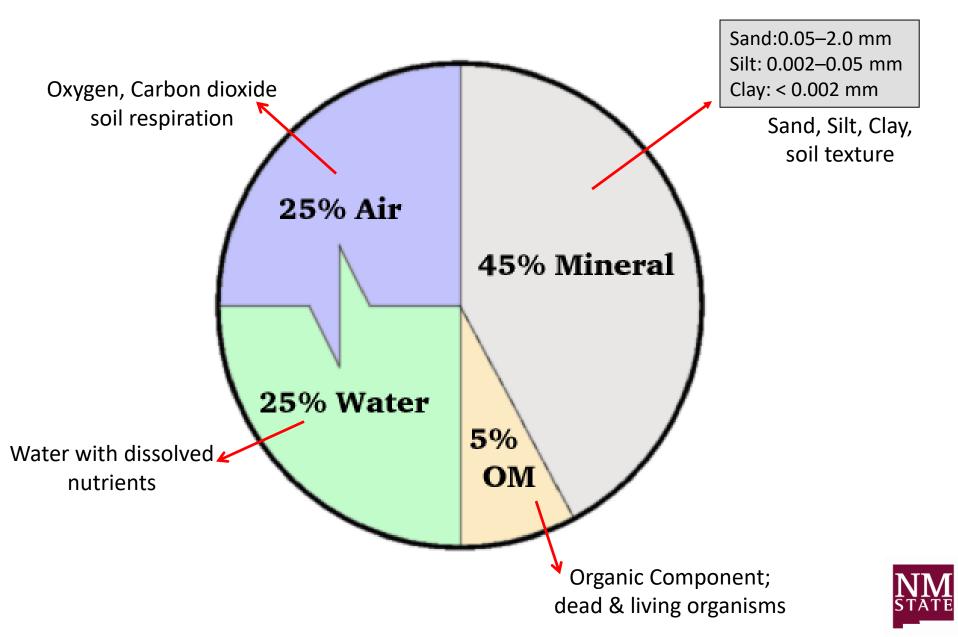
Santa Fe County Master Gardener Training <u>Part 1: Soil Basics</u> Santa Fe, NM February 18th & 19th, 2019

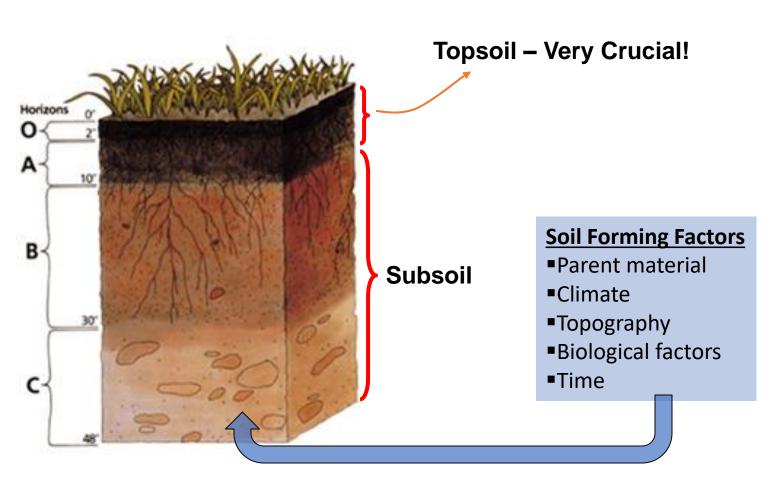
John Idowu Extension Agronomist NMSU, Las Cruces, NM Email: jidowu@nmsu.edu Phone: 575-646-2571

What is a Soil?

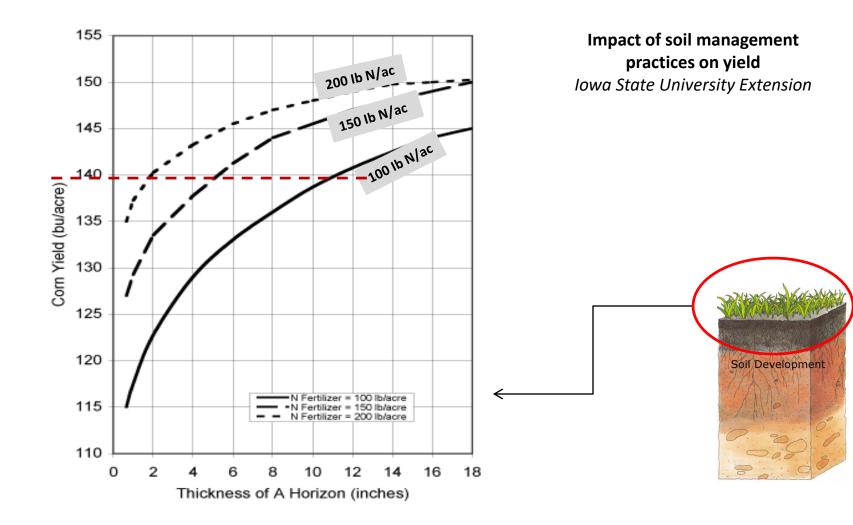
- Soil is many things to many people. It is the underlying foundation of our houses, factories, and motorways as well as a filter for human, industrial and animal wastes. (NZ Institute for Crop & Food Research)
- The unconsolidated mineral or organic material on the immediate surface of the Earth that serves as a natural medium for the growth of land plants. (SSSA)
- Soil, often called the Skin of the Earth, is a mixture of decaying organic matter (humus), minerals, liquids, and many countless living organism https://www.maximumyield.com



