from Faruqui et al. (2017).
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ineffective in our setting because it was not paired with an enabling technology. A final pos-

sible explanation for the absence of TOU effects is that the experiment was implemented

in a geographic region with a relatively low peak summer demand due to a mild summer

climate and low air-conditioning demand, which mitigates that extent to which households

can achieve savings by adjusting their thermostats.

The key contribution the present study makes relative to existing work is that we fo-

cus on how layering price incentives alters their effectiveness. In this regard, our study

evaluates how adding complexity influences the effectiveness of time-variant pricing, where

complexity is defined by the number of components in a price plan, the number of changes

in the marginal price of electricity embedded in a price plan, or how difficult a price plan is

to understand.

3 The Experiment

The experiment was implemented with the utility’s residential customers using a recruit-

and-deny randomization procedure.17 The sampling frame was limited to households on

the utility’s standard residential rate who had resided at the same address for the previous

twelve months, who were not participating in other demand response programs, who had

an interval consumption meter, and who had a valid email address on record. Among this

group, a random set of slightly over 100,000 households were included in the pilot. All of

these households were randomly pre-assigned to one of nine time-variant pricing programs.

Additionally, all households were randomly pre-selected as either “treatment” households,

who would be enrolled upon opting into the program, or “control” households, who would

not be enrolled even if they opted into the program. After assigning households to an exper-

imental group and designating them as either treatment or control households, the utility

then encouraged the households to select into their pre-assigned time-variant pricing plan

through emails, post cards, and business letters. Households who opted into a time-variant

pricing program were either placed into the program or denied enrollment according to

17Recruit-and-deny experimental studies are sometimes termed lottery or oversubscription methods. They
are used commonly in the academic literature (e.g., Fowlie et al., 2021). See Gandhi et al. (2016) for a
discussion of the application of recruit-and-deny field experiments in the energy setting.
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their randomized pre-selection.18 Control households remained on standard block-rate pric-

ing schedule, which had a marginal price of about 11 cents/kWh regardless of the time of

consumption.19

There were nine different pricing treatments included in the experiment: three CPR-

only, three TOU-only, and three TOU + CPR hybrids. The three CPR-only treatments

differed in the rebate amount. The rebates under each plan were as follows: CPR-1: 80

cents/kWh; CPR-2: 155 cents/kWh; and CPR-3: 225 cents/kWh. Households on CPR-only

price plans paid the standard retail rate during non-event hours.20 Rebates were calculated

by a third-party that implemented customer billing. Reference levels for calculating the re-

bates were based on customer-specific algorithms that combined historical usage patterns

on non-holiday weekdays with weather data.

The three TOU-only pricing treatments differed both with respect to time windows and

prices. TOU-1 was a two-period program with a long and modestly priced peak. TOU-2

was also a two-tiered program, but had a shorter peak with a higher price. TOU-3 used the

same peak time window and a similar peak price-level as TOU-2, but split the non-peak

period into two periods: mid-peak and off-peak. The specific prices for the TOU treatments

were as follows: 1) TOU-1: 7.5 cents/kWh off-peak (10pm-6am) and 13.6 cents/kWh on-peak

(6am-10pm); 2) TOU-2: 8.3 cents/kWh off-peak (8pm-3pm) and 17.6 cents/kWh on-peak

(3pm-8pm); and 3) TOU-3: 6.9 cents/kWh off-peak (10pm-11am), 11.9 cents/kWh mid-peak

(11am-3pm and 8pm-10pm), and 18 cents/kWh on-peak (3pm-8pm).21 The three hybrid

pricing programs, CPR-2 + TOU-1, CPR-2 + TOU-2, and CPR-2 + TOU-3, combined CPR-2

with each TOU pricing scheme.22 Events were called at identical times across hybrid and

18Households that opted-in, but were designated as control households, were informed that their participa-
tion could not be accommodated at this time and thanked for their interest in the program.

19Standard residential customers were on a two-tier block-rate pricing system. Marginal prices increased
by about one cent once monthly consumption exceeded 1,000 kWh.

20While not embedded in the experimental design, broad deployment of rebates would require the utility to
collect additional revenue by raising the standard rate or increasing fixed charges.

21All pricing treatments involving TOU pricing were charged off-peak prices on weekends.
22Note that the hybrid pricing programs create a slightly elevated marginal incentive to conserve during

events, relative to event-only pricing, because the marginal price is the rebate incentive plus the TOU peak
rate, whereas for event-only pricing the marginal price is the rebate incentive plus the standard rate. For
example, during events, the marginal price for the CPR-2-only plan is 166 cents (155 + 11) and the marginal
price for the CPR-2 + TOU-2 plan is 172.6 cents (155 + 17.6). This difference should, if anything, lead to a
stronger response to hybrid pricing during events absent behavioral considerations related to price complexity,
which is the opposite of what we find.
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CPR-only treatment groups, typically for three-hour blocks on unusually hot days.

We depict the general price structure across types of time-variant pricing in Figure 1.

In these figures, the marginal price represents the cost of consuming a kWh plus, for plans

that include event-based pricing, the foregone rebate. Each row in the figure corresponds to

a general class of pricing: standard, TOU-only, CPR-only, or TOU + CPR.23 The left panels

represent prices across hours on non-event days and the right panels represent prices across

hours on event days. Standard pricing is the simplest pricing plan as there is never any

variation in the price across hours of the day. TOU-only and CPR-only are more complex

than standard pricing because they have a single period when the marginal price is elevated.

For TOU, this period is afternoon hours on both event and non-event days. For CPR-only, the

period is critical hours on critical-event days. The hybrid pricing plan is the most complex,

as it involves the most pricing components and the most changes in the marginal price of

electricity. Note, for example, that in the depiction of hybrid pricing, customers experience

four different changes in the marginal price of electricity on an event day, but CPR-only

customers experience only two changes. For the TOU-3 hybrid plan, which is not depicted

in the figure, the complexity is even more elevated relative to the CPR-only price plans, as

there are six changes in the marginal price of electricity on event days.

The utility began marketing the program in February 2016 through email and postal

mail. Marketing materials emphasized the opportunity for reducing bills and improving

sustainability by enrolling in time-variant pricing. In order to obtain the desired sample

sizes, recruitment efforts were dispatched in waves whereby marketing materials were sent

to a new randomly selected group of treatment and control individuals in each treatment

arm. The CPR-2, CPR-2 + TOU-2, and TOU-2 experimental groups were viewed as priority

price plans by the utility that were likely to perform the best in terms of energy savings and

customer satisfaction. These groups, especially TOU-2, were over-represented in some of

the recruitment waves.
23We do not report a scale on the left axis because these figure are meant to represent the general price

structure for each type of plan as opposed to representing any of the precise price plans described in the
previous paragraph. For both the TOU-only and hybrid price schedules, we depict the rate schedules based
on a two-tier TOU component with an afternoon on-peak period (i.e. TOU-2). In these depictions, we assume
that the household’s consumption level is at or below the household’s reference usage level, thereby allowing
households that are enrolled in plans that include event-based rebates to earn a rebate by conserving energy.

11



All households that enrolled by December of 2016 are included in the experimental data.

Opt-in rates, treatment rates, drop-out rates, and total enrollees are displayed in Table

1. There are about 250-400 households per experimental group, with the exception of the

TOU-2 experimental group which has about 900 enrollees because it was the most substan-

tially over-represented in recruitment. Across experimental arms, roughly half of house-

holds were placed into treatment. Opt-in rates for CPR-2 and CPR-2 + TOU-2 were lower

than for other experimental versions of rebate-only or hybrid pricing. Based on discussions

with the utility and the third-party marketer, our understanding is that this occurred be-

cause these groups were overrepresented in earlier marketing waves that predominantly

used emails as opposed to postal mail and were less successful at recruiting participants.

