

Potential Regions for Wind Energy

Prepared by: Ali Dawi and Jaafar Serhan

OUTLINE 00

This study aims to analyze the wind speed in Lebanon based on a data collected from **WIND ATLAS** and selects the suitable lands for installing wind turbines according to geographic, climatic and spatial conditions.

Introduction 02

Different Distribution of Wind Speed in Lebanon

After our meeting with Mr. Guy (Wind Specialist) and Mr. Joseph El Hachem (Head of Engineering in PD&P), We derived out the criterions in order to select the potential land for installing and distributing wind turbines:

Elevation must not exceed 2500 m

01

OZ

03

Land must be Natural Land (Scrub land, Bare Rock, Bare Soil, Grass Land...)

Slope must not exceed 8.5 degree

05

Wind Turbine must be located at minimum distance 400 m from urban settlement.

Minimum Clear Distance = 3 x (diameter of blade) between each wind turbine

Wind Speed must be minimum 7 m/s.

We suggested to use E-160 EP5 wind turbine manufactured by ENERCON and will be available in 2020.

Rated power	4,600 kW
Rotor diameter	160 m
Hub height in meter	120 / 143 / 166
Wind class (IEC)	IEC IIIA
WEC concept	Gearless, variable speed, full power converter

Methodology 03

Unlike phase 01 which performed by modeling in GIS, Phase 02 was done manually.

The result obtained from phase 01 is 12583 point are not distributed according to our condition (3 x diameter between two points).

So the location and distribution of wind turbines is related to two conditions :

Must be located on the resultant points.

01

Distance between 02 Distance ber each turbine $= 3 \times 160 = 480 \text{ m}$

Resultant of the methodology

Conclusion 05

Performance for Wind Turbines

Energy and Power Production

According to the performance evaluation, we can determine that 86 Wind Turbine have the highest performance (between 8 and 10).

