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Abstract
Our understanding of causality and effect size in random-

ized field experiments is challenged by variations in levels

of baseline treatment dosage in control groups across exper-

iments testing similar treatments. The clearest design is to

compare treated cases with no-treatment controls in a sam-

ple that lacks any prior treatment at baseline. We applied

that strategy in a randomized test of hot-spots police patrols

on the previously never-patrolled, track-level platforms

of the London Underground (LU). In a pretest–posttest,

control-group design, we randomly assigned 57 of the LU’s

115 highest crime platforms to receive foot patrol by offi-

cers in 15-minute doses, 4 times per day, during 8-hour

shifts on 4 days a week for 6 months. The effect of 23,272

police arrivals at the treatment hot spots over 26 weeks was

to reduce public calls for service by 21 percent on treated

platforms relative to controls, primarily when police were

absent (97 percent of the measured effect). This effect was

six times larger than the mean standardized effect size found

in the leading systematic review. This finding provides a

benchmark against the baseline counterfactual of no patrol

in hot spots, with strong evidence of residual deterrence and

no evidence of local displacement.

K E Y W O R D S
baseline dosage, hot spots, no-treatment controls, randomized experi-

ments, regional deterrence, residual deterrence
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What is the logic of causality in hot-spots policing experiments? That question has become a prime case

in point for debating what conclusions can and cannot be drawn from randomized field experiments

(Nagin & Sampson, 2019). Although some may see the three-decade history of hot-spots experiments

(Braga, Papachristos, & Hureau, 2012; Sherman & Weisburd, 1995) as providing highly certain con-

clusions, others may see substantial uncertainties in the same evidence. As Nagin and Sampson (2019,

p. 141) concluded, “[I]t is important to be clear with policy makers and our fellow scientists about the

uncertainties in the evidentiary base even where experimental evidence forms the point of departure

for the translation of results to policy.” The uncertainties they identified included the long-term effects

of a whole-city system of hot-spots policing, which has never been compared with cities without such

a system. They also cited the risk of “cognitive narrowing,” by which the logic of causality is confused

with research methods or designs, in which a randomized trial is seen to be not just a “gold standard”

but also a magic bullet that lends certainty to any claim of causality.

In this article, we address a form of uncertainty that has not yet been debated even though the issue is

central to the logic of causality in hot-spots policing. Our concern is that the effect size of redistributing

police patrol presence depends just as much on the “dosage” of patrol in a control group as it does on the

dosage in the treatment group. That logic is independent of whether a test is randomized, of whether

it is short term or long term, or of exactly what police do (or do not do) when they are present in

hot spots. It is also independent of whether “causality” is defined in the ambitious terms proposed

by Nagin and Sampson (2019, p. 124): “[T]he difference between counterfactual worlds that emerge

as a consequence of their being subjected to different universal treatment regimens over a sustained

period of time, what economists would call system-wide equilibrium differences.” Our purpose is not

to contest that definition of causality but to accept it as one of several possible valid definitions, as

well as to use that definition to reassess and enlarge the body of experimental evidence on hot-spots

policing.

The logic of comparing counterfactual worlds must begin with a clear description of both worlds

being compared. In our view, the major uncertainty in hot-spots policing experiments is the general

failure to provide such clarity. The lack of clarity has several dimensions, including the absolute size

and variance of hot-spots boundaries, the frequency and types of crime or calls for service analyzed,

and even the harm level of crimes in each location (Weinborn, Ariel, Sherman, & O’Dwyer, 2017).

None of those characteristics of the sample locations, however, are as theoretically important to the

concept of causality as are the baseline level of the independent variable (police patrol dosage) in the

control (C) group and the corollary ratio of patrol dosage in the T group to the level in the C group.

This ratio between T and C dosage has two dimensions. One is the baseline of dosage in both areas

prior to beginning the experiment, which should ideally start out as equivalent at the point of random

assignment. The other is the size of the gap created between T and C by implementing the experiment’s

random assignments. Of these two dimensions, we suggest that the absolute baseline level is the essen-

tial starting point in developing the counterfactual logic of the experiment. That, in turn, offers more

help to reduce the uncertainties about the estimated effect sizes of adding patrol dosage to hot spots,

at least in the short run, in any community that already provides police patrol.

The logic of causality in hot-spots policing experiments is often vaguely described as testing whether

“adding more” police to high-crime locations prevents more crime compared with business-as-usual

(BAU) levels of patrol in similarly high-crime locations. Systematic efforts to integrate the results

of experiments so described are of great interest (Braga et al., 2012). Yet the uncertainties of any

meta-analysis of the currently available research are massive. These uncertainties begin with the lack

of any measurement, in most trials, of patrol dosage in even the experimental treatment (T) group.

More fundamentally, the uncertainties depend on patrol dosage in the counterfactual: the level of

police presence in the control (C) group. Absent this information, any estimates of average effect size
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lack sufficient basis for inferring causality. The best demonstration of that claim is the fact that no

“moderator analysis” has even been possible of whether effect size depends on the absolute value of

patrol presence in either the control group or the treatment group (Braga et al., 2012).

The results of our analysis show both consensus with and departure from the Nagin and Sampson

(2019, p. 123) definition of causality as “the difference between counterfactual worlds that emerge as

a consequence of their being subjected to different universal treatment regimes.” Our findings indicate

support for every word except “universal.” In the Nagin and Sampson framework, every hot spot in

a city would have to have similar treatment to create a “universal treatment regime.” They argued

that condition is essential for the external validity of conclusions as applied to a world in which such

universal treatment is created. Our claim is that such a world is unlikely to be created soon given the

empirical evidence we cite in this article about the dosage of police patrol time in (aboveground) hot

spots: Across experiments with precise measures, patrol dosage is both highly variable and massively

underdelivered. Unless and until our nonfeasibility claim is falsified, we propose that causality tests

can comprise individual hot spots, rather than entire systems of hot spots, as an appropriate unit of

analysis. On that premise, we suggest that experiments within cities will remain useful for generalizing

to other hot spots within cities, but only to the extent that the scholars conducting such experiments can

succeed in reducing uncertainty by creating counterfactual worlds that are precisely defined, measured,

and replicable.

1 REDUCING UNCERTAINTY FOR HOT-SPOTS EFFECT
SIZES: A HYPOTHESIS

Reducing uncertainty about effect sizes in conclusions from hot-spots policing experiments cannot be

accomplished by better measurement alone. Reducing effect size uncertainties requires a purposive,

theoretically guided research strategy for testing added patrols under a range of baseline patrol lev-

els. That strategy can build on existing research by filling in the major gaps in the levels of baseline

patrol reported, at least in the growing numbers of studies in which Control (“C”) group measures are

reported.

The theoretical basis for the strategy can be premised on nonrandomized evidence that the high-

est crime levels occur with a complete absence of policing, as in the case of police going on strike

(Nagin, 1998; Sherman, 1990). It follows that if baseline levels of patrol are already high, it will

be more difficult for a hot-spots experiment to approximate the radical counterfactual of a police

strike versus substantial police presence. The logic of that finding, compared with a range of exist-

ing evidence about higher levels of police presence, implies our following hypothesis: The higher
the baseline levels of patrol in hot spots become, the lower the effect size of added patrols is likely
to be. Testing that hypothesis requires a portfolio of research with a wide range of baseline lev-

els of C group patrols. To develop an evidence-based theory of effect sizes dependent on base-

line dosage, that portfolio of experiments should include as many levels of control group dosage as

possible.

Indispensable to such a research strategy is at least one—and better yet, many—experiment(s) in

which the baseline level of C group patrol presence is zero. Without that starting point, our hypothesis

remains nonfalsifiable. In our hypothesis, the largest effect size will be gained by adding patrol where it

does not currently exist. Researchers testing this hypothesis could find support in a linear progression of

declining effect sizes of additional T group patrol with higher baseline levels of C group patrol. These

researchers may also, however, find evidence of a nonlinear progression, with empirical evidence for

one or more tipping points of baseline patrols, above which increased T group patrolling could have
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sharply reduced effects, or perhaps tipping points of the ratio of T to C, or even in the length of time

in between patrols.