While each household in the experimental population was randomly assigned to a spe-

cific treatment and to the treatment or control group, potential for differential selection into

treatments potentially complicates interpretation of the experimental results. Differences

in the timing of the marketing across experimental groups amplifies these concerns. While

the randomization of treatment and control ensures that we can estimate a causal local

average treatment effect (LATE) for each experimental arm, differences in LATEs across

experimental arms could be driven by either 1) differences in the effect of pricing program

or 2) differences in who selects into each group. We discuss this issue further in Section 6,

but to preview our conclusion, we believe the collective evidence suggests that the differen-

tial effects we document across stand-alone versus hybrid pricing schemes are not driven by

selection-based differences. As mentioned above, the primary reason for this is that rebate-

only pricing has a much stronger effect than hybrid pricing even within experimental groups

that do not have significant differences in observable pre-experiment characteristics (energy

consumption, age, income, household size, enrollment in auto-pay billing, etc.).

Beginning in the late spring of 2016, TOU pricing was in place and the utility held the

option of calling critical events. Critical events were called six times during the summer of

2016 (twice in July and four times in August). All events were called for the time period

between 4pm and 7pm. During the summer of 2017, seven events were called (one in July,

five in August, and one in September). There was some slight variation in the timing of

these events depending on projected system conditions, but all events started between 3pm

12



and 5pm and lasted for three hours. The mean high temperature on event days was 92◦F.

For context, on non-event days during summer months over the experimental window, the

mean high temperature was 78◦F. For all events, customers on price schedules that included

rebate incentives were provided notification of the event on the day prior to the event and

day of the event via email, text message, or voice mail.

The key experimental data are hourly consumption data from households for the sum-

mer months during 2015 (pre-period), 2016, and 2017. Across all experimental groups, there

are 3,422 total households. One caveat regarding the meter consumption data is that, due

to a technical issue, the pre-period data are often measured as integer values. The me-

ters compute hourly usage levels as the difference between the aggregate usage (across the

life of the meter) recorded on the meter at the end of the current hour and the aggregate

usage recorded on the meter at the end of the previous hour. For many of the pre-period

observations, this difference was done by the metering software after rounding the current

and previous meter readings down to the largest preceding whole number. As a result, us-

age for these observations is reported in integers and contains classical measurement error.

To address this issue, we aggregate the pre-period data into means on any occasion when

we employ it. In particular, we use the pre-period data to 1) graphically evaluate trends in

mean consumption between treatment and control groups across hours of the day during the

pre-period; and 2) control for each household’s mean hourly pre-period consumption levels

(e.g., mean consumption during 1pm-2pm, 2pm-3pm, etc.). Because both of these applica-

tions are based on mean levels computed over many observations for each household, the

measurement error embedded in the data is vastly mitigated.24

For the primary analysis, we use observations from the June-September of 2016 and

2017, which are the two summers after the program was initiated. We arrange the data

such that each observation includes a variable recording the household’s consumption dur-

24We use the post-period data, which were not rounded, to confirm that aggregating the data reduces issues
related to measurement error in the pre-period data. In particular, we convert the post-period data into what
it would have been had it gone through the same rounding procedure as the pre-period data. We then collapse
this rounded post-period data into means for each household for each of the twenty-four hours of the day. We
compare these means to the means we get if we directly collapse the un-rounded post-period data into means
for each household for each of the twenty-four hours of the day. The correlation between the two measures is
.996. Similarly, if we regress the means from the un-rounded data on the means from the rounded data, we
get a coefficient of .991 (standard error of .0003).
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ing the corresponding hour-of-the-sample as well as a variable recording the mean level of

consumption during the summer of 2015 for the corresponding hour-of-the-day. Mean usage

levels per hour during the post-intervention period were 1.22 kWh. We exclude outlier val-

ues with usage levels greater than 8 kWh (0.2% of the data). We also exclude observations

from weekends and holidays because time-variant pricing was not in effect on these days.

Households only enter the post-intervention data once they opt into time-variant pricing

regardless of whether they were then placed into treatment or control. Altogether, there are

about 10 million observations in the data used for the primary analysis. Because households

were signing up over the course of the summer and fall of 2016, there are more households

in the data for the summer of 2017 (3,355) than for the summer of 2016 (2,167).

4 Analysis

Our general approach to the analysis is to evaluate the effects of time-variant pricing by

comparing usage patterns for treatment households to usage patterns for control house-

holds. Due to the randomized assignment of households to treatment and control status,

this comparison should lead to unbiased estimates of the local average treatment effect for

households that opt into each type of pricing program. We initially compare treatment and

control households by evaluating patterns in means during the pre- and post-intervention

periods and then proceed for more formal estimates from regression models based on the

post-period data that employ controls computed based on pre-intervention consumption.25

4.1 Comparison of Means

We begin the analysis by presenting mean usage levels during the summer of 2015 for all ex-

perimental categories during off-peak, mid-peak, and on-peak hours as defined by the most

detailed TOU rate schedule, TOU-3. The means are reported in Table 2. As expected, mean

consumption levels are lowest during the off-peak hours and highest during on-peak hours.

For each period, we test for pre-period differences in mean consumption levels across all ex-

25Because they deal well with the periodic nature of energy consumption, “Post-only” models of energy
consumption with controls computed based on pre-intervention data, as opposed to fixed effects models, are
arguably the state-of-the-art for RCT evaluations of household energy consumption (see Allcott and Rogers,
2014 and Stewart and Todd, 2017).
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perimental categories using an ANOVA. In all three cases, the results indicate statistically

insignificant differences in mean consumption levels across categories with large p-values

that exceed 0.5.

To compare mean levels of consumption in greater detail, we next present graphs of

mean consumption levels by hour-of-day for the treatment and control groups. Due to space

constraints, in these graphs, we aggregate the data into coarse experimental groups: CPR-

only, TOU-only, and CPR + TOU. The first two experimental groups experienced relatively

simple pricing treatments with between two and four marginal price changes on event days

and the latter group experienced more complex pricing treatments with between four and

six marginal price changes on event days. Graphs of means for each detailed experimental

group (e.g., CPR-1) are available in the Supplementary Material (SM).

Pre-experiment mean usage patterns from 2015 are presented in Figure 2. Treatment

observations are presented in triangles and control observations in circles. The difference

in mean levels between the treatment and control households and the associated 95% con-

fidence interval are presented in diamonds. The vertical dashed lines mark the period be-

tween 4pm and 7pm, which is when events are most frequently called. As expected during

summer, consumption tends to peak during afternoon hours between 4pm and 10pm. Across

all hours, treatment and control households have consumption levels that are similar, al-

though not identical to each other. Due in part to the large number of comparisons, there

are some cases, such as the morning hours for the CPR-only experimental groups, in which

the difference in means between the treatment and control groups is statistically signifi-

cant. To control for differences that do exist due to random chance, portions of the analysis

presented below will control for pre-period differences in mean consumption.