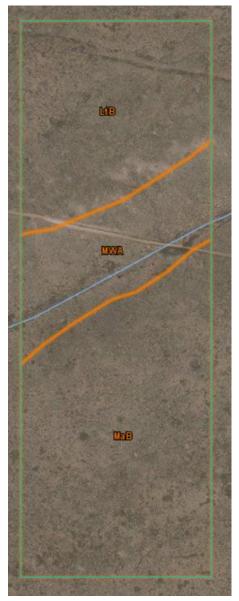
Ecosystem functions of Soil


- 1. Soils serve as medium for plant growth.
- 2. Soils modify the atmosphere by emitting and absorbing gases.
- 3. Soils serve as habitat for organisms that live in the soil.
- 4. Soils absorb, hold, release, alter, and purify most of the water in terrestrial systems
- 5. Soils recycle nutrients; waste and dead organic materials are decomposed and the nutrients released are made available in the soil
- Soils serve as engineering media for construction of foundations, roadbeds, dams and buildings

Components of a soil


Formation of soil

Different soil types will form depending on soil forming factors operating at a given location



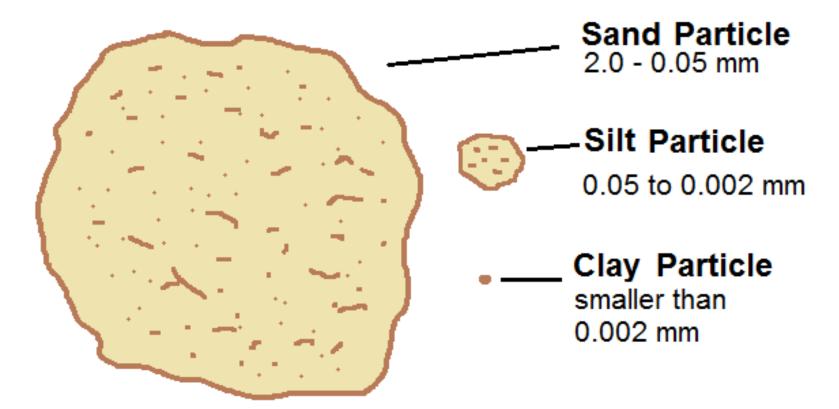
Yield and Topsoil Thickness

Soil Map

Sandoval County (Sample)

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
LtB	Latene sandy loam, 1 to 5 percent slopes	10.2	31.7%
MaB	Madurez loamy fine sand, 1 to 5 percent slopes	16.1	49.8%
MWA	Madurez-Wink associatin, gently sloping	5.9	18.4%
Totals for Area of Interest		32.3	100.0%

Google: NRCS Web Soil Survey


https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

Soil topics to be covered

- Soil Texture
- Soil Water Holding Capacity
- Soil Density
- Soil Structure
- Soil Chemical Properties (nutrients, salinity, pH)
- Soil Biology

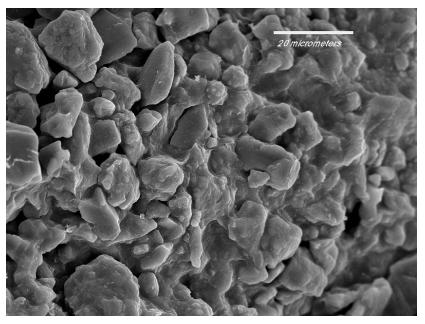
Soil Texture = %Sand, Silt & Clay in a soil

http://www.livingoffgridguide.com/gardening

- /how-to-create-amazing-garden-soil/
 - Critical for understanding soil behavior and management
 - Soil texture is not subject to change in the field

Sand

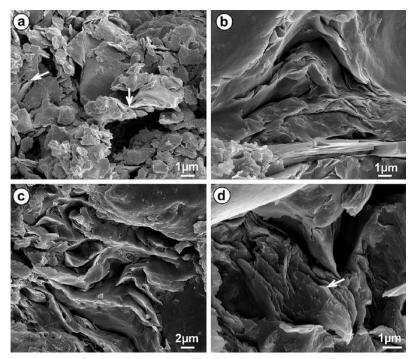
- Low specific surface area
- Sand has less nutrients for plants than smaller particles
- Voids between sand particles promote free drainage and entry of air
- Holds little water and prone to drought



http://www.microlabgallery.com/gallery-Sand.aspx

Silt

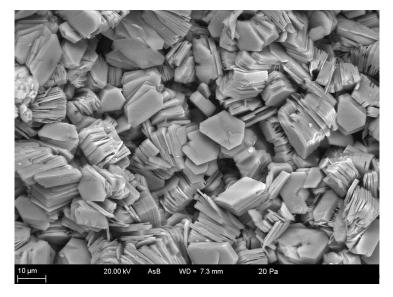
- < 0.05 mm to > 0.002 mm
- Not visible without microscope
- Quartz often dominant mineral in silt since other minerals have weathered away.