As more police officer “pracademics” design (e.g., Mitchell, 2017; Williams & Coupe, 2017) and

implement their own hot-spots experiments, including GPS measures of patrol time in both C and T

group hot spots, the portfolio of experiments with well-measured dosage seems likely to keep growing.

A theoretical framework is needed to guide the growing research, both in designing the experiments and

in drawing conclusions from them. Yet the incentives for this work will be enhanced by an experiment

designed to offer a zero-patrol counterfactual world, as offered in this article.

1.1 Effect sizes to date
The implicit concern of Nagin and Sampson (2019) in their critique of hot-spots patrol experiments is

that consistently positive results may lead to overstating the case for a hot-spots policy, as well as to

understating the uncertainties. Our review leads to the opposite concern: that the state of the research

so far may be understating the case. Reported effect sizes to date are generally small. At the same time,

our limited evidence is that the level of control group dosage in the existing portfolio of experiments

may be substantial—thereby reducing the estimated benefits of more patrol causing less crime. On

the basis of our hypothesis about effect sizes for these tests, the mere addition of more patrol time to

T group hot spots may be fighting an uphill battle to deter crime—at least compared with lowering

the level of patrol in the C group. This may explain the finding of Braga et al. (2012) that across 10

randomized and quasi-experiments in hot-spots patrols using nonzero dosage in the control groups the

mean effect size was quite small (d = .113; p ≤ .001; Braga et al., 2012, Figure 11.9).

The conventional view might be that the sizes of effects of extra policing on crime or disorder out-

comes depends on the amount of dosage delivered in the treatment group. Yet exact measures of treat-

ment group dosage have so far been rare. In in all four randomized patrol experiments with measures of

dosage included in the most recent systematic review of hot-spots policing (Braga et al., 2012, Figure

11.4), the effect sizes were all in the range of what Cohen (2013) called “small” (d ≤ .2): from the

largest in Jersey City (Weisburd & Green, 1995) at d = –.147 (p = .59) to the smallest in Jacksonville

(Taylor, Koper, & Woods, 2011) at d = +.055 (p = .57). The only one of the four RCTs in which both

T and C police presence was systematically measured was in the initial hot-spots patrol experiment, in

which the ratio of mean daily T-group patrol to C-Group patrol was 1.99 to 1 (Sherman & Weisburd,

1995, p. 638), and the effect size of that treatment difference on outcomes was d = –.061 (p = .00;

Braga et al., 2012).

Since then at least two other hot-spots patrol experiments have been conducted with measures of

dosage in both T and C groups. Taken together, in these three “dosage-measuring” experiments, “small”

effects of treatment differences on outcomes were discovered. In all of them, nontrivial amounts of

dosage were measured in the control group. Arranged in order from lowest to highest baseline dosage,

Sacramento (Mitchell, 2019, p. 78) had the lowest C group dosage of patrol at 3.4 percent of study

hours, as measured by GPS-Automatic Vehicle Locator (AVL) devices on the patrol cars (a mean of

693 minutes per day across 21 control hot spots = 33 minutes per day per hot spot, divided by 16 hours

daily, 0900 to 0100, or 16 hours × 60 minutes = 960 minutes, so that 33 / 960 = 3.4 percent of study

time had a police car present in the control group). In Peterborough, England (Ariel, Weinborn, &

Sherman, 2016, p. 296), the C group dosage of patrol was 3.8 percent of the study time of 7 hours

(1500 to 2200) = 420 minutes daily as the denominator, with GPS locations measured by radios of

police community service officers (PCSOs) on foot (showing 15.9 minutes per day spent inside C

group hot spots divided by 420 = a mean of 3.8 percent of study time had PCSOs in the control hot

spots n the initial hot-spots experiment). Sherman and Weisburd (1995, p. 638) reported about twice
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as much patrol dosage in the control group as the other two experiments (7,500 hours of systematic

observation by 16 field observers, which showed uniformed police presence at 50 control hot spots for

7.48 percent of all observed minutes).

On the basis of higher dosage of patrol in the control groups alone, we might use our theoretical

perspective to predict a smaller effect size in Minneapolis than in the other two experiments. That

prediction would be correct since the effect in Minneapolis (d) was –.06, compared with –.10 in Sacra-

mento and –.21 in Peterborough. We can also note the ratio of patrol time between T and C hot spots

in each of the tests, at 3 to 1 in Sacramento, 2.3 to 1 in Peterborough, and 1.99 to 1 in Minneapolis.

(See table 7.) Although the ordering is not direct, we have the two newer experiments showing lower

C group dosage and larger effect sizes than in Minneapolis. Even though this could be a result of dif-

ferences of measurement, it is at least a clue to solving the mystery of whether control group dosage

matters. [We should also note that in Peterborough, the experiment in foot patrol by PCSOs was imple-

mented in the context of a high but constant level of automobile patrol presence by Police Constables,

averaging 28 minutes daily in T group and 26 minutes in C group hot spots, a nonsignificant difference

at p = .488].

Using the citizens calls for service data in all three experiments as a common currency for effect size

on outcomes, this limited evidence does show smaller effect sizes where the baseline level of patrol

(as a percent of study time) was larger. In Sacramento (Mitchell, 2019, p. 109), the mean effect size

across calls for service in the 21 hot-spots pairs was –.104 (p = .63). In Peterborough (Ariel et al.,

2016), the pooled Cohen’s d across calls for service in the 34 T spots and 38 C spots was d = –.211

(nonsignificant CI = –.676 to +.252). In Minneapolis (Braga et al., 2012: Figure 11.4), the effect size

on total calls for service was calculated at –.061 (p = .00). (At the same time, Minneapolis had the only

statistically significant [p = .05] outcome effect, but that was primarily a result of its greater statistical

power, with a larger sample size and a full year of testing.)

As our theory of control group dosage predicted, then, Minneapolis, as the experiment with the

highest dosage in the control group (and lowest ratio of T to C dosage) had by far the smallest effect size.

At d= –.061, the effect size in Minneapolis was 70 percent lower than the d= –.211 in Peterborough and

40 percent lower than the effect size in Sacramento. Although these three observations are not many,

use of a Bayesian approach would not dismiss them but seek more information. That is exactly what

follows, with our new experimental answer to the following key theoretical question: Would a zero-
patrol control group produce a substantially larger effect size than most hot-spots experiments to date?

1.2 Zero-treatment control group
A no-dosage control condition has a long history in other fields where what is called a “Knockout trial”

is employed. This strategy is used in gene therapy research in which there is a complete “knockout”

of one gene or genetic variant (Austin et al., 2004). The same design was used to measure the level

of violence that would occur in a troupe of Macaque monkeys if the alpha males were removed from

the group, with all violent acts counted carefully before, during, and after the “knockout” of policing

(Flack, De Waal, & Krakauer, 2005; Flack, Girvan, de Waal, & Krakauer, 2006). The logic of a knock-

out comparison is that it helps to eliminate rival hypotheses, as well as to isolate a causal pathway to

the hypothesized result of an intervention.

What we present in this article, in slight contrast, is a “reverse-knockout” experiment. Rather than

removing police from an environment they were in already, we measure what happens when they

are introduced for the first time in an environment where they had never before patrolled for more

than150 years. The result is a substantial gain in our logical ability to compare counterfactual worlds,

irrespective of research methods.
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We accept that finding a world with baseline levels of zero police patrol does not directly address a

larger question of system-wide effects (Nagin & Sampson, 2019); for that we suggest the best design to

create counterfactuals is to compare a city-wide strategy of hot-spots policing (or not) across a sample

of cities. What a reverse-knockout design does offer, however, is a clear counterfactual for answering

a different question. That question is arguably just as valid and important as the city-wide “system”

question, at least for local police commanders: whether a given level of directed patrol at any particular
location reduces crime at that location, relative to no directed patrol at all.