We next move to an examination of means during the post-period. In these graphs, in

cases when the price treatments were effective at changing consumption, we expect to ob-

serve differences between treatment and control means. We first display mean usage levels

by hour-of-the-day on non-event days during the post-intervention period. These graphs are

presented in the left panels of Figure 3. For all treatment groups and across hours of the

day, the differences between control and treatment means are very small in magnitude and

almost never differ by a statistically significant margin. The implication of these graphs

15



is that none of the pricing treatments were effective on non-event days. This is a notable

result because, for any treatment involving TOU rates, consumers have a financial incen-

tive on non-event days to shift their consumption from on-peak to mid-peak or off-peak time

windows.

For event days, means are presented in the right panels of Figure 3. Figure 3.2 pro-

vides clear evidence that the relatively simple CPR-only intervention led to a decrease in

consumption. Usage fell sharply when events began and rebounded thereafter. In contrast,

focusing on Figure 3.4, there is at best modest evidence that the more complex hybrid pric-

ing plan led to a decrease in consumption and, to the extent that it did, it was a much

smaller decrease than the response seen under CPR-only pricing.26 Lastly, Figure 3.6 pro-

vides no evidence that event day incentives led to a change in consumption in the TOU-only

interventions, as might be expected.

Collectively, Figures 2 and 3 present evidence that households were not responsive to

TOU pricing for either TOU-only or hybrid interventions and were primarily responsive to

event-based CPR pricing when it was offered as a stand-alone intervention as opposed to

when it was bundled with TOU pricing. We next more formally evaluate the effects of the

program using regression models. A benefit of these models is that they aggregate temporal

periods and can directly control for pre-existing differences in consumption patterns.

4.2 Estimates

We estimate treatment effects using regression models based on the following specification,

kWhit =βkTik +λ Pre-Period Mean Cons.i j +γkt +εit (1)

where kWhit is hourly electricity consumption (i indexes households and t indexes hours

of the sample), Tik represents a vector of treatment indicators for each treatment group (k
26The modest visual evidence in Figure 3.4 of some effectiveness during events for households on hybrid

pricing stems from consumption decreasing during the 4pm-7pm window relative to 1) the hours just before or
just after the event, in which treatment consumption tended to be greater than control consumption by about
0.1 kWh and 2) the pre-program difference in mean consumption between 4pm and 7pm, when treatment
households tended to have usage levels that were about 0.1 kWh greater than control households, albeit at a
statistically insignificant level (see Figure 2.2).
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indexes experimental groups), Pre-Period Mean Cons.i j is a household’s mean consumption

during the pre-period (the summer of 2015) during the corresponding hour of the day (j

indexes 1 through 24),27 and γkt represents a separate vector of fixed effects for each hour of

the sample for each experimental group.28 We also present models that do not include pre-

period consumption as a control variable. Due to the randomized nature of the treatment,

these models are expected to produce similar, but noisier estimates of treatment effects.29

In all models, we cluster standard errors by household.

We begin by focusing on effects on event days, which were most readily apparent based

on the graphical comparisons of means. Estimates from hours when critical events were

called by the utility are reported in Table 3. The first two columns report estimates in which

only three treatment indicators are used: CPR-only, CPR + TOU, and TOU-only.30 Focusing

on column 2, which reports the more precise estimates because pre-intervention household

consumption is included as a control variable, the relatively simple CPR-only pricing plan

led to a large and statistically significant decrease in consumption of about 0.37 kWh, or

about a 19% decrease relative to the mean. The more complex hybrid pricing plan also led

to a decrease in consumption of 0.10 kWh (5% relative to the mean) during event hours,

but the coefficient is only about a fourth of the size as the CPR-only effect, significantly

different than the CPR-only coefficient, and only significant in models that include a control

for pre-period consumption. There is little evidence that the TOU-only pricing treatments

decreased energy usage during events as the TOU coefficient is insignificant and small in

27While pre-period mean consumption is a single variable, it provides a detailed level of control because
it varies for each household by hour. For example, for an observation recorded for 7-8pm during the post-
period, pre-period mean consumption is measured as the household’s mean consumption during 7-8pm in the
pre-period. When computing these means, we exclude observations from weekends and holidays because, as
mentioned above, time-variant prices were not in effect on those days.

28Note that the vectors of fixed effects for each hour of the sample for each experimental group are not
collinear with the treatment indicators because each experimental group (e.g., CPR-2, TOU-2) is defined to
include both the treatment and control households assigned to that experimental group.

29In our primary models, the experimental indicators are not time-varying within households and therefore
our estimates are effectively intent-to-treat (ITT) estimates conditional on opting into a time-variant pricing
program. Because some customers dropped out after enrolling, we can also estimate treatment-on-treated
(TOT) effects by instrumenting for current enrollment with an indicator for ever having opted-in. These models
are essentially identical to the ITT models because less than 2% of observations correspond to households that
were part of a treatment group but not actively enrolled. We report TOT estimates in the Supplementary
Material (Tables SM.A and SM.E).

30The variables are simple aggregations of the more detailed treatment variables. For example, CPR-only is
a summation of the indicators for CPR-1, CPR-2, and CPR-3.
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magnitude.

In columns 3 and 4 of Table 3, treatment effects are estimated for each detailed variety

of time-variant pricing. As can be seen by inspecting the coefficients on CPR-1, CPR-2, and

CPR-3, each of the relatively simple event-only interventions led to large energy savings

during event hours, with point estimates indicating a decrease of between 0.27 and 0.48

kWh (13.5% to 24%).31 In contrast to the clear evidence that each CPR-only intervention

was effective at reducing consumption, the coefficients on two of the three hybrid pricing

indicators are statistically insignificant. Additionally, all of the coefficients on the hybrid

pricing variants are smaller than the coefficients on the indicators for the CPR-only vari-

ants, with estimates ranging from -0.01 to -0.16 kWh (a 0.5% to 8% decrease). It is notable

that the smallest coefficient, which is extremely close to zero, occurs for the CPR-2 + TOU-3

pricing plan. The CPR-2 + TOU-3 price plan was the most complex pricing plan embedded

in the experiment. It involved both hybrid pricing and a three-tier TOU schedule, leading

to six changes in the marginal price of electricity on event days.

Continuing with the discussion of Table 3, in terms of evaluating whether CPR-only

pricing produces different effects on event days than hybrid pricing, it may be helpful to

focus only on terms including CPR-2, which is the type of CPR-pricing embedded in all of

the hybrid price plans. Focusing on these terms, the point estimates indicate that CPR-2-

only pricing led to a larger decrease (36%) than the CPR-2 + TOU-1 hybrid (16%), the CPR-2

+ TOU-2 hybrid (13%), and the CPR-2 + TOU-3 hybrid (1%). The CPR-2-only coefficient is

statistically different than both the CPR-2 + TOU-2 coefficient and the CPR-2 + TOU-3

coefficient (p < .05) and almost statistically different than the coefficient on the CPR-2 +

TOU-1 coefficient (p = .12).32

31Note that the estimated magnitude of the effect of the CPR-only interventions increases as the size of the
rebate increases, suggesting that larger financial incentives may produce large responses. While none of the
differences between the estimated coefficients on the CPR-only interventions are statistically significant, the
CPR-1 and CPR-3 coefficients are on the cusp of being significantly different. A Wald test for the equality of
the two coefficients produces a p-value of .13. Nonetheless, the evidence that the size of the rebate influences
household responsiveness is at best modest, especially given the large differences in the size of the incentives,
which is consistent with Gillan (2018), who finds that consumers are mostly insensitive to the size of event-
based incentives.