http://www.scientistcindy.com/soils-andgroundwater.html

Clay

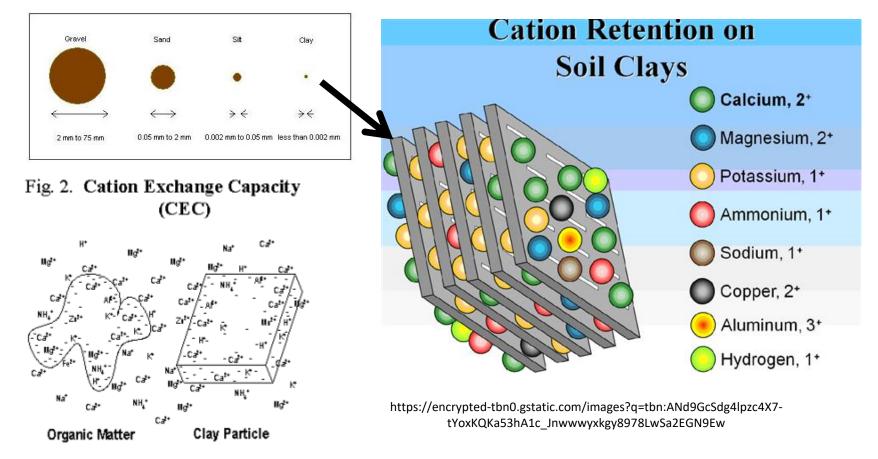
- < 0.002 mm
- Flat plates or tiny flakes
- Small clay particles are colloids
 - If suspended in water will not settle
- Large surface area
 - spoonful = football field



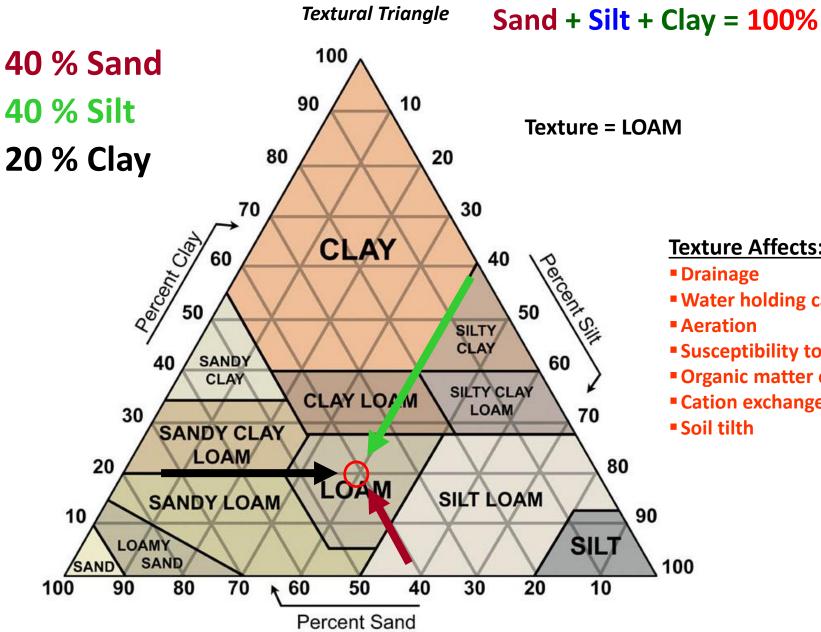
Janssen, C., et al. "Clay fabrics in SAFOD core samples." Journal of Structural Geology 43 (2012): 118-127.

Clay - Properties

- Pores spaces are very small and convoluted
 - Movement of water and air very slow
- Water holding capacity
 - Tremendous capacity to adsorb water- not all available for plants.
- Chemical adsorption is large



https://blogs.egu.eu/divisions/sss/files/2014/09/4f97b8eeed7f9.jpg

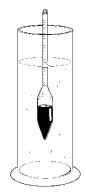


Clay Particles and Organic Matter

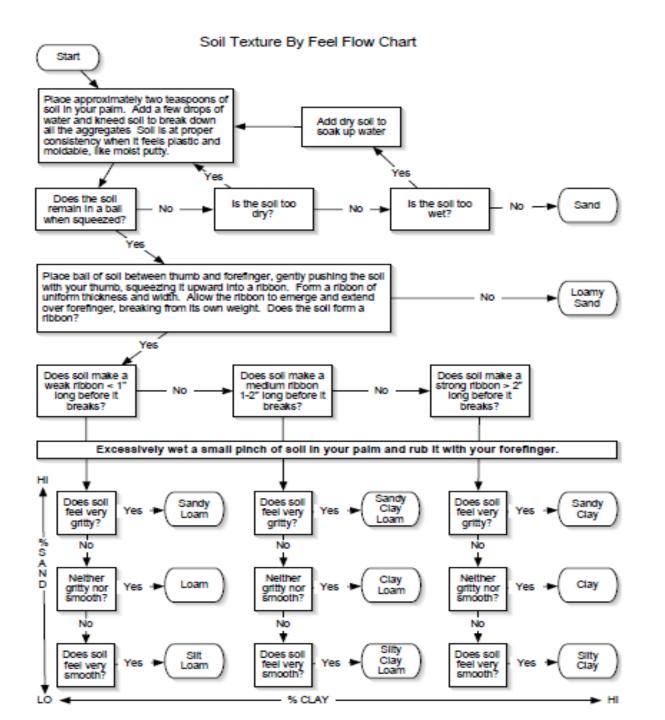
Clay Particles/Organic Matter are very reactive They have negative charges

Soil Texture

Texture Affects:

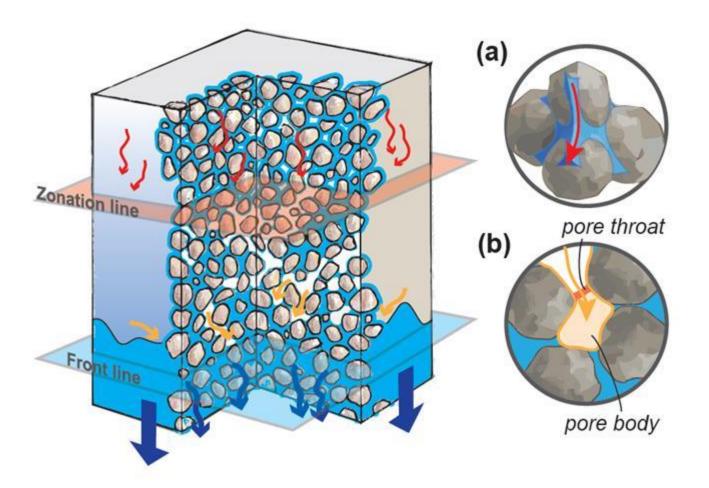

- Drainage
- Water holding capacity
- Aeration
- Susceptibility to erosion
- Organic matter content
- Cation exchange capacity

Soil tilth



How to Measure the Soil Texture

- Standard Laboratory Analysis
 - Gives % sand, %silt and %clay
 - Gives precise textural class
- Texture by feel
 - You only know the approximate textural class
 - A flow chart available on <u>http://soils.usda.gov/education/resources/lessons/tere/</u>
 - Google "NRCS Soil Texture by feel"



Soil Water

Soil acts as a sponge to take up and retain water

- Pore space in soil is the conduit that allows water to infiltrate and percolate
- Pores also serves as the storage compartment for water

http://www.step6.ites.ethz.ch/researches/index/42

Soil Water Availability – Saturated Soil

- Saturation or saturated conditions all soil pores are filled with water
 - Implication there will be no air in the soil
 - Very easy to recognize in the field
 - This normally happens just after rainfall or irrigation event
 - The soil is weakest at the point of saturation

Saturated Soil

Soil Water Availability – Field Capacity

Field Capacity (FC) – measure of the greatest amount of water a soil can store under conditions of complete wetting followed by free drainage

- Full saturation minus water lost to drainage
- Sandy soils reach field capacity about two days after a major rainfall or irrigation event
- Heavier soils, you may need to wait up to four days before the soil reaches field capacity

Soil Water Availability – Wilting Point

Permanent Wilting Point (PWP) – water held at PWP held so tight that plants not able to extract it fast enough to meet their needs

- Water is bound tightly around soil particles especially the smaller particles
- In conditions of true PWP a plant will wilt and won't recover, unless additional water is added

Soil Water Availability – Available Water Capacity

 Available Water Capacity (AWC) – the difference between the water held at field capacity and the permanent wilting point

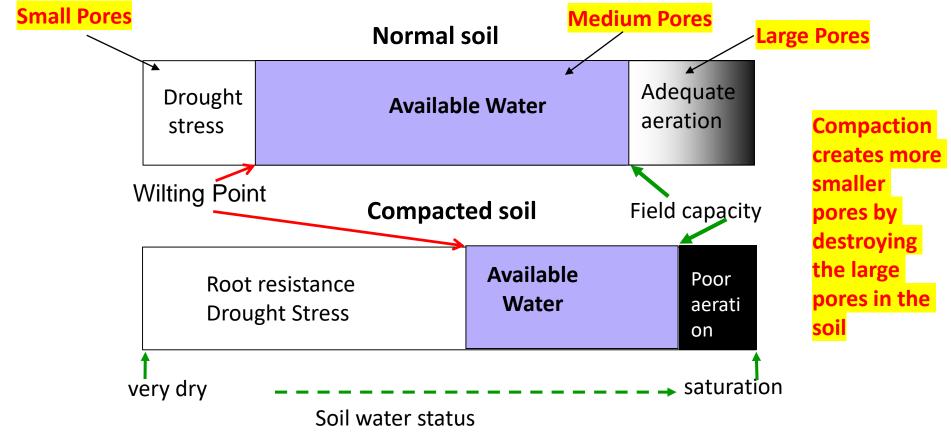
AWC = FC - PWP

• AWC is soil dependent – function of (Texture, Structure, Organic Matter, Porosity)

WATER HOLDING CAPACITY DEMO

Availability of water in relation to soil texture

Available Water Capacity by Soil Texture		
Textural Class	Available Water Capacity (Inches/Foot of Depth)	
Coarse sand	0.25-0.75	
Fine sand	0.75-1.00	
Loamy sand	1.10-1.20	
Sandy Ioam	1.25-1.40	
Fine sandy loam	1.50-2.00	
Silt Ioam	2.00-2.50	
Silty clay loam	1.80-2.00	
Silty clay	1.50-1.70	
Clay	1.20-1.50	



Soil Density

- When the soil is too dense we call it "compaction"
- Soil compaction can affect water availability for crops
- Water is held more tightly in the soil when compaction occurs
- Roots will not grow well into the soil
- Water will not move very well into the soil

Compaction Changes Porosity and Affects Water Availability

The optimum water range for crop growth for two different soils.