Given a low level of crime, the “subway” (as New Yorkers call it) or the “Underground” rapid transit

system of London had never deployed police patrols onto the platforms where passengers gather to wait

for and leave trains. When they decided to do so in 2011, authorities of the London Underground agreed

(after attending a Cambridge University conference on evidence-based policing) to launch the policy

with a randomized controlled trial (RCT).

2 DETERRENT EFFECTS OF POLICE PATROLS IN SPACE
AND TIME

The causal logic of the London Underground (LU) experiment is aimed at offering a potential to change

our understanding of deterrence at individual hot spots in several ways. In addition to testing whether

a larger effect size can be found with a no-treatment control group, the design is also intended to offer

new insights into the temporal and spatial dimensions of deterrent effects. It allows for a comparison

of effect sizes not only between treatment and control hot spots but also between those groups in

temporal-spatial boundaries defined by the following:

• Times of day when police patrol and when they do not

• Days of the week when police patrol and when they do not

• Areas in the stations that they patrol and areas that they do not

These new findings on the spatial and temporal dimensions of the effects of police presence in places

are all enhanced by the LU experiment as the first test of all those effects against a control group with

zero-directed police patrol and minimal total presence.

The limited evidence on temporal and spatial dimensions of hot-spots policing is central to under-

standing the counterfactual logic of experiments. In the years since the authors of the National Research

Council report on policing (Skogan & Frydl, 2004, p. 247) concluded that experimental evidence on

“hot-spots” policing reflects a “strong body of evidence [which] suggests that taking a focused geo-

graphic approach to crime problems can increase the effectiveness of policing,” much more evidence

has since been offered on that general question (e.g., Braga et al., 2012, 2014; Ratfcliffe, Grof, Haber-

man, Sorg, & Joyce, 2013; Ratcliffe, Taniguchi, Groff, & Wood, 2011; Rosenfeld, Deckard, & Black-

burn, 2014; Taylor et al., 2011; Telep, Mitchell, & Weisburd, 2014). Yet on the specific issues of spatial

and temporal effects of police patrols, we remain short on both theory and evidence.

Although research evidence has grown somewhat on the spatial issues of displacement versus diffu-

sion of benefits (Groff et al., 2015; Ratcliffe, 2016; Taylor et al., 2011; Weisburd et al., 2006), we remain

ignorant of the temporal dimensions of deterrence effects and their decay. The correlational analysis

conducted by Koper (1995), in which greater 30-minute post-police presence deterrent effects from

longer police patrol times were shown, has never even been replicated, let alone tested with an RCT.

A theory of deterrence from police patrols requires a framework for understanding not only where
its effects occur but also when they occur: when police are present, when (and for how long) they are
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absent, or both. The evidence that people commit less crime in the presence of a police officer (Ariel

& Partridge, 2017; Koper, 1995) might sustain a concept of “direct” deterrence, much like the mission

of a security guard. But there are too few police to provide constant “guard duty” at all hot spots at all

times. The evidence so far, indeed, indicates that the effects of extra policing on crime are found mostly

when police are absent rather than when they are present (Koper, 1995, p. 658). The LU experiment

was designed to explore and distinguish both categories of effects.

We also propose that temporal analysis can be applied to two kinds of space in most experiments

with police dosage: “local deterrence” where police are (or have been recently) present and “regional

deterrence” in micro-areas surrounding and including where police are or have been present. Residual

effects of police presence can also change over time: lingering, decaying, reappearing when people

expect police to be present, and disappearing when police presence fades from memories of people in

places.

Taken together, these moving parts indicate the following spatiotemporal local deterrence mecha-

nisms of causation. Spatially, sanction threats should be highest at the immediate vicinity of the inter-

vention site, with diminishing effect as we move outside the epicenter of the intervention location. The

diffusion of the benefits should, theoretically, decay because the effect should be increasingly diluted

as the geographic area expands beyond the reach of visible deterrence. Temporally, we expect “initial

local deterrence” to carry the strongest effect at the time when the tactics are being applied. We defined

“initial deterrence” (Sherman, 1990) for these purposes as a response to perceptions of sanction risks

while police are still present in the hot spots, when local deterrence is theoretically at its peak. What we

do not expect, but could logically occur, is a “phantom” effect: that crime would decline when people

expect police to be present, even if they are not—based on recent patterns of police patrol.

3 RESEARCH SETTING

The LU was opened in 1863 as the first underground railway in the world, with a station layout that

has changed little over time. Figure 1 displays a platform in 2018. Unlike the New York MTA Subway,

the Washington DC METRO, or the San Francisco BART, the platforms in the LU generally allow

passengers access to only one track at a time. Therefore, at least two walled-off chambers exist in most

stations: one for the trains going in one direction and one for trains going in the other (e.g., westbound or

eastbound). Each platform offers only one direction of travel from one track. To get from one platform

to the other, passengers may have to climb stairs. If police are present on one platform, they cannot be

seen on the other. This layout is not usually found in the more suburban stations located above ground.

It is characteristic, however, of the highest crime stations from which we drew our sample.

Each station has multiple platforms. Each station has an entry area (the concourse) and an area

where tickets can be purchased, a barrier system that can be observed by the ticket-sellers and other

station staff, a series of escalators and elevators, and two or more platforms below. Some stations, such

as Piccadilly or Kings’ Cross, have multiple city-wide train lines, with two platforms per line. These

larger stations also have much more passenger traffic in the entry areas. Overall, LU provides more

than 1.3 billion passenger rides per year (Transport For London, 2015).

With the greatest concentration of suitable victims and motivated offenders (Cohen & Felson, 1979)

on the trains themselves, nearly 30 percent of reported calls for service document crimes occurring on

board and in between platforms (Ariel, 2011). Within the stations, clearly identifiable areas attract

substantial proportions of all crime, such as the concourse and the booking area (12 percent) and the

entry/exit bars (8 percent). Crimes on the platforms, which historically had no police patrols, consti-

tuted just 11 percent of all reported crimes.
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F I G U R E 1 LU platform, 2018 [Color figure can be viewed at wileyonlinelibrary.com]

Just prior to the experiment, the distribution of crime in the LU consisted of theft (35 percent), less

serious fraud (12 percent), and less serious public disorder (10 percent), with more serious offenses

far less prevalent, such as robbery (.3 percent), sexual crimes (.7 percent), or violence more generally

(4 percent). It is important to note, however, that many “crimes” in the LU are in fact police generated

(e.g., results of stops and frisks or ticket violations accounted for by police officers). For instance, the

entry/exit bars, which are the location of larcenies by turnstile jumpers, have long been the priority

for police patrol, and so 65 percent of criminal events are police generated at these locations. Yet

these police-generated crimes occur at the ground level of the stations, not on the platforms or the on

the trains, because both of the latter categories of LU area had never been proactively patrolled prior

to this study. In our LU experiment, in any event, we exclude police-generated crimes as outcome

measures.

Crime and disorder are not distributed evenly around the LU network. The top 5 out of 270 stations

(Stansted, Kings Cross, Victoria, Oxford Circus, and Leicester Square) account for more than 12 per-

cent of all recorded crimes in the LU system. Some times are hotter than others as well, with 12 hours

over 4 days (5 pm–8 pm, Wednesdays–Saturdays) accounting for a little more than 26 percent of all

crime during the week. The design of the experiment allowed for us to identify the population—and

not a sample—of the platforms with the highest frequencies of crimes and calls for service.

4 DATA AND METHOD

For the purpose of the experiment, LU’s detachment of the British Transport Police (BTP) granted us

access to all calls for service and crime data. The experiment was in operation for 6 months, commenc-

ing in mid-September 2011 through mid-March 2012, with comparisons to the same months of the year

prior (2010–2011). Calls for service data proved to be particularly challenging as key spatiotemporal
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variables were recorded as text logs rather than as unique categories for every area of the station. The

log for every incident on sample platforms was therefore read and coded into unique nominal groupings

of space and time for purposes of the present analysis.