32The coefficient on TOU-1 is positive and statistically significant, although we suspect this is spurious
correlation. Treatment households in TOU-1 tended to experience relative increases in afternoon consumption
in both the pre-period and on non-event days (see Figures SM.A.7 and SM.B.7). If this tendency was amplified
on event days because they tend to be hotter, then it could drive the results observed in Table 3.
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Detailed estimates from non-event days are presented in Table 4. Models were run sep-

arately for each group of hours embedded in the TOU-3 rate schedule, which is the most

detailed TOU rate schedule and includes off-peak, mid-peak, and on-peak periods. Consis-

tent with the graphical comparison of means, almost all estimates are small and statisti-

cally insignificant. The few that are significant may be spurious correlation due to the large

number of comparisons.33

Taken together, the results support the patterns seen in the comparison of means. The

relatively simpler CPR-only interventions produced large and significant decreases in con-

sumption during event hours. The more complex hybrid approach led to smaller decreases

in consumption in some cases and no decreases in others. The effect of hybrid pricing was

especially weak when the underlying TOU-rate schedule was relatively more complex (i.e.

three-tiered instead of two-tiered).

5 Discussion: Are Hybrid Prices Harder to Understand?

We posit that our results are driven by the enhanced complexity of hybrid pricing. A re-

cent on-line experiment found that utility customers perceive electricity tariffs with more

pricing components to be more complex (Layer et al., 2017). In the experiment, researchers

presented 664 utility customers with electricity pricing tariffs and assessed customer per-

ceptions of price complexity and depth of information processing. The authors found that

study participants perceived hybrid price plans to be significantly more complex than the

standard rate or the two-tiered TOU rate and that price complexity was associated with less

information processing.

One way to investigate whether hybrid prices are meaningfully more complex in our set-

ting is to investigate whether consumers found them more difficult to understand, which

we do in this section using data from an online survey distributed by the utility. The sur-

vey was designed to investigate whether customers could identify their rate schedule and

understood the prices they faced. Treatment households that were enrolled in any time-

variant pricing program prior to the first event that was called during the summer of 2016

33Through chance alone, about one coefficient in each specification might be expected to be significant at the
10% level.
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were invited to take the survey via email in November 2016. About one in five households

completed the survey and the total number of respondents was 304. The key questions from

the survey were: 1) Identify the rate you pay for electricity based on TOU pricing; 2) Yes/No:

I can save money on my energy bill by using energy during off-peak hours instead of during

peak hours; and 3) Yes/No: On event days, I can earn a rebate on my energy use if I shift

my energy use from the event hours to other periods.

We focus the analysis on whether respondents were able to respond correctly to questions

about their prices. For questions 1 and 2, which focus on TOU-pricing, the analysis is based

only on customers on TOU-only or hybrid pricing. The correct answer to question 1 for each

respondent was the TOU pricing schedule that they were enrolled in and, for question 2,

the correct answer for all respondents was "yes." For question 3, the analysis is based only

on customers on CPR or hybrid pricing. The correct answer for question 3 is "yes."

To analyze the survey data, we use a simple linear probability model where the depen-

dent variable equals one if the respondent answered correctly for the corresponding survey

question and the independent variable is an indicator equaling one if the respondent was

on hybrid pricing and zero if they were on stand-alone pricing. The results are reported in

Table 5. As can be inferred from the constants in the models, respondents on stand-alone

pricing tended to answer correctly, with rates of correctness ranging from 66% to 85%. For

respondents on hybrid pricing, the probability of answering correctly was significantly lower.

In particularly, respondents on hybrid pricing were 7.9 percentage points less likely to iden-

tify their TOU-rate correctly, 17.9 percentage points less likely to identify they could save

money on TOU pricing by shifting their consumption from on-peak to off-peak periods, and

11.0 percentage points less likely to understand that they could earn rebates by shifting

their consumption to non-event hours on event days. While the results should be inter-

preted with some caution due to the modest response rate, potential for survey response

bias, and the small sample size, the results from the survey data indicate that customers on

hybrid pricing did not understand the features of their time-variant pricing plans as well as

customers on stand-alone pricing treatments.
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6 Limitations

The key limitation of the study, as with many experimental studies, is that it takes place in

a very specific context. We study time-variant pricing for a single utility, based on an opt-

in enrollment procedure, and without pairing the pricing with complementary technology.

Invariably, changing the context would likely change the results. For example, it seems

reasonable to think that consumers might be less affected by complexity in a setting where

they have access to smart thermostats that can be programmed to automatically respond to

prices. If consumers are, in fact, more responsive to complex price signals when the prices

are implemented in a setting with enabling technology, then our results suggest two paths

for utilities. They can adopt a simplified version of time-variant pricing and not bother

pairing the new pricing scheme with a simultaneous effort to increase adoption of enabling

technology, or they can adopt a complex pricing schedule and simultaneously pair the pricing

initiative with incentives for the installation of new varieties of technology.34

It is also unclear the extent to which findings from our setting might extend to other util-

ities. We can only speculate on this matter and it seems likely that there will be substantial

variation in the effectiveness of time-variant pricing across utilities based on the traits of

the utility’s programs and the features of its customer base. However, regarding our main

finding—that event-based pricing is more effective when offered in isolation—there is a non-

peer-reviewed study that supports it. In particular, a pilot from Xcel Energy in Colorado

tested both CPP-only and TOU + CPP pricing interventions.35 For households without cen-

tral air-conditioning, the reduction in peak usage for the CPP-only intervention (31.9%) was

over twice as large as the reduction achieved by the TOU + CPP intervention (15.1%). For

households with central air-conditioning, there was a similar, albeit less-dramatic pattern

(38.4% vs 28.8%). While it is not clear if the differences in the estimated treatment effects

were significantly different, they provide evidence that our findings regarding diminished

effectiveness from hybrid interventions may hold in other settings.

A final limitation of our study is that it is based on an opt-in experimental design. One

34See Jacobsen (2019) for a discussion of common types of incentive programs offered in the energy sector.
35This study is not publicly available but is described in a review by Faruqui and Sergici (2010).
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issue posed by the opt-in experimental design is that, because households were invited to en-

roll in a specific form of time-variant pricing based on their randomized pre-assignment, it is

possible that households that selected into each type of time-variant pricing systematically

differed across experimental groups in the manner in which they respond to time-variant

pricing. For example, it is possible that households that opted into rebate-only pricing hap-

pened to be more responsive to time-variant pricing, of any form, than households that opted

into hybrid pricing. While we do not observe significant differences in mean on-peak, mid-

peak, and off-peak electricity consumption across experimental categories in the pre-period

(see Table 2), which we might expect if there were large selection-based differences across

experimental groups in their energy-related behavioral dispositions, it is possible that the

experimental groups might differ along other dimensions that could influence their response

to time-variant pricing.

To investigate whether there are differences across households in experimental cate-

gories in non-energy variables, we obtained information from the utility’s central informa-

tion system database that were recorded during June 2017. These variables include age,

income, household size, whether the household is living in a single or multi-family housing

unit, whether the household is living in rented or owner-occupied housing, an indicator for

donating toward renewable energy through their energy bill, an indicator for enrollment

in auto-pay billing, an indicator for paperless billing, and an indicator for participation in

other programs offered by the program related to energy efficiency.36 We test for differences

in these variables by regressing each variable on indicators for each experimental category.

In these models, the omitted group is the CPR-2 control group. We chose this group as a

point of comparison because it is the control group for the CPR price plan that was offered

both as a stand-alone rebate and embedded in all hybrid price plans.