Compaction Assessment

PENETROMETER

can be used to identify compaction layer in the soil

Quick and Cheap Assessment

DIG with a shovel

Solving Compaction Problem

Very difficult task

Method 1

Soil loosening with tillage equipment

- Require a lot of energy to achieve
- Does not bring the soil totally to pre-compacted state

Method 2

- Use deep rooted crops to loosen the compact layer, examples: alfalfa, forage radish,
- Takes more time to become effective

Best is to combine both methods

Tillage Radish: Bio-drilling

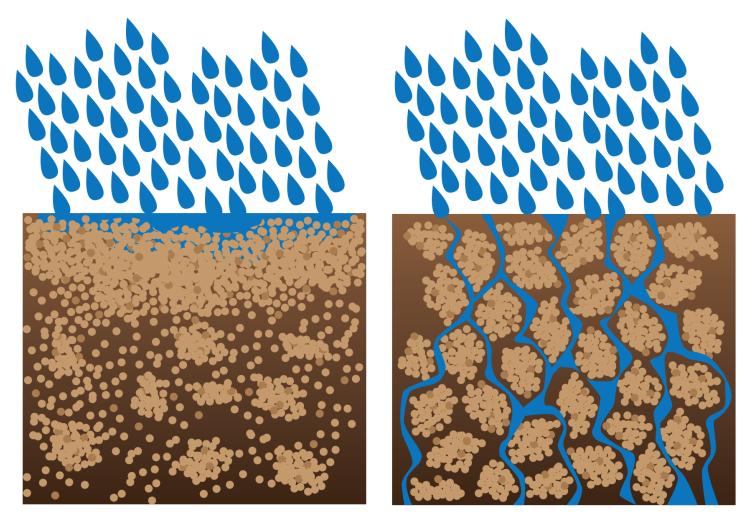
Soil Structure

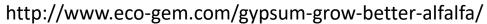
• The arrangement of soil particles into aggregates of

different shapes and size

- How is the distribution of aggregates?
- How stable are the aggregates?
- How is the configuration of the pores?

Factors Affecting Aggregate Stability


- Kind of clay
- Chemical elements associated with the clay
- Nature of the products of decomposition or organic matter
- Nature of the microbial population



Stahility of Curfaca Agaragatas

Dispersed soil

Flocculated soil

Surface compaction (surface crusting)

Due to the breakdown, rearrangement and drying out of surface aggregates

Prevention Strategies

- Use mulches to prevent the soil surface from drying out rapidly
- Add more Organic Matter to the soil

Soil Chemical Issues

- Nutrient Sufficiency
- Soil Salinity Levels
- Sodium Problem

Related to Irrigated Conditions

Essential Elements for Growth

Nutrients	NUTRIENTS FROM SOIL, LIME AND COMMERCIAL FERTILIZERS								
from air & water	primary nutrients	secondary nutrients	MICRONUTRIENTS						
carbon (C)	nitrogen (N)	calcium (Ca)	boron (B)						
hydrogen (H)	phosphorus (P)	magnesium (Mg)	chlorine (Cl)						
oxygen (O)	potassium (K)	sulfur (S)	copper (Cu)						
			iron (Fe)						
			manganese (Mn)						
			molybdenum (Mo)						

A Total of 16 Elements

zinc (Zn)

Nutrient Sufficiency

- Very basic and important for crop growth & development
- Nutrient requirement is crop dependent
- Knowing the nutrient status of the soil before crop establishment will help in calculating how much to add
- Soil testing and manure testing will help determine how much to add

Soil salinity Levels

- Soil salinity can affect the growth and development of crops
- Water becomes limiting due to high osmotic forces in the soil (salts holding tightly to water)
- High salinity can lead to productivity decline and eventual death of crops
- To assess salinity, you need to do soil testing

Salinity Measurement

- Soil test result will report the **Electrical Conductivity** of the soil
- •Salinity tolerance vary with crops

Solving Salinity Problem

- •Leaching of salts with extra water may be needed to correct salt problems
- •Some soil testing laboratory will give you the leaching requirement (amount of extra water needed to leach out the salts)
- Planting salt tolerant species is another option to overcome salinity

	Y				
Vegetable Crops	100%	90%	75%	50%	Maximum ECe
Bean	1.0	1.5	2.3	3.6	7
Beet	4.0	5.1	6.8	9.6	15
Broccoli	2.8	3.9	5.5	8.2	14
Cabbage	1.8	2.8	4.4	7.0	12
Cantaloupe	2.2	3.6	5.7	9.1	16
Carrot	1.0	1.7	2.8	4.6	8
Cucumber	2.5	3.3	4.4	6.3	10
Lettuce	1.3	2.1	3.2	5.2	9
Onion	1.2	1.8	2.8	4.3	8
Pepper	1.5	2.2	3.3	5.1	9
Cotton	7.7	9.6	13.0	17.0	27
Barley	8.0	10.0	13.0	18.0	28
Sugar beet	7.0	8.7	11.0	15.0	24
Wheat	6.0	7.4	9.5	13.0	20
Sweet potato	1.5	2.4	3.8	6.0	11
Tomato	2.5	3.5	5.0	7.6	13

Sodium problem (Sodicity)

- Sodium problem leads to dispersion of soil resulting in loss of structure
- Water will not be able to enter or move through the soil adequately

Sodium Problem

- Laboratory measurements will clarify if you have sodium problem
- For sodium problem to be present, the Sodium adsorption ratio (SAR) must be greater than 13

$$SAR = \frac{[Na^{+}]}{\sqrt{\frac{1}{2}([Ca^{2+}] + [Mg^{2+}])}}$$

Correcting Sodium Problem

- Addition of ions to displace Na from clays
- Calcium is the usual ion used to displace Na
 - Gypsum
 - Calcium chloride
 - Sulfur (if sufficient lime is in the soil)
- Leach out the sodium salts
- Adequate drainage is required

Resolving Chemical Issues Soil Testing is Important !!!

- Helps to know what is in your soil
- Helps to plan how much of nutrients to apply
- Nutrient needs vary with soil and crop
- Helps to know if your soil is building up salts
- Will let you know if your management is improving,

degrading or maintaining your soil

Which Lab Do I Choose?