Data on “dosage” of police time in T and C platforms were captured manually by three dedicated

sergeants assigned to record via two-way radios every entry and exit to the hot spot. GPS trackers

were not available underground as GPS relies on satellite connectivity (for more recent alternative

methods of tracking, see De Brito & Ariel, 2017). The extensive paper record created supervisory

documentation of 20,237 visits of 15 minutes each to the treatment hot spots. No visits were recorded

in the control hot spots.

4.1 Unit of analysis: LU platforms and environs
The choice of unit of analysis in this study was driven by the theoretical question we addressed:

Platforms, not stations, provided the ideal means for exploring the spatial and temporal dynamics

of deterrence. Platforms experience only one tenth of all LU crime, but they are small, stable,

and confined places with finite entry and exit points—characteristics that make them optimal for

measuring local deterrence effects. A “platform” is therefore defined as the physical space where

travelers embark on or disembark from the train, whereas a “nonplatform” is any place within the

station complex that is not the platform area. Likewise, each hot spot is defined as a combination of

“train line” (e.g., Piccadilly Line) times “direction” (e.g., westbound) times “station” (e.g., Russell

Square London Underground Station), thus, avoiding confusion about the boundaries of the hot spots

discussed in earlier studies (see Sorg, Wood, Groff, & Ratcliffe, 2014). Officers could not construct

their patrols outside arbitrary digital lines on the map. They were physically constrained by the walls

around them and the floor beneath them.

To target the hottest platforms, we rank-ordered all LU platforms according to the level of crime they

experienced in 12 months. We excluded platforms that experienced fewer than two crimes per year. This

threshold is much lower than in some previous hot-spots experiments, such as in that of Sherman and

Weisburd (1995), in which they used a threshold of 20 crimes per year. We have also excluded the six

major London stations that have been targeted and routinely patrolled by special “Hub Teams” (for

example, Victoria and Kings Cross Stations) after a series of coordinated suicide bomber attacks in

London on July 7, 2005. Platforms that were located too far away from other stations were excluded as

well (prior to random assignment) for operational reasons: If a hot spot was 45 minutes away (distance

time) from any other hot spots, then it would require too much time for a dedicated patrol unit to reach

it and maintain similar dosage levels during a given shift.

Finally, we defined and located hot spots using victim-generated “hard crimes” (see Reiss, 1985;

Sherman & Weisburd, 1995; Weisburd & Green, 1995), such as violence, “against-person” antisocial

behavior (i.e., excluding vandalism), sex crimes, robberies, or criminal damage. This list excluded

passenger theft (but only for selection purposes, not for outcome analysis; too many thefts city wide

had no identifiable location). Out of thousands of platforms all over Metropolitan London, through our

targeting analysis, we created a list of 115 eligible hot-spots platforms, with an mean of greater than

4.72 crimes per year (standard deviation [SD] = 4.8).

4.2 Random assignment with partial blinding
We allocated all 115 eligible platforms by Microsoft® ExcelTM using simple batch random assignment,

creating 57 treatment group and 58 control group hot-spots platforms. Sergeants and patrolling officers

were not given the full list of stations. Officers were informed of the location of their treatment hot



110 ARIEL ET AL.

spots, but they were blinded to the location of the control hot spots. The purpose of this partial blind-

ing was to decrease the chance of treatment contamination and spill-over violations. Nonetheless, we

inspected logs of foot patrols to monitor whether any were recorded for the 58 control group stations

(they were not).

4.3 Treatment delivery
Twenty uniformed officers were selected and trained (and replaced with trained officers as normal

turnover occurred) to work exclusively on foot patrols on the treatment group platforms for the pre-

scribed time periods and rotations. They patrolled on foot usually in teams of two uniformed people.

Based on the result of baseline temporal analyses, the “hot hours” and “hot days” for the sample plat-

forms were Wednesdays through Saturdays between 3 pm and 10 pm. These were the patrol hours and

days to which the officers were assigned.

Each two-person “patrol unit” was accountable for three to five hot spots depending on the traveling

distance between their assigned hot spots. Officers did not have discretion about where to conduct their

patrols (e.g., they were guided precisely where to go on the days and hours of the experiment); however,

they were asked to attend the hot spots in a colloquially “random” or unpredictable order to avoid the

predictability of visits. The 20 “ring-fenced” officers seconded to work exclusively on the experiment

were debriefed daily by the sergeants, who continuously reminded them to attend the hot spots four

times each treatment day for 15 minutes at a time. In these meetings, officers were also encouraged to

engage as much as possible with members of the public and not to stand idle on the platforms.

At any given moment during the experimental period, there were 20 officers who conducted these

patrols. Given these resource constraints and the distance between the hot spots, each hot spot was

therefore assigned four patrols per day, each patrol to last 15 minutes (Koper, 1995), as in several prior

hot-spots patrol experiments (Ariel et al., 2016; Telep et al., 2014). The assignments summed to 416

visits per hot spot over 6 months. Immediately after each patrol team’s 15-minute visit, officers boarded

a train (passengers wait less than 2 minutes on average between trains arriving on platforms in peak

times [TFL 2014]) and traveled to the next platform.

Officers were tasked to remain on the platform for each 15-minute patrol visit. The officers were

not tasked to problem-solve (Goldstein, 1979), conduct community policing in the classic sense (e.g.

Skogan & Hartnett, 1997), or target their efforts on any particular crime category.

Several steps to limit “spillover” police presence (as violations of the stable unit treatment value

assumption [SUTVA]) were taken in structuring the treatment: 1) Shifts always began at the BTP main

offices, requiring no police presence on control platforms. 2) No station had both a treatment and a

control platform. 3) Treatment officers moved between the treatment hot spots by traveling on the trains,

although they had to walk through a nearby station to get to and from a platform at the beginning and

end of each shift. 4) The officers were asked (without disclosure of the location of control platforms)

to follow pathways that bypassed the control platforms in their transit between treatment platforms, to

avoid spillover effects.

Notwithstanding these steps, it is possible that some spillover of police visibility onto control plat-

forms occurred. People may have seen police on a treatment platform that they entered by mistake;

after which, they went back into the station to board a different line and then exited at a control sta-

tion. Offenders traveling to a control station may have seen the treatment officers on a train heading

beyond the control platform to a treatment platform at the next station. Any number of such possible

interactions may have occurred.

The key point about such spillover is that it would bias the estimated treatment effect downward
because unintended police presence could have reduced crime in control as well as in experimental
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platforms (see Ariel, Sutherland, & Sherman, 2018). The experiment is not perfect, but arguably the

risk of overestimation of treatment group differences from controls has been restricted even if some

risk of underestimation remains.

Finally, based on previous similar field experiments (Drover, 2015; Sherman & Weisburd, 1995),

it was clear that strong leadership was essential. To generate unflagging motivation throughout the

entire research cycle, a member of the research team held monthly half-day meetings with all the offi-

cers, sergeants, and senior officers, in which the importance of treatment fidelity was communicated

strongly. These “motivational debriefs” provided monthly feedback to the patrol officers about partic-

ular noteworthy incidents, crime figures during the previous month, and treatment dosage data.

The total dosage in the 58 treatment hot spots was approximately 5,000 hours. No proactive patrols

were assigned or recorded in any of the control hot spots.

4.4 Measurement of the independent variable (Patrols)
As noted, three dedicated sergeants were assigned to the experiment to capture, manually, all data on

patrol “dosage.” Police officers called in via two-way radios every time they entered and again at every

exit from each treatment hot spot. The sergeants wrote down each radio call with time, place, and date

on paper forms for every officer and for every hot spot. This procedure produced 20,237 paper records

that were then coded by the research team into SPSSTM for further analyses.

In addition, the sergeants conducted at least one biweekly random “surprise” supervisory visit

to the hot spots, throughout the entire experimental period, to safeguard the treatment’s integrity.

Officers were not notified prior to these supervisory visits but were always approached by the sergeant

when contact was made. These visits were recorded and then communicated during the “motivational

debriefs.”