The results of the regressions described above are reported in Table SM.B. Examining

the overall model p-values reported at the bottom of the table, there are six variables in

which the experimental variables do not do a significantly better job than an intercept-only

model (income, household size, renter, renewable energy, auto-pay, and energy efficiency)

36Income was recorded using a 13-category response variable corresponding to a range of values. For the
analysis, it was converted to a continuous variable based on the midpoints for each range.
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and four variables where significant differences are observed (age, home age, multi-family,

and paperless). Looking at the coefficients, the CPR-2 only control group tended to be

younger, live in newer houses, more likely to live in multifamily units, and more likely to

be enrolled in paperless billing. These differences likely stem from the fact that the CPR-2

experimental arm was over-represented in earlier marketing efforts, as described in Section

3, which used email marketing (as opposed to direct mailing) more intensively than later

marketing efforts.

Are the differences in some of the covariates evidence that selection into each experimen-

tal arm are driving the differential effectiveness we observe across the price plans? While

we cannot rule this possibility out entirely, we think the answer is that it is not, especially

for our key finding that more complex price schedules are less effective. The reason is that,

with the exception of a single coefficient that is only significant at the 10-percent level (in

the other energy efficiency program model), there are no significant differences documented

between the CPR-2-only and TOU-2 + CPR-2 hybrid experimental groups. This is not sur-

prising because both groups were prioritized in early marketing efforts. Even in this group,

for which we observe no evidence of selection-driven differences in the covariates, we still

observe large difference between the estimated effect of the relatively simple rebate-only

pricing plan and the more complex hybrid pricing plan (see Table 3).

A second issue related to the opt-in experimental design is that households that chose

to opt-in may be systematically different than households that did not opt-in. This is a lim-

itation in that it makes it unclear how much our results would generalize to time-variant

pricing programs implemented as mandatory or opt-out programs. We think it is reason-

able to assume that households that opt into an experimental time-variant pricing program

might tend to be more sophisticated and better at absorbing complex prices that the aver-

age consumer, which, if anything, would make our estimates conservative with respect to

our central finding of reduced responsiveness to complex prices. Nonetheless, we view the

extent to which our findings are indicative of what might be expected in a mandatory or

opt-out setting as an important question and something that we hope other researchers will

shed light on in the future. Effects based on both an opt-in and opt-out design are of signifi-

cant policy relevance because time-variant pricing programs are implemented as both opt-in
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and opt-out programs. Opt-in programs are common, in part, because certain state utility

commissions require time-variant pricing to be implemented as voluntary opt-in programs.

7 Conclusion

Due to technological advancement, new types of prices are being used in a variety of settings

where they have not historically been applied. One setting where the type of prices that con-

sumers face is rapidly changing is the power sector, where time-variant prices are increas-

ingly replacing standard flat-rate or block-rate pricing. Time-variant electricity prices offer

a potential avenue by which to align consumer demand with the conditions facing electric-

ity producers, which is becoming an important objective as intermittent sources of electric

generation, such as wind and solar, become more common. While time-variant pricing holds

significant promise, appropriately implementing time-variant prices will require a detailed

understanding of how consumers respond to them.

This paper presents experimental evidence on the effects of the two most common types

of time-variant pricing, time-of-use pricing and event-based pricing (in our case, critical

peak rebates), when offered both in isolation as well as in tandem. We find that event-

based pricing leads to conservation during critical events, when conservation is especially

valuable. While event-based prices are effective regardless of whether they are offered as

a stand-alone measure or paired with TOU prices, the magnitude of their effectiveness is

strikingly larger when they are employed in isolation. Specifically, the decrease in consump-

tion during critical events, relative to a control groups on standard pricing, is almost four

times larger for households on rebate-only pricing (a 19% decrease) than it is for households

on hybrid pricing (a 5% decrease).

The results support the idea that more complex pricing systems can overwhelm con-

sumers and result in unexpected outcomes, which is consistent with other findings from

the behavioral economics literature that show that complexity plays an important role in

consumer decision-making. While it is uncertain how much our findings will translate to

other settings where new types of prices are being considered, such as the transportation or

health care sectors, we believe there may be some generality to the notion that complex pric-

ing structures make consumers less responsive to price signals. We look forward to future
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research that further investigates how price complexity plays a role in consumer decision-

making, especially in the power sector, where enhancing understanding of consumer behav-

iors is likely to remain of high value as the electricity system evolves.
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9 Tables and Figures

Table 1: Experimental Overview

Opt-in
Rate

Share in
Treat-
ment

Drop-out
Rate

Total
Enrollees

CPR-1 4.62 47.06 0.78 272
CPR-2 2.27 54.02 6.05 398
CPR-3 6.10 50.62 2.96 401
CPR-2 + TOU-1 4.18 53.69 4.58 244
CPR-2 + TOU-2 1.87 53.65 5.63 397
CPR-2 + TOU-3 4.73 50.72 5.67 278
TOU-1 3.01 53.66 2.27 246
TOU-2 3.04 55.42 4.89 922
TOU-3 3.23 52.27 4.35 264
Total 3.12 52.95 4.42 3,422
Notes: Opt-in rate, share in treatment, and drop-out rate are reported as
percentages.
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Figure 1: Price Depiction for Each Type of Time-Invariant Pricing. The panels on the
left represent the prices on a non-event day and the panels on the right represent the prices
on an event day. TOU-pricing elements are depicted based on a two-tier TOU component
with an afternoon on-peak period (i.e. TOU-2).
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Table 2: Comparison of Pre-Program Mean Consumption Levels

Off-Peak Mid-Peak On-Peak

10pm-11am
11am-3pm
8pm-10pm

3pm-8pm Households

CPR-1 - Treatment 0.87 1.28 1.56 128
(0.59) (0.85) (1.02)

CPR-1 - Control 0.78 1.15 1.40 144
(0.39) (0.65) (0.84)

CPR-2 - Treatment 0.84 1.21 1.45 215
(0.57) (0.81) (1.01)

CPR-2 - Control 0.80 1.14 1.39 183
(0.54) (0.80) (0.97)

CPR-3 - Treatment 0.87 1.21 1.49 203
(0.60) (0.77) (0.98)

CPR-3 - Control 0.83 1.22 1.49 198
(0.47) (0.72) (0.96)

CPR-2 + TOU-1 - Treatment 0.82 1.17 1.44 131
(0.56) (0.67) (0.83)

CPR-2 + TOU-1 - Control 0.82 1.18 1.43 113
(0.55) (0.75) (0.90)

CPR-2 + TOU-2 - Treatment 0.80 1.14 1.40 213
(0.46) (0.65) (0.88)

CPR-2 + TOU-2 - Control 0.82 1.13 1.36 184
(0.54) (0.76) (0.97)

CPR-2 + TOU-3 - Treatment 0.83 1.19 1.46 141
(0.60) (0.89) (1.11)

CPR-2 + TOU-3 - Control 0.84 1.15 1.37 137
(0.51) (0.60) (0.78)

TOU-1 - Treatment 0.87 1.19 1.44 132
(0.53) (0.72) (0.94)

TOU-1 - Control 0.91 1.23 1.42 114
(0.70) (0.95) (1.14)

TOU-2 - Treatment 0.86 1.18 1.40 511
(0.55) (0.77) (0.95)

TOU-2 - Control 0.91 1.23 1.41 411
(0.63) (0.78) (0.96)

TOU-3 - Treatment 0.93 1.26 1.48 138
(0.62) (0.80) (0.98)

TOU-3 - Control 0.83 1.10 1.27 126
(0.55) (0.65) (0.77)