- Go to NMSU site (<u>www.nmsu.edu</u>)
- Type "Labs for New Mexico Soils" in the search
- Click on the link "Labs for New Mexico Soils"
- Go to the website of the lab you have chose
- Make sure you check their sampling protocol and costs
- Stick with the same lab to be able to compare results

Extension

SOIL, WATER & PLANT TESTING LABORATORY

FORT COLLINS, COLORADO 80523-1120

Phone 970-491-5061 Fax 970-491-2930

AGRICULTURAL TEST REPORT

	IFICATION							ROU	TINE ?	SOIL TEST	Γ RESUI	LTS							
метноі	PICATURE				Estimate	te Estimate		1800	DAS	Modified Walkley Black	AB-DTPA Extract	NaHCO ₃ Extract		,	AB-DTPA	Extract			Hot Water
Lab No.	Sample ID	Sample Depth	pН	Salts mmhos/cm	Excess Lime	Texture Es	stimate	SAR	Gyp meq 100g	Organic Matter %	Nitrate N ppm	Phosphorus P ppm	Phosphorus P ppm	Potassium K ppm	Zinc Zn ppm	Iron Fe ppm	Manganese Mn ppm	Copper Cu ppm	Boron B ppm
F245a	AF 1	Contraction of	8.2	0.7	Very High	Clay			1000	3.2	13	92	60.0	770	4.3	4.4	2.1	3.3	0.10
	AF HHd		8.2	0.9	Very High	Clay				3.4	30	85.0	50.0	684	3.5	4.1	2.6	3.4	0.07
F247c	LS V-4		8.6	1.3	Very High	Clay				2.2	15	89.0	55.0	1052	2.5	5.1	2.8	1.7	0.10
F248d	Herb garden		8.2	2.0	Very High	Clay				2.5	68	81.0	47.0	841	1.7	6.1	5.0	2.3	0.13
F249e	AYF HH		8.3	1.1	Very High	Sandy Clay				4.5	24	142.0	100.0	863	6.6	5.2	2.2	2.6	0.12
F250f	LS HH		8.4	0.9	Very High	Sandy Clay	у			3.4	13	106.0	64.0	723	2.9	4.1	3.3	1.7	0.16
FERTIL	IZER RECO	MMEN	DATIO	NS:	La since Marine						Anna an an anna								
I. D.	FIELD INFO	RMATI	ON			and a star providence	and a shirt of the	Street Dates of		POUNDS	S OF AC	TUAL N	UTRIENT	F PER A	CRE				
Lab	DIS DINIO			Propo	osed	Yield	Lime (T/A	A) to raise pl	H to:	N	P ₂ O ₅	K ₂ O	Zn	Fe	Mn	Cu	Boron	Sulfur	Gypsum
No.	Sample ID	Acres	Irrigation	Cro	op	Goal	6.0	6.5	7.0	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	T/A
F245a	AF 1		unknown	vegetables		variable				85	0	0	0	0	0	0	0	0	N/A
the second second		1		1999 (2018) - 201 1999 - 10 (2018)		and the second of	4	a constant	and a second	and the second second	and and determined	and the second second	1	A. A.				1 10	The
F246b	AF HHd		unknown	vegetables		variable	1			0	0	0	0	0	0	0	0	0	N/A
	14.72.3	-		alta fizician	100 WU						1	G	1	1	1		1 0	100	1 32°A
F247c	LS V-4		unknown	vegetables		variable		Τ		85	0	0	0	0	0	0	0	0	N/A
FROM	A114.		(Eddardown)	she like to a	-CWG					0	1.0	0		0	0			J. Que	1. 1. 1.
F248d	Herb garden	Ι	unknown	vegetables		variable				0	0	0	0	0	0	0	0	0	N/A
1725-01		L. B. C.	witch and	10 Generalis	COVER	L	1.	1		1	1 9	9	1 0	1.0	1. 9			J	1.111
F249e	AYF HH		unknown	vegetables		variable				40	0	0	0	0	0	0	0	0	N/A
		1	Call Street		S. S			Second Second	2.1.	1	1	La maine		A Com	L. W.	la martina	der an	dan lan	
F250f	LS HH		unknown	vegetables		variable		1		85	0	0	0	0	0	0	0	0	N/A

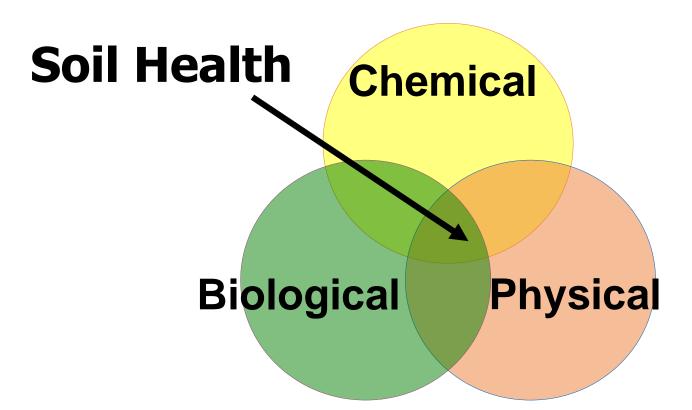
SPECIAL COMMENTS AND SUGGESTIONS:

Good Soil Management

- Good soil management goes beyond just knowing about <u>Nutrients</u>
- Many other <u>soil properties</u> and <u>attributes</u> not measured in conventional soil test can affect crop growth and yield
- Compaction for example, can physically restrict root growth and reduce soil aeration which can lead to reduced yields

Compaction effect on yields (compaction not measured in lab soil test)