4.5 Measuring dependent variables
We used two outcome measures to assess the treatment effect: all calls for service to the police

(“999 calls”) and all reported crimes within the participating hot spots, during the 6 months of the

experiment (2011–2012) and for the 6 months in the (baseline) year prior to the experiment (2010–

2011). As noted, police-generated crimes—that is, incidents that are outputs, such as drug arrests and

stop-and-searches—were excluded from the outcome data (Ariel et al., 2016; Sherman & Weisburd,

1995).

Data were then broken into eight outcome variations, reflecting the “types” of deterrence to be tested

in the experiment: four “incident types” (that is, both calls for service and crimes) that occurred on the

platforms only—1) during the (intermittent) patrol hours on patrol days; 2) during patrol days but not

during (intermittent) patrol hours; 3) on nonpatrol days but during the same hours as patrol hours on

patrol days; and 4) on nonpatrol days at hours that were not normally patrol hours—and then four more

times for different temporal periods in the nonplatform areas of the train station. The following eight

outcomes account for varieties of deterrence effects discussed earlier:

1) Local direct deterrence on platforms during scheduled patrol hours

2) Local short-term residual deterrence outside of scheduled patrol hours on scheduled patrol days

3) Local long-term residual deterrence inside of scheduled patrol periods on nonpatrol days

4) Local long-term residual deterrence outside of scheduled patrol periods on nonpatrol days

5) Regional direct deterrence all over the station during scheduled patrol hours



112 ARIEL ET AL.

6) Regional short-term residual deterrence all over the station, outside of scheduled patrol hours on

scheduled patrol days

7) Regional long-term residual deterrence inside of scheduled patrol periods on nonpatrol days

8) Regional long-term residual deterrence outside of scheduled patrol periods on nonpatrol days

5 STATISTICAL ANALYSIS

We estimated the results of the experiment using generalized linear models as a way to assess the

differences between experimental and control hot spots in terms of two outcome measures: 1) citizen-

generated calls for service incidents and 2) citizen-reported crime incident counts. We ran each model

twice, each time with eight iterations for the eight possible outcome variations described earlier—once

for calls for service and then again for crime counts. Treatment assignment was used as the predictor

in each model, but we also include the preassignment value of the outcomes as a covariate to make

the analysis a before–after difference of differences (therefore the model is postoutcome = intercept

+ preoutcome + treatment assignment). Using the baseline measure of the dependent variable as a

covariate is a common method for “partialing out” the relationship between treatment assignment and

the outcome, net of baseline differences between locations (see Campbell & Stanley, 1963, p. 23; Senn,

1989; Vickers & Altman, 2001). The process also increases the statistical power of the test (Cohen,

2013) compared with using difference scores.

We note that there are different ways to model the treatment effect in pretest–posttest control

group designs (for further technical description on our design, see Shadish, Cook, & Campbell, 2002,

p. 261). The two most common models are 1) using the posttest as a dependent variable and the pretest

as a covariate (ANCOVA), or 2) using the difference between posttest and pretest as dependent vari-

able (change scores). The former is focused on raw change scores, whereas the latter is focused on

residual change scores. These different approaches may produce different and even conflicting results.

When we applied a change score analysis, some of our comparisons resulted in nonsignificant and

reversed differences between some comparisons between the study conditions. This was not the case

with ANCOVA, using the pretest scores as covariates, given variation around a specific day. From a

practical perspective, controls for the baseline control level were effectively estimated in the ANCOVA

model in comparing experimental period differences between treatment and control. More generally,

the authors of most textbooks have agreed that “analysis of covariance with pre-test scores as the covari-

ate are usually preferable to simple gain-score comparisons” (Campbell & Stanley, 1963, p. 23). Using

the pretest as a covariate is generally considered to be a statistically more powerful analysis than a dif-

ference or gain score analysis (Becker, 2000). More recently Van Breukelen (2013, p. 896) reviewed

influential methodological publications over the last 60 years and concluded that they overwhelmingly

recommended ANCOVA over change scores in analyzing randomized studies. We note that we did not

add an interaction term as the procedure reduces the statistical power of the test.1

Furthermore, we have used a Poisson regression model on the basis that the dependent variables were

structured as counts. We applied what are commonly referred to as Bayesian Information Criteria (BIC)

to allow for comparing different distribution models. We conducted 32 tests: twice for each of our 16

comparisons. In all tests the directionality of the comparisons was identical (i.e., a reduction in crime

relative to control conditions). The BIC values of the model fits indicated that the most appropriate

functional form of the variance was the Poisson regression models.

1Ideally, we would use a Solomon Four Group Design to investigate the effects in relation to the pretesting scores; however,

there were not enough units of analysis in the higher crime platform population for that design.
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Based on the results of the models, we then computed estimated marginal means, which provide

the mean responses for each factor, and adjusted for the covariate (i.e., baseline scores). These scores

more accurately depict the adjusted treatment effect as they take into account the outcome variable

at baseline values. We then converted the means into standardized mean differences (d) in Cohen’s d
values (Cohen, 1988) and presented the outcomes in forest plots using Comprehensive Meta-Analysis

2.0. The computations enabled us to compare the outcome variations even though the base rates of

the comparison are not equal. The forest plots are used solely for visualizing the different deterrence

effects, not to estimate an overall effect from comparisons with overlapping data. By the nature of

the data, the point estimates (i.e., eight for each outcome variable) are not independent of each other,

and therefore pooling the outcomes into a composite effect size would underestimate the degree of

heterogeneity (see Cheung & Chan, 2004). Although there are statistical corrections for dependent

effect sizes (see Gleser & Olkin, 2007, Hedges, Tipton, & Johnson, 2010), our interest lies primarily in

comparing between the multiple end points rather than in composing an overall weighted average effect

size. The interrelationship between the point estimates does not invalidate the comparisons between

the multiple measures (Scammacca, Roberts, & Stuebing, 2014, p. 330).

5.1 Statistical power
A total of 115 hot spots (57 treatment and 58 control) were used in this experiment, which created

a study with sufficient statistical power, defined by Cohen (1988) as the probability of detecting a

statistically significant outcome in an experiment, given the true difference between the treatment group

and the control group. By using Optimal Design (Spybrook et al., 2013), we estimated that this sample

size is large enough to detect small-to-medium effects, in which the significance level is .05. The

hypotheses are assumed to be nondirectional, and the estimated power is .8.

6 RESULTS

Tables 1 and 2 show the total number of incidents in the hot spots, broken into calls for service and

crime counts, before and during the experimental period. Over the experimental period, the stations

attracted 6,366 calls for service and 3,606 crimes. The 115 platforms accounted for 14 percent of the

calls (n = 898) and 11 percent of all victim-generated crimes (n = 402) recorded in the 115 stations.

In table 2, the balance at baseline yielded by random assignment is tested; none of the pretreat-

ment between-groups comparisons were significantly different for the eight comparisons. At both the

levels of local and residual deterrence, the units share the same distribution of calls for service and

crime prior to the allocation of treatment in the experimental group. When calculating the baseline

differences of the different combinations of space and time, we found that no statistically signifi-

cant differences between treatment and control conditions within the eight study comparisons were

detected.