Overall Mean 0.85 1.19 1.42
p-value (ANOVA) 0.55 0.87 0.84
Notes: Standard errors are reported in parentheses.
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Figure 2: Comparison of Pre-Program Means. The vertical dashed lines denote 4pm-
7pm, which is the hourly window when events are most frequently called.
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Figure 3: Comparison of Treatment Period Means. The vertical dashed lines denote
4pm-7pm, which is the hourly window when events are most frequently called.
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Table 3: Treatment Effects During Event Hours

(1) (2) (3) (4)
CPR Only -0.29*** -0.38***

(0.08) (0.05)
CPR + TOU -0.04 -0.10**

(0.09) (0.05)
TOU Only 0.08 0.05

(0.07) (0.04)
CPR-1 Pricing -0.05 -0.27***

(0.17) (0.10)
CPR-2 Pricing -0.30** -0.36***

(0.13) (0.07)
CPR-3 Pricing -0.45*** -0.48***

(0.14) (0.09)
CPR-2 + TOU-1 Pricing -0.09 -0.16

(0.15) (0.11)
CPR-2 + TOU-2 Pricing -0.07 -0.13*

(0.13) (0.07)
CPR-2 + TOU-3 Pricing 0.06 -0.01

(0.17) (0.10)
TOU-1 Pricing 0.25 0.18*

(0.18) (0.10)
TOU-2 Pricing -0.02 0.04

(0.09) (0.05)
TOU-3 Pricing 0.25 -0.05

(0.16) (0.09)

Control for Pre-Cons. No Yes No Yes
Control Mean 2.0 2.0 2.0 2.0
R-squared 0.03 0.44 0.03 0.44
Observations 117,027 117,027 117,027 117,027
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consump-
tion (kWh). All models are linear regression models with standard errors clustered by household.
All models include hour-of-sample-by-experimental-group fixed effects. The sample is limited to
hours when critical events were called. One, two, and three stars indicate 10 percent, 5 percent,
and 1 percent significance, respectively.
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Table 4: Non-Event Day Treatment Effects by Time of Day

Off-Peak Mid-Peak On-Peak Off-Peak Mid-Peak On-Peak

10pm-11am
11am-3pm
8pm-10pm

3pm-8pm 10pm-11am
11am-3pm
8pm-10pm

3pm-8pm

(1) (2) (3) (4) (5) (6)
CPR-1 Pricing 0.04 0.06 0.11 -0.01 -0.02 -0.00

(0.05) (0.08) (0.10) (0.03) (0.04) (0.05)
CPR-2 Pricing 0.01 0.01 -0.01 -0.03 -0.05 -0.06

(0.05) (0.07) (0.09) (0.03) (0.03) (0.04)
CPR-3 Pricing 0.00 -0.04 -0.09 -0.03 -0.04 -0.09**

(0.05) (0.06) (0.08) (0.02) (0.04) (0.05)
CPR-2 + TOU-1 Pricing -0.03 -0.06 -0.02 -0.03 -0.05 -0.04

(0.05) (0.07) (0.09) (0.04) (0.04) (0.05)
CPR-2 + TOU-2 Pricing 0.01 0.01 0.01 0.02 0.00 -0.02

(0.05) (0.06) (0.08) (0.02) (0.03) (0.04)
CPR-2 + TOU-3 Pricing 0.04 0.01 0.02 0.05 0.01 -0.01

(0.06) (0.08) (0.09) (0.04) (0.05) (0.06)
TOU-1 Pricing -0.02 0.05 0.10 0.02 0.07* 0.08

(0.07) (0.09) (0.11) (0.03) (0.04) (0.05)
TOU-2 Pricing -0.04 -0.06 -0.05 -0.00 -0.01 -0.02

(0.04) (0.04) (0.05) (0.02) (0.02) (0.03)
TOU-3 Pricing 0.09* 0.10 0.16* 0.01 -0.05 -0.03

(0.05) (0.07) (0.09) (0.03) (0.04) (0.05)

Control for Pre-Cons. No No No Yes Yes Yes
Control Mean 0.8 1.1 1.3 0.8 1.1 1.3
R-squared 0.06 0.07 0.07 0.33 0.32 0.35
Observations 5,407,589 2,496,016 2,077,484 5,407,589 2,496,016 2,077,484
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consumption (kWh). All models are linear re-
gression models with standard errors clustered by household. All models include hour-of-sample-by-experimental-group fixed effects.
All models are based on the hours listed in the column headings on days when critical events were not called. One, two, and three
stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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Table 5: Regression of Correct Response on Hybrid Pricing Indicator

Identify TOU Rate TOU Shift & Save Earn Rebates
(1) (2) (3)

Hybrid Indicator -0.079 -0.179*** -0.110*
(0.068) (0.059) (0.057)

Constant 0.660*** 0.845*** 0.833***
(0.048) (0.037) (0.037)

R-squared 0.007 0.043 0.017
Obs. 202 202 207
Notes: The unit of analysis is a household. The dependent variable is a binary variable equaling one if
the survey respondent correctly answered the corresponding question. For column 1, the dependent vari-
able is based on a question asking respondents to correctly identify their TOU-based rate schedule. For
column 2, the dependent variable is based on a question asking respondents whether they would save
money by moving consumption from on-peak to off-peak periods. For column 3, the dependent variable
is based on a question asking respondents whether they could save money by conserving energy during
critical events. Column 1 and 2 include households on TOU-only pricing or hybrid pricing. Column 3
includes households on CPR-only pricing or hybrid pricing. All models are linear regression models with
robust standard errors. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent signifi-
cance, respectively.
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SM.1 Additional Figures (Summer)
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Figure SM.A: Comparison of Summer Pre-Program Means: Graphs for Each Experiment Group. The
vertical dashed lines denote 4pm-7pm, which is the hourly window when events are most frequently called.
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Figure SM.B: Comparison of Treatment Period Means on Non-Event Days: Graphs for Each Experi-
ment Group. The vertical dashed lines denote 4pm-7pm, which is the hourly window when events are most
frequently called.
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Figure SM.C: Comparison of Treatment Period Means on Event Days: Graphs for Each Experiment
Group. The vertical dashed lines denote 4pm-7pm, which is the hourly window when events are most frequently
called.
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SM.2 Treatment on Treated IV Analysis (Summer)

Table SM.A: Effects During Event Hours - Treatment on Treated IV Analysis

(1) (2) (3) (4)
CPR Only (Active Enrollment) -0.30*** -0.39***

(0.08) (0.05)
CPR + TOU (Active Enrollment) -0.04 -0.11*

(0.09) (0.05)
TOU Only (Active Enrollment) 0.08 0.05

(0.08) (0.04)
CPR-1 Pricing (Active Enrollment) -0.05 -0.27**

(0.17) (0.10)
CPR-2 Pricing (Active Enrollment) -0.30** -0.37***

(0.13) (0.07)
CPR-3 Pricing (Active Enrollment) -0.46*** -0.49***

(0.14) (0.09)
CPR-2 + TOU-1 Pricing (Active Enrollment) -0.09 -0.16

(0.16) (0.12)
CPR-2 + TOU-2 Pricing (Active Enrollment) -0.08 -0.13*

(0.14) (0.08)
CPR-2 + TOU-3 Pricing (Active Enrollment) 0.06 -0.01

(0.17) (0.10)
TOU-1 Pricing (Active Enrollment) 0.25 0.19*

(0.18) (0.10)
TOU-2 Pricing (Active Enrollment) -0.02 0.04

(0.10) (0.05)
TOU-3 Pricing (Active Enrollment) 0.25 -0.05

(0.16) (0.09)

Control for Pre-Cons. No Yes No Yes
Control Mean 2.0 2.0 2.0 2.0
R-squared 0.00 0.43 0.00 0.43
Observations 117,027 117,027 117,027 117,027
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consumption (kWh). All models
are instrumental variables models, where current enrollment in the program is instrumented for based on whether the
household was ever enrolled in the program. Standard errors are clustered by household. All models include hour-of-
sample-by-experimental-group fixed effects. The sample is limited to hours when critical events were called. One, two,
and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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SM.4 Winter Analysis

In this section, we effectively replicate the summer analysis (June-September) for the win-

ter months (December-February). As mentioned in footnote 9, the results from the winter

analysis are less pronounced and more sensitive to modeling assumptions than are the re-

sults from the summer analysis. That said, the winter results also provide evidence that

event-based pricing is more effective when offered in isolation than it is when paired with

TOU pricing. We discuss some reasons why the results may be less pronounced during

winter at the end of this section.