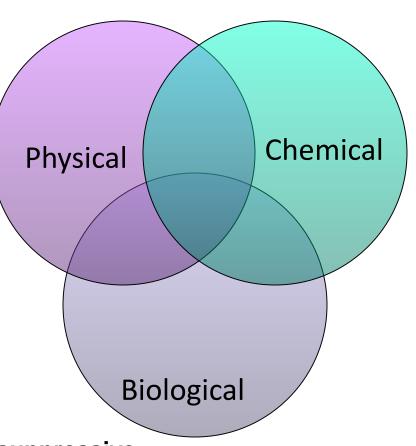
Vegetable Crops	% Yield Reductions due to compaction
Cabbage	73%
Snap Bean	49%
Cucumber	41%
Sweet Corn	34%


Wolfe, David W., et al. "Growth and yield sensitivity of four vegetable crops to soil compaction." Journal of the American Society for Horticultural Science 120.6 (1995): 956-963.

What is Soil Health (Quality)?

- Ability of the soil to support crop growth ... (Power & Myers, 1989)
- Capacity of the soil to function in a productive and sustained manner ... (NCR-59 Madison WI, 1991)
- The capability of the soil to produce safe and nutritious crop (Parr et al., 1992)
- Fitness for use (Pierce & Larson 1993)

Approach to Soil Health



Soil Health Indicators

Bulk density

- Penetration resistance
- Aggregate stability
- Water infiltration rate
- Water holding capacity
- Pore size distribution

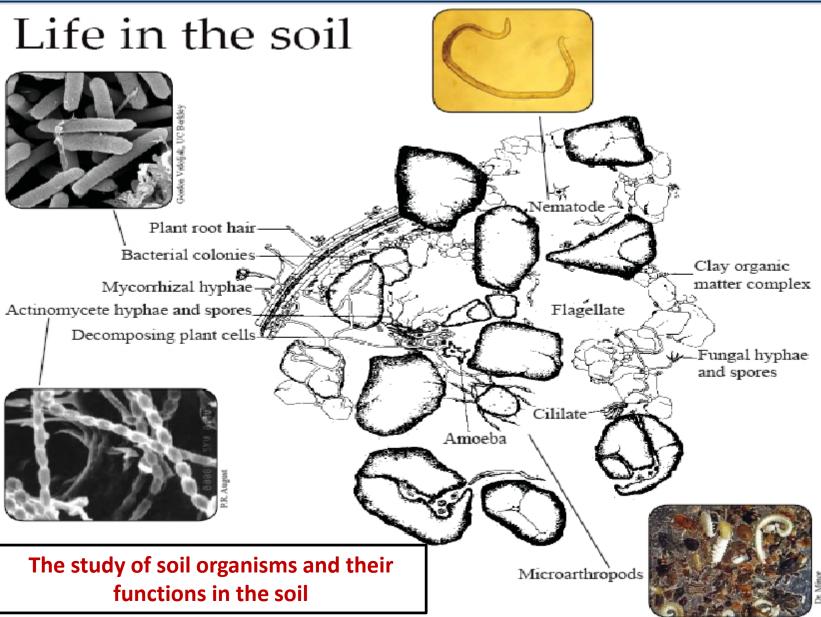
- Cation exchange capacity
- N, P, K
- Salinity
- Micronutrients
- [Toxins, pollutants]

- Soil disease suppressive capacity
- Beneficial and pathogenic nematodes, [other pathogens]
- N mineralization rate (PMN)

- Decomposition rate
- Respiration rate
- Earthworm counts
- % OM
- "Active" C, N in OM

END OF SOILS PART ONE

Santa Fe County Master Gardener Training <u>Part 2: Soil Biology</u> Santa Fe, NM February 18th & 19th, 2019



John Idowu, Extension Agronomist, NMSU, Las Cruces, NM Email: jidowu@nmsu.edu; Phone: 575-646-2571

SOIL BIOLOGY

What is soil biology?

Modified drawing by S. Rose and E.T. Elliott

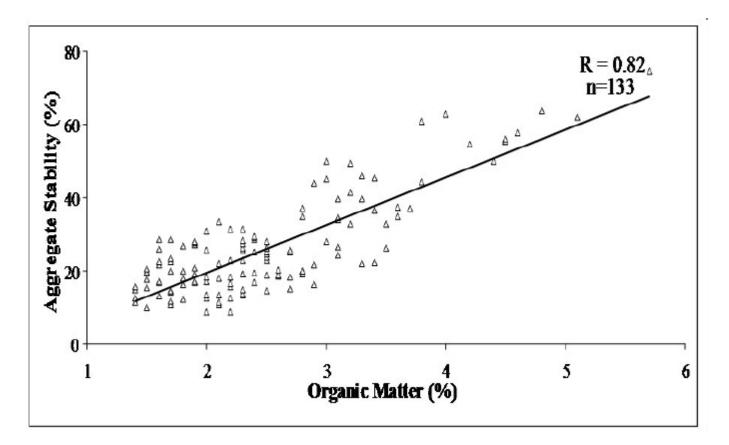
Soil organisms

- Those we can see with our eyes
 - Earthworms
 - Insects
 - Burrowing animals

- Those we cannot see with our eyes
 - Bacteria
 - Fungi
 - Actinomycetes
 - Nematodes
 - Protozoa

Why is soil biology important?