During the experimental period, a total of 3,549 calls for service were identified for control group

platforms, and 2,817 calls for service in experimental hot spots, a relative difference of 21 percent

fewer total calls in the experimental platforms compared with a relative difference of 12 percent during

baseline (3,218 control compared with 2,834 in experimental), showing 10 percent relative reduction

in calls for service. The relative difference in recorded crimes was 14 percent lower in treatment than

in control in the experimental (1,668 vs. 1,938) and baseline period (2,079 vs. 2,392). The lack of total

difference in crimes, however, masks important subgroup differences.
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T A B L E 3 Generalized linear model for calls for service—parameter estimates and standard errors (SE)

(n Control Hot Spots = 58; n Treatment Hot Spots = 57)

Intercept B Covariate 𝜷

Variable (SE) (SE) (SE)
1. Platforms only, Patrol days, Patrol hours .410*** −.476*** .190***

(.099) (.132) (.016)

2. Platforms only, Patrol days, Nonpatrol hours .534*** −.429*** .170***

(.099) (.121) (.015)

3. Platforms only, Nonpatrol days, Patrol hours .073 −.360** .272***

(.120) (.162) (.035)

4. Platforms only, Nonpatrol days, Nonpatrol hours .317*** −.455*** .223***

(.104) (.148) (.023)

5. Nonplatform areas, Patrol days, Patrol hours 2.127*** −.298*** .033***

(.040) (.050) (.001)

6. Nonplatform areas, Patrol days, Nonpatrol hours 1.932*** −.196*** .043***

(.044) (.050) (.001)

7. Nonplatform areas, Nonpatrol days, Patrol hours 1.771*** −.249*** .044***

(.048) (.063) (.002)

8. Nonplatform areas, Nonpatrol days, Nonpatrol hours .317*** −.455*** .223***

(.104) (.104) (.023)

†p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed).

6.1 Fidelity of treatment delivery
We assigned 23,272 visits of 15 minutes each to the 57 treatment hot spots and 0 visits to the 58 control

hot spots, with 87 percent of patrol visits delivered. Officers were able to meet the duration target in

94 percent of delivered patrols for periods within ±5 minutes. Across all assignments, approximately

13 percent were not delivered as a result of station closures, line disruptions, or engineering works.

Thus, based on manual recording by the three sergeants, our dosage data indicate that the total number

of visits in the 6-month period was 20,237 or 355 visits per hot spot (3.4 visits per day). Across the

7-hour (420- minute) daily period of intermittent patrols, 3.4 visits × 15 minutes each = 51 minutes of

patrol per platform divided by 420 minutes = 12 percent of target time. This level of presence in the T

group was slightly lower than in Minneapolis (Sherman & Weisburd, 1995) but a little higher than in

Peterborough (8.9 percent) or Sacramento (10.0 percent). The level of presence in the C group (zero)

of the LU experiment was, of course, far lower than the 7.5 percent of C group time in Minneapolis,

3.8 percent in Peterborough, and 3.4 percent in Sacramento (see table 7).

6.2 Treatment effect estimates on calls for service
Tables 3 and 4 present the model estimates for calls for service in each of the eight outcomes and the

estimated marginal means. Eight models, one for each outcome, reflect the eight “types” of deterrence

tested in the experiment. Table 3 shows the parameter estimates and the standard errors for both the

treatment predictors and the covariate values. Table 4 then lists the estimated marginal means and their

associated standard errors of the means for calls for service data. We present both means and standard

errors for the experimental and control groups as well as the mean pairwise comparisons.
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T A B L E 4 Estimated marginal means of calls for service (n Control Hot Spots = 58; n Treatment Hot Spots = 57)

Variable
Treatment

(SE)
Control

(SE)

Pairwise
Comparisons

(SE)

Fixed Baseline
Value in Each

Model
1. Platforms only, Patrol days,

Patrol hours

1.407 2.264 .857*** 2.139

(.155) (.193) (.235)
2. Platforms only, Patrol days,

Nonpatrol hours

1.696 2.603 .908*** 2.488

(.169) (.210) (.254)
3. Platforms only, Nonpatrol days,

Patrol hours

1.044 1.495 .452** 1.209

(.157) (.157) (.201)
4. Platforms only, Nonpatrol days,

Nonpatrol hours

1.196 1.885 .689*** 1.426

(.146) (.176) (.220)
5. Nonplatform areas, Patrol days,

Patrol hours

9.982 13.443 3.461** 14.157

(.413) (.462) (.576)
6. Nonplatform areas, Patrol days,

Nonpatrol hours

10.185 12.392 2.207*** 13.722

(.419) (.441) (.563)
7. Nonplatform areas, Nonpatrol

days, Patrol hours

6.940 8.907 1.967*** 9.539

(.351) (.378) (.493)
8. Nonplatform areas, Nonpatrol

days, Nonpatrol hours

7.209 9.497 2.289*** 7.948

(.358) (.391) (.508)
†p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed).

Nearly all outcomes (table 3) are statistically significant at least at the .05 level and all in the hypoth-

esized direction. Looking at the estimated marginal means (table 4), the pairwise comparisons follow

the same patterns.

6.3 Treatment effect estimates on crimes
Tables 5 and 6 list the same type of results for crimes as reported for calls for service. Here, not

all treatment predictors are statistically significant at the .05 level; however, all are pointing in the

hypothesized direction. The estimated marginal means are equally mixed but with significant predictors

on crime found for direct local deterrence during patrol hours and during nonpatrol hours.

6.4 Residual and regional effects of patrol versus no-patrol
Next, we look at the standardized mean differences of T versus C effects (Cohen, 1988) to show the

distribution of direct and residual effects across the temporal and spatial dimensions of deterrence. The

forest plots presented here show these results for both call data and crime data (figures 2 and 3). Each

point estimate represents the magnitude of the pooled difference between treatment and control hot

spots for each of the eight definitions of the spatial and temporal nature of deterrent threat. Anything

to the right of the vertical null line (.00) implies that the difference favors the treatment group (that is,

fewer events) and to the left of the line indicates fewer incidents in the control group. The further away

the point estimate is from the null line, the larger the magnitude of the difference between treatment

and control hot spots. Horizontal lines that cross the point estimates represent the confidence inter-

vals. When the horizontal lines cross through the vertical null line, that indicates that the effect is not

statistically significant (.05).
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T A B L E 5 Generalized linear model for crimes—parameter estimates and standard errors (SE) (n Control Hot

Spots = 58; n Treatment Hot Spots = 57)

Intercept B Covariate 𝜷

Variable (SE) (SE) (SE)
1. Platforms only, Patrol days, Patrol hours −.012 −.349† .199**

(.125) (.181) (.031)

2. Platforms only, Patrol days, Nonpatrol hours −.282* −.437* .230**

(.141) (.190) (.030)

3. Platforms only, Nonpatrol days, Patrol hours −.546** −.199 .208**

(.162) (.236) (.035)

4. Platforms only, Nonpatrol days, Nonpatrol hours −.561** −.172 .123†

(.177) (.244) (.063)

5. Nonplatform areas, Patrol days, Patrol hours 1.567*** −.139* .041***

(.052) (.061) (.001)

6. Nonplatform areas, Patrol days, Nonpatrol hours 1.481** −.104 .044***

(.057) (.067) (.002)

7. Nonplatform areas, Nonpatrol days, Patrol hours 1.090*** −.413*** .071***

(.067) (.088) (.003)

8. Nonplatform areas, Nonpatrol days, Nonpatrol hours 1.004*** −.062 .086***

(.074) (.083) (.005)

†p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed).

T A B L E 6 Estimated marginal means of crimes (n Control Hot Spots = 58; n Treatment Hot Spots = 57)

Variable
Treatment

(SE)
Control

(SE)

Pairwise
Comparisons

(SE)

Fixed Baseline
Value in Each

Model
1. Platforms only, Patrol days,

Patrol hours

.907 1.286 .379† 1.322

(.128) (.150) (.195)
2. Platforms only, Patrol days,

Nonpatrol hours

.710 1.099 .389* 1.635

(.113) (.134) (.166)
3. Platforms only, Nonpatrol days,

Patrol hours

.550 .671 .121 .704

(.099) (.106) (.143)
4. Platforms only, Nonpatrol days,

Nonpatrol hours

.530 .630 .099 .800

(.097) (.103) (.141)
5. Nonplatform areas, Patrol days,

Patrol hours

6.709 7.706 .997* 11.670

(.334) (.347) (.434)
6. Nonplatform areas, Patrol days,

Nonpatrol hours

6.240 6.921 .681 10.374

(.329) (.331) (.434)
7. Nonplatform areas, Nonpatrol

days, Patrol hours

3.218 4.867 1.648*** 6.896

(.239) (.281) (.346)
8. Nonplatform areas, Nonpatrol

days, Nonpatrol hours

4.106 4.369 .263 5.478

(.266) (.265) (.351)
†p < .10; *p < .05; **p < .01; ***p < .001 (two-tailed).