The time-variant pricing programs operated slightly differently during winter months

than they did during summer months. First, for both TOU-2 and TOU-3 prices, winter

prices included two peak time windows: 7am-11am and 3pm-8pm (the off, mid, and on-peak

time periods were otherwise identical to summer). Additionally, unlike the summer events

that were always called in the evening, the utility sometimes called critical events in the

morning hours during the winter. Across the study period, the utility called fifteen winter

events. Four were in the morning, typically between 7am and 10am. The remainder were

in the afternoon, typically starting at 4pm or 5pm and lasting for three hours.

We replicate the main graphical analysis for the winter months in Figure SM.D and

SM.E. Figure SM.D presents pre-period means and generally indicates statistically insignif-

icant differences between the treatment and control group in the pre-period, although the

CPR-only treatment group did experience some increases relative to the control group in

the early morning hours. Consistent with the summer analysis, the left panels of Figure

SM.E shows few significant differences on non-event days after the new prices were initi-

ated, which suggests that TOU-prices were ineffective at changing consumption. The right

panels, which present trends on event days, do not show nearly as dramatic visual evidence

of event effects as was seen in the summer analysis.

To more precisely identify event effects, we again turn to regression models. Table SM.C

displays estimates from event days. There is some evidence that both CPR-only and CPR +

TOU pricing led to event savings.37 As with the summer analysis, the CPR-only coefficient

is larger than the CPR + TOU coefficient, but the difference is minor and not statistically

37Estimates showing evidence of event savings may seem surprising given the insignificant differences dur-
ing event hours observed in the graphical analysis. However, the graphs also show that the treatment groups
for CPR and CPR + TOU tended to have relatively elevated consumption during peak hours during the pre-
period yet have relatively depressed consumption during peak hours on event days during the post-period.
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significant. Both coefficients are less than half the magnitude of the CPR-only coefficient

from the summer analysis.

Non-event day effects are presented for the winter months in Table SM.D. As with the

summer analysis, most of the coefficients are insignificant. The main coefficients that are

significant, are those for CPR-2 + TOU-1, but those coefficients indicate reductions across

all periods, as opposed to effects primarily during peak time periods, as might be expected if

the effect was driven by TOU pricing. It is possible that the negative coefficients on CPR-2

+ TOU-1 are driven by a general decline in consumption for the CPR-2 + TOU-1 treatment

group that occurred through random chance and was not caused by the shift to time-variant

pricing.

Generally, the summer-time estimates provide much stronger evidence of event treat-

ment effects. This can be seen graphically as, during the summer, the CPR treatment group

experienced a dramatic decline in consumption during the exact hours when events were

called and not elsewhere (see Figure 3). Within the context of a regression framework, one

way to assess whether the treatments created noticeable intra-day changes in energy con-

sumption, as might be expected if households are truly responding to critical events, is to

control for consumption on event days that occurred outside of event hours.38 We apply

this control to both the summer and winter models and report the results in Table SM.F.

For the summer event estimates, adding the control produces nearly identical results. This

can be seen, for example, by comparing column 1, which does not control for consumption

during non-event hours on event days, and column 2, which does control for it. The winter

estimates, however, are dramatically affected. Focusing on columns 5 and 6, the estimated

CPR-only effect falls by nearly half, to -.09, and the CPR + TOU coefficient falls by even

more, to -.04. Also, as with the summer analysis, the CPR + TOU coefficient is now half the

size as the CPR-only coefficient, which is consistent with layering the programs dampening

consumer responsiveness.

Collectively, the analysis from the winter months presents much weaker evidence that

the pricing interventions had a substantial influence on consumption patterns. One possi-

ble explanation for this is that customers may have less tolerance for being cold than hot,

which would reduce their willingness to modify their thermostats during winter months.

38This is not the optimal way to assess event effects, because events can create load-shifting to non-event
hours (which makes non-event-hour consumption a “bad” control), but it is helpful for assessing the credibility
of the winter event estimates.
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Secondly, many homes in the study area use gas heating, whereas cooling must occur by

using electricity. Households that have gas heating cannot achieve savings through thermo-

stat adjustments and therefore may be less sensitive to price fluctuations.
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SM.5 Primary Tables and Figures for Winter Analysis

−
.5

0
.5

1
1.

5
2

2.
5

M
ea

n 
kW

h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Treatment Control Treatment − Control

(1) CPR-only

−
.5

0
.5

1
1.

5
2

2.
5

M
ea

n 
kW

h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Treatment Control Treatment − Control

(2) CPR + TOU

−
.5

0
.5

1
1.

5
2

2.
5

M
ea

n 
kW

h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Treatment Control Treatment − Control

(3) TOU-only

Figure SM.D: Winter: Comparison of Pre-Program Means. The vertical dashed lines
denote 4pm-7pm, which is the hourly window when events are most frequently called.
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Figure SM.E: Winter: Comparison of Treatment Period Means. The vertical dashed
lines denote 4pm-7pm, which is the hourly window when events are most frequently called.



Table SM.C: Winter: Treatment Effects During Event Hours

(1) (2) (3) (4)
CPR Only -0.07 -0.17***

(0.06) (0.04)
CPR + TOU -0.14** -0.14***

(0.07) (0.05)
TOU Only -0.06 -0.03

(0.05) (0.04)
CPR-1 Pricing -0.05 -0.14*

(0.11) (0.08)
CPR-2 Pricing 0.02 -0.10

(0.11) (0.07)
CPR-3 Pricing -0.18* -0.26***

(0.09) (0.07)
CPR-2 + TOU-1 Pricing -0.17 -0.24***

(0.13) (0.09)
CPR-2 + TOU-2 Pricing -0.18* -0.14**

(0.10) (0.07)
CPR-2 + TOU-3 Pricing -0.04 -0.04

(0.12) (0.09)
TOU-1 Pricing -0.06 -0.02

(0.13) (0.09)
TOU-2 Pricing -0.12* -0.04

(0.07) (0.05)
TOU-3 Pricing 0.18 0.03

(0.13) (0.08)

Control for Pre-Cons. No Yes No Yes
Control Mean 1.8 1.8 1.8 1.8
R-squared 0.03 0.29 0.03 0.29
Observations 140,270 140,270 140,270 140,270
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consump-
tion (kWh). All models are linear regression models with standard errors clustered by household.
All models include hour-of-sample-by-experimental-group fixed effects. The sample is limited to
hours when critical events were called. One, two, and three stars indicate 10 percent, 5 percent,
and 1 percent significance, respectively.
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Table SM.D: Winter: Non-Event Day Treatment Effects by Time of Day