ARIEL ET AL. 119

F
IG

U
R

E
2

E
ff

ec
t

o
f

p
at

ro
l

o
n

ca
ll

s
fo

r
se

rv
ic

e
(C

F
S

)



120 ARIEL ET AL.

F
IG

U
R

E
3

E
ff

ec
t

o
f

p
at

ro
l

o
n

cr
im

es



ARIEL ET AL. 121

Observing the displays of effect sizes of patrols on calls for service during the “direct local deter-

rence” 7 hours and 4 days of intermittent patrols (comprising the targeted overall 12 percent police

presence time in the T group), the estimated effect on all calls for service (d = –.680; p ≤ .01) is the

highest ever published for a randomized trial in hot-spots patrol policing. It is more than three times

higher than the Peterborough effect on calls (d = –.211). Residual deterrent effects of patrols on calls

for service about incidents on those platforms on patrol days outside of regular patrol hours are almost

as high (d = –.667, p ≤ .001). Substantial (medium) and significant effect sizes are also found on the

T group platforms on the 3 days weekly when no patrols are delivered, both during usual patrol hours

(d = –.419) and outside the usual hours (d = –.584).

The results for the regional effects of calls for service in station areas not including the T group

platforms are even larger. Far from showing displacement of crime off of the platforms and into other

areas of the station, just the opposite occurs. The presence of patrols on platforms may discourage

would-be offenders from even entering the nonplatform station areas, where we have seen that most

crimes are reported to have occurred.

Temporally, the biggest effect is found regionally during patrol hours and days (d= 1.121, 95 percent

confidence interval [CI] = .727–1.514), followed by days and hours that officers were not conducting

patrols (d = .840, 95 percent CI = .459–.1222). The smallest effect of hot-spots patrols in the LU was

detected locally during the same patrol hours but on nonpatrol days; even that effect size is larger than

in any previously reported test (d = .419, 95 percent CI = .050–.789).

Figure 3 displays a similar but more complex pattern. The direct deterrent effect of patrols on

reported crimes during patrol hours is also larger than previously reported effects (d = –.362, p = .054).

The residual benefit of that patrol in the other 17 hours a day on the same platform is even larger than

the direct effect at d = –.437 (p = .020). Residual effects on those platforms on no-patrol days are not

as large as on patrol days, and nonsignificant, but they are in the same order of magnitude as direct
deterrent effects reported in other experiments. Regional effects of patrol on crime in the station but

off the platforms on the 4 regular patrol days are almost equal to the direct deterrent effects of patrol

in those hours on crime on the platforms. Regional, off-platform effects on the 3 no-patrol days offer

the highest effect size on crime (d = –.888, p ≤ .001) for the same hours as usual patrol, a “phantom”

effect that is stronger than the effect when police are really there.

7 DISCUSSION

These findings show support for our hypothesis that a no-patrol control group would yield larger effect

sizes than those found in previous experiments restricted by nontrivial levels of patrol in their control

groups. Table 7 provides a summary of the key features of the four experiments, including this one, with

the relevant measures of direct deterrence of events causing citizen-generated calls for service during

hours of intermittent patrols. The direct deterrent effect sizes in the LU experiment are three times

higher on calls for service than reported in any previous randomized trial from increases in patrol time

as the independent variable. It is also the only experiment to deploy a no-treatment control group, in a

highly homogeneous population (not a sample) of 100 percent of the most crime-ridden Underground

platforms in central London.

These findings reveal two key points. One is that all future hot-spots policing studies should be aimed

at achieving both better measurement and more realistic counterfactuals to address the choices police

policy makers and police officers face, whether hot spot by hot spot or across systems of hot-spots

policing (see, e.g., Sherman et al., 2014).
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T A B L E 7 Effect size and dosage measures across four hot spots experiments

Experiment Effect Size (d) n

T = Percent
Time

Patrolled,
Treatment

(How
Measured)

C = Percent
Time

Patrolled,
Control

(How
Measured) T:C Ratio

Minneapolis

(Sherman &

Weisburd, 1995)

–.06 n Control Hot

Spots = 55; n
Treatment Hot

Spots = 55

14.9%

(Observed)

7.5%

(Observed)

1.99:1

Sacramento

(Mitchell, 2017)

–.10 21 matched pairs 10.3%

(GPS)

3.4%

(GPS)

3:1

Peterborough (U.K.)

(Ariel et al., 2016)

–.21 n Control Hot

Spots = 38; n
Treatment Hot

Spots = 34

8.9%

(GPS)

3.8%

(GPS)

2.3:1

London

Underground

–.69 n Control Hot

Spots = 58; n
Treatment Hot

Spots = 57

12%

(Admin

Records)

0

(Admin

Records)

N/A

The second point is that the deterrent effects of police patrol may be far greater when police are not
present than when they are; we call this second point the “London Underground Paradox,” although it

was first observed by Koper (1995) in his secondary analysis of the Minneapolis experiment.

The first point is responsive in part to the concerns raised by Nagin and Sampson (2019). Although

policing scholars may have failed to think as systemically as we might have done, we have at least stayed

within the range of feasibility. Rather than grappling with the larger questions of how much deterrence

can be obtained per police officer under different systemic counterfactuals, we have proceeded to test

what we could persuade patrol officers to deliver (or not) in two different groups of hot spots. There

need be no regret in accepting that conclusion. Had we tried otherwise, there would likely be no body

of randomized trial evidence that we could even discuss. Every journey begins with the first step.

Randomizing patrol time by location was a crucial first step for this field of science. The next steps are

measuring that time precisely and theorizing about all the results combined. Those steps will increase

certainty of results by clarifying the nature of counterfactual worlds in two groups of hot spots. Until

that is done properly, it seems premature to design a “system” of patrol dosage across hot spots of

different sizes, crime levels, physical design, and routine activities—let alone what police could do in

different hot spots, such as problem-solving versus patrol. System design cannot be done well until we

know much more about the effects of heterogeneity in hot-spots policing dosage and practices across

experiments, especially with respect to the levels of dosage in the control group hot spots.

Three decades on from the completion of the first hot-spots policing experiment in 1989 (Sher-

man & Weisburd, 1995), it is now time to ask how we can do better to generate more deterrence

with less intrusive policing. The Nagin and Sampson (2019) commentary usefully suggested that we

should emphasize the contrasts between counterfactuals, not (just) research designs per se. Finding a

counterfactual world to test causality of crime deterrence within a city is certainly difficult, as they pre-

sumed, but it is not impossible. The example of isolated platforms never patrolled before is rare but not

unique. It indicates ways we might think differently about designing other experiments. For example,
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many police agencies have no idea where their hot spots are (Sutherland & Mueller-Johnson, 2019) and

even assign directed patrols to locations leaders believe to be “hot” that are not “hot” according to the

results of a data analysis (MacBeth & Ariel, 2019; see also Ariel, Bland, & Sutherland, 2017; Norton,

Ariel, Weinborn, & O’ Dwyer, 2018; Wain, Ariel, & Tankebe, 2017; Weinborn, Ariel, Sherman, & O’

Dwyer, 2017). In such agencies, experiments using GPS monitors could be designed to gather baseline

measures of where patrol has been delivered and where it has not. A crossover design could be used to

assign much less (or zero) patrol to some currently patrolled locations and much more to hot locations

that receive very little patrol.

This point converges with Nagin and Sampson (2019) in emphasizing that a research design is not

the same thing as the logic of causality. Our point is that by turning the current world upside down

in some hot spots but not in others, a clear counterfactual can indeed be created for generalizing con-

clusions from experiments to other specific hot spots at that level of analysis–even without estimating

the benefits of how each world might work at the level of a “system equilibrium” (Nagin & Sampson,

2019). Should a police agency ever fully implement “extra” policing at all hot spots in a jurisdiction—

and we are unaware of any fully documented examples—we suggest that the benefits of such a system

will depend heavily on what the counterfactual “business as usual” was before the system changed, and

even on how long such a system could last. Recent experience in the United Kingdom, for example,

indicates that targeted patrol can stop altogether when staffing is cut and demand for response polic-

ing increases. System impact questions may thus remain less important, at least in the eyes of policy

makers, than questions of short-term effects at specific hot spots.

Our second point is that in the process of thinking broadly about counterfactuals—including no-

patrol control groups—we may also begin to measure things we had not previously measured. Most

important would be the temporal and spatial components of deterrence. The findings of the LU exper-

iment indicate that most crime prevention by police may occur at places and times when police are

not even present—but may have been present recently. That is a major departure from the “security

guard” view of police effects that some have drawn from tests like the 24-hour guards at synagogues

in Buenos Aires after a terrorist attack in 1994 (DiTella & Schargrodsky, 2004). The 9-month dura-

tion of those postings yielded 75 percent reductions in crimes such as car theft but only within two

blocks of the stationary presence of the police. Had the officers been able to roam within a four-block

square area, however, the effects may have been substantially multiplied. Zones of patrol that embrace

the now-demonstrated “regional effect” of patrols in London Underground stations could be tested in

a wide variety of settings. How much presence, how often, and with how much intermittency would

all be highly testable within cities. That level of granularity would not, however, be feasible for RCTs

across samples of cities.

What this level of granularity has revealed is the “London Underground Paradox.” By sending offi-

cers to patrol each platform for∼12 percent of a 7-hour day, 4 days a week, the result is a large reduction

in crime and emergency calls for the time when police are not there: when they are not on the plat-

forms, and when they are not in the mass transit station. The LU paradox is that police prevented more
crime when they were absent than when they were present, face to face (figure 4). Only 6 percent of

the crime reduction effect was estimated to have occurred during hours in which actually (and inter-

mittently) patrolled; the other 94 percent of the reduction was computed by comparing crime in times

in which police did no patrols. This paradox could be highly relevant for debates about cutting police

funding, if nothing else. It may also have implications for police priorities for patrol versus other tasks,

given limited resources, such as the benefit from investigating past crimes compared with the benefit

of preventing future crimes.

The results of the LU experiment do not indicate that criminology has oversold the deterrent benefits

of hot-spots policing. Rather, criminology may have underestimated the residual and regional effects
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6%

94%

Pla�orms during the 7-hour period of patrols delivered on the four days per week
they were assigned (N of Crimes Prevented rela�ve to control loca�ons = 42)

All other �mes and places with no patrols (N Crimes Prevented = 690)

F I G U R E 4 Treatment versus control postrandom assignment: Crimes prevented, relative to control sites, during

hot-spots patrols and all other times and places measured in and around the hot spots [Color figure can be viewed at

wileyonlinelibrary.com]

of such policing. To be sure, criminologists may have paid too little attention to both the small effect

sizes of previous tests and conditions of dosage in the counterfactuals. The time may have now come

when we should discourage any further research in which the counterfactuals are not fully described.

The idea of “black box” experiments has had its uses. That time, however, is past. We need to know

exactly what is being compared to make any sense out of the results, in either theoretical or policy

terms.

This point applies far beyond hot-spots policing experiments. We cannot accept random assignment

of body-worn cameras, for example, to individual officers, knowing that both T and C will be present at

the same situations (Yokum, Ravishankar, & Coppock, 2019). We can only support police investing in

research focused on answering research questions that are based on clearly established counterfactuals,

no matter what the subject of the test may be.

8 LIMITATIONS

The limitations of this experiment are important to consider. First, we were limited in our ability to

collect accurate measures of treatment delivery in all experimental and control hot spots. The “pen-

and-paper” approach we used is archaic, let alone unsustainable. More important, it may have under-

estimated police presence on the control group platforms. We doubt that the presence would have been

substantial or consistent over 6 months. Nonetheless, much of the validity of our conclusions depends

on the control platforms not having any directed patrols. Had a passive, unobtrusive measure like GPS

signals been available, the experiment and its conclusions would be stronger. Checking CCTV footage

on platforms may provide an alternative measure for future studies given enough funding and time (see

discussion in Ariel, 2019).

A further limitation is that the volume of crime was (fortunately) so low. Although our emphasis

remains on calls for service as the main outcome of the experiment (table 7), the low frequency of crime
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in the London Underground limited the additional analyses that are possible with the data. Therefore,

we had inadequate statistical power to examine moderator effects. Had the volume of crime been closer

to the Minneapolis experiment at 20 or so per week, there may have been scope for learning whether

effect sizes are bigger where crime is more frequent—or the converse. Replications of this study in

higher crime cities may benefit from the added power that challenge provides. On the other hand, a

zero-patrol baseline is less likely to occur naturally when crime frequency is higher.

Similarly, the residual and regional effects may also have been detectable because the baseline of

patrol was so low. Although similar effects may occur with higher levels of baseline patrol, more

powerful research designs may be necessary to detect them under those conditions. It would be unwise

to generalize from these findings to other low-baseline patrol settings, especially if many days may

pass between the presence of a proactive police patrol for even one 15-minute period.

Taking these points more generally, we acknowledge that the external validity of our results may be

limited to enclosed underground public spaces on mass transit systems. Additional or unique features

on such systems are not found above the ground. Even though we are testing a basic police strategy used

by nearly all territorial police agencies—visible police patrols (see more generally in Wain & Ariel,

2014)—there are distinct features in the LU environment. For example, the LU does not experience the

same volume nor the types of crime that areas above the ground are exposed to (Ariel, 2011). Similarly,

the extent of third-party surveillance (see, e.g., Ariel et al., 2017; Ariel et al., 2019), a transient and

large population flow (Currie, Jones, & Woolley, 2014), and other aspects of the LU are different from

those an officer might deal with above ground. For example, a common basic patrol unit in many places

in England and Wales is delivered on foot (see Ariel et al., 2016), but policing on the ground is often

conducted in vehicles (Wain & Ariel 2014; see also Simpson, 2019). More reverse-knockout hot-spots

experiments are needed.

Finally, we could have drawn great benefit from an analysis of the kinds of offenders who commit

crimes on LU platforms and elsewhere in the stations—enhanced if possible by interviews of such

people. Professional pickpockets and distraction thieves may be particularly sensitive to changes in

police presence. If a large portion of the criminality was a result of them, and they were the main

audience for the deterrent effects, then the results may not be generalizable to mass transit settings with

less professional kinds of offenders. A better study design would have included interviewing hundreds

of offenders at point of arrest to ask them what they thought, or had been told, about the different levels

across stations or platforms in the risks of getting caught.

9 CONCLUSION

In what seems to be the first reverse-knockout, no-treatment control group experiment in hot-spots

policing, we tested both direct and residual local and regional deterrence effects of BTP police patrols

in the London Underground. The findings indicate that platform patrols cause large reductions in both

crime- and citizen-generated calls for service in these areas that had never been proactively patrolled

by uniformed police. These effects were so long lasting and so spatially diffusive that the actual patrol

time had geometric effects on crime. We call these effects the London Underground Paradox: The total

crime prevention benefit of police patrols is greater when they are absent than when they are present.

The results of our analyses in which the effects during treatment delivery times from no-treatment
periods were separated indicate a more complex nature of deterrence theory than that previously

assumed. Local deterrence effects matter, but they may be only a means to a greater end: optimiz-

ing the residual deterrent effect of police patrol (Sherman, 1990) where crime is most likely to occur,

which occurs by definition when police are not there. The more that uniformed police have been there,
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and the more recently, the less likely the future crimes may be to occur. For every hour police spend

in cars driving to answer nonemergency calls, we can now see that investment in reactive policing as a

choice, not a duty. If the question is whether proactive patrols do the most good where the most harm

is likely to occur, communities might finally move to reallocate preventive patrols to locations where

we have documented their optimal effects, as long recommended by the National Research Council

(Skogan & Frydl, 2004).
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