Off-Peak Mid-Peak On-Peak Off-Peak Mid-Peak On-Peak

10pm-11am
11am-3pm
8pm-10pm

3pm-8pm 10pm-11am
11am-3pm
8pm-10pm

3pm-8pm

(1) (2) (3) (4) (5) (6)
CPR-1 Pricing 0.02 0.00 0.02 -0.03 -0.06 -0.05

(0.09) (0.10) (0.10) (0.06) (0.07) (0.06)
CPR-2 Pricing 0.02 0.01 0.06 -0.05 -0.09 -0.06

(0.08) (0.09) (0.09) (0.06) (0.06) (0.06)
CPR-3 Pricing -0.03 -0.03 -0.02 -0.08* -0.06 -0.09

(0.08) (0.08) (0.09) (0.04) (0.05) (0.06)
CPR-2 + TOU-1 Pricing -0.12 -0.13 -0.14 -0.10* -0.13* -0.19***

(0.11) (0.11) (0.12) (0.06) (0.07) (0.07)
CPR-2 + TOU-2 Pricing -0.10 -0.08 -0.12 0.01 -0.04 -0.08

(0.08) (0.09) (0.09) (0.05) (0.06) (0.06)
CPR-2 + TOU-3 Pricing -0.00 -0.03 0.01 0.01 -0.04 -0.01

(0.10) (0.10) (0.11) (0.08) (0.07) (0.07)
TOU-1 Pricing -0.04 -0.04 -0.02 0.02 0.01 0.01

(0.10) (0.11) (0.11) (0.07) (0.07) (0.07)
TOU-2 Pricing -0.10* -0.13** -0.12* -0.02 -0.03 -0.05

(0.06) (0.06) (0.06) (0.04) (0.04) (0.04)
TOU-3 Pricing 0.14 0.10 0.12 0.03 -0.05 -0.01

(0.11) (0.11) (0.11) (0.06) (0.06) (0.06)

Control for Pre-Cons. No No No Yes Yes Yes
Control Mean 1.2 1.5 1.5 1.2 1.5 1.5
R-squared 0.05 0.04 0.03 0.34 0.29 0.30
Observations 2,997,275 2,000,981 2,996,015 2,996,175 2,000,228 2,995,441
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consumption (kWh). All models are linear regres-
sion models with standard errors clustered by household. All models include hour-of-sample-by-experimental-group fixed effects. All
models are based on the hours listed in the column headings on days when critical events were not called. One, two, and three stars
indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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SM.6 Treatment on Treated IV Analysis (Summer)

Table SM.E: Winter: Effects During Event Hours - Treatment on Treated IV Analysis

(1) (2) (3) (4)
CPR Only (Active Enrollment) -0.07 -0.17***

(0.06) (0.04)
CPR + TOU (Active Enrollment) -0.14* -0.14***

(0.07) (0.05)
TOU Only (Active Enrollment) -0.06 -0.03

(0.06) (0.04)
CPR-1 Pricing (Active Enrollment) -0.05 -0.14*

(0.11) (0.08)
CPR-2 Pricing (Active Enrollment) 0.03 -0.10

(0.11) (0.07)
CPR-3 Pricing (Active Enrollment) -0.19* -0.27***

(0.10) (0.07)
CPR-2 + TOU-1 Pricing (Active Enrollment) -0.18 -0.25**

(0.14) (0.10)
CPR-2 + TOU-2 Pricing (Active Enrollment) -0.19* -0.15*

(0.11) (0.07)
CPR-2 + TOU-3 Pricing (Active Enrollment) -0.04 -0.04

(0.13) (0.09)
TOU-1 Pricing (Active Enrollment) -0.06 -0.02

(0.13) (0.09)
TOU-2 Pricing (Active Enrollment) -0.12* -0.04

(0.07) (0.05)
TOU-3 Pricing (Active Enrollment) 0.18 0.03

(0.13) (0.08)

Control for Pre-Cons. No Yes No Yes
Control Mean 1.8 1.8 1.8 1.8
R-squared 0.00 0.27 0.00 0.27
Observations 140,270 140,270 140,270 140,270
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consumption (kWh). All models
are instrumental variables models, where current enrollment in the program is instrumented for based on whether the
household was ever enrolled in the program. Standard errors are clustered by household. All models include hour-of-
sample-by-experimental-group fixed effects. The sample is limited to hours when critical events were called. One, two,
and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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SM.7 Additional Figures (Winter)
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Figure SM.F: Winter: Comparison of Pre-Program Means. The vertical dashed lines
denote 4pm-7pm, which is the hourly window when events are most frequently called.
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Figure SM.G: Winter: Comparison of Treatment Period Means on Non-Event Days.
The vertical dashed lines denote 4pm-7pm, which is the hourly window when events are
most frequently called.
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Figure SM.H: Winter: Comparison of Treatment Period Means on Event Days. The
vertical dashed lines denote 4pm-7pm, which is the hourly window when events are most
frequently called.
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SM.8 Event Effects -Add Non-Event Day Consumption Controls (Winter and Summer)

Table SM.F: Event-Day Estimates Based on Models Including Non-Event Day Consumption Controls

Summer Winter
(1) (2) (3) (4) (5) (6) (7) (8)

CPR Only -0.38*** -0.33*** -0.17*** -0.09***
(0.05) (0.04) (0.04) (0.02)

CPR + TOU -0.10** -0.08** -0.14*** -0.04**
(0.05) (0.04) (0.05) (0.02)

TOU Only 0.05 0.05* -0.03 0.01
(0.04) (0.03) (0.04) (0.01)

CPR-1 Pricing -0.27*** -0.27*** -0.14* -0.08**
(0.10) (0.08) (0.08) (0.03)

CPR-2 Pricing -0.36*** -0.33*** -0.10 -0.04
(0.07) (0.06) (0.07) (0.03)

CPR-3 Pricing -0.48*** -0.38*** -0.26*** -0.15***
(0.09) (0.07) (0.07) (0.03)

CPR-2 + TOU-1 Pricing -0.16 -0.12 -0.24*** -0.04
(0.11) (0.08) (0.09) (0.03)

CPR-2 + TOU-2 Pricing -0.13* -0.11** -0.14** -0.05*
(0.07) (0.05) (0.07) (0.03)

CPR-2 + TOU-3 Pricing -0.01 0.01 -0.04 -0.03
(0.10) (0.07) (0.09) (0.03)

TOU-1 Pricing 0.18* 0.08 -0.02 -0.03
(0.10) (0.08) (0.09) (0.03)

TOU-2 Pricing 0.04 0.06 -0.04 0.01
(0.05) (0.04) (0.05) (0.02)

TOU-3 Pricing -0.05 -0.00 0.03 0.04
(0.09) (0.07) (0.08) (0.03)

Control for Pre-Cons. No No No No Yes Yes Yes Yes
Control for Non-Event Cons. No Yes No Yes No Yes No Yes
Control Mean 2.0 2.0 2.0 2.0 1.8 1.8 1.8 1.8
R-squared 0.44 0.54 0.44 0.54 0.29 0.53 0.29 0.53
Observations 117,027 117,027 117,027 117,027 140,270 140,270 140,270 140,270
Notes: The unit of analysis is a household-hour. The dependent variable is electricity consumption (kWh). All models are linear regres-
sion models with standard errors clustered by household. All models include hour-of-sample-by-experimental-group fixed effects. One,
two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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