- Soil biological activity is related to soil fertility
- Soil organic matter is the driving force behind soil health
- Soil borne pathogens can constitute problem to production agriculture
- Soil biology is related to sustainable soil use


Factors affecting soil structure

- Amount of organic matter
- Root systems of plants
- Soil microorganisms
- Actions of burrowing organisms

Aggregation & soil organic matter

Well aggregated soil resists erosion and promote good water flow and retention

Aggregation is not just because OM is present but because soil organisms are acting on the organic matter in the soil

Soil organisms

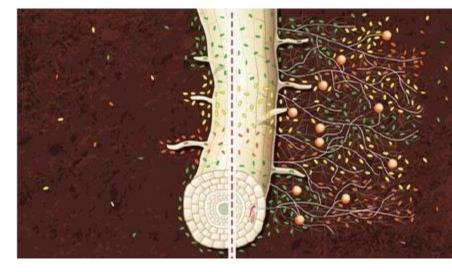
In 1 teaspoon of healthy soil contains

- Bacteria 100 million to 1 billion
- Fungi 6-9 ft fungal strands put end to end

- Protozoa Several thousand flagellates & amoeba One to several hundred ciliates
- Nematodes 10 to 20 bacterial feeders and a few fungal feeders
- Arthropods Up to 100
- Earthworms 5 or more

Microbial populations and biomass

Organism	Number/m-2	Pounds/Acre
BACTERIA	10 ¹³ -10 ¹⁴ (10 – 100 trillion)	350-4,500
ACTINOMYCETES	10 ¹² -10 ¹³ (1 – 10 trillion)	350-4,500
FUNGI	10 ¹⁰ -10 ¹¹ (10 – 100 billion)	900-13,000
ALGAE	10 ⁹ -10 ¹⁰ (1 – 10 billion)	9-450



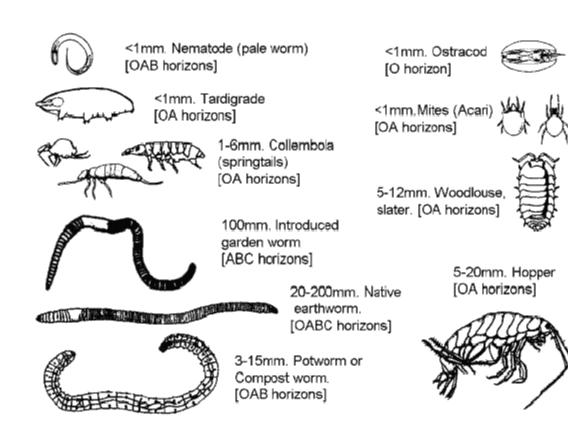
Location of microbes in the Soil

- Mostly in top inch
- Almost all in top 6 inches
- Rhizosphere
 - Zones close to the roots
 - Region of intense activity
 - Stimulus: Secretions from roots

1mm around the roots

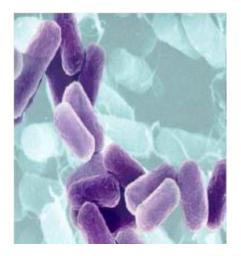
Root exudates (including other losses) can account for 10 to 33% of the net plant photosynthetic product

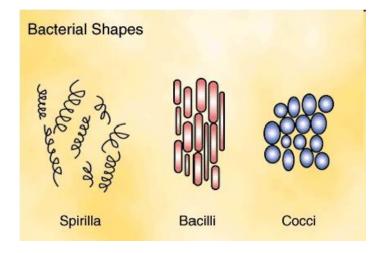
Soil microorganisms


- Bacteria (Often Single Cell)
- Fungi (Often Long Filaments or Hyphae)
- Actinomycetes (Properties of Both)

Soil animals

- Nematodes
- Springtails
- Mites
- Insects
- Earthworms



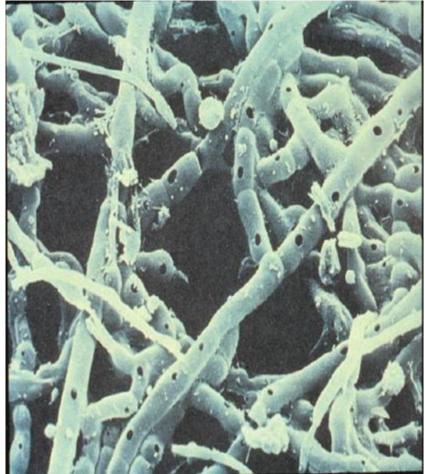


Bacteria

Bacteria are:

- very tiny, one-celled organisms
- They are NOT plants or animals
- They are much simpler than plants and animals
- They can be shaped like a grain of rice or have other shapes

Characteristics of Bacteria



- They are so small that you need a powerful microscope to see them
- There are so many of them in nature
- Many bacteria live freely in the soil
- Others grow on the roots of plants like clover and alfalfa to help make nitrogen
- Some bacteria feed on dead plants to help recycle nutrients (make nutrients available)

<u>Fungi</u>

- Vary from single cell yeast to molds and mushrooms
- They are heterotrophs depend on complex carbon molecules for nutrition
- Grow from spores by a threadlike structure call hypha (about 5 microns in diameter)
- Tolerant of acidity (e.g. acid forest soils)
- Important decomposer of lignin

Bacteria vs. Fungi

- Fungi tend to be selected for by plant residues with high C/N ratios.
- Bacteria tend to select for materials that have low C/N ratio (easily decomposable)
- Both bacteria and fungi can cause plant diseases but majority of soil-borne diseases have fungal origin (e.g. Phythium, Fusarium, Phytophtora, Rhizoctonia etc.)
- Bacteria are smaller than fungi and can occupy smaller pores and thus potentially have greater access to material contained within these pores.
- Bacteria are less disrupted than are fungi by tillage practices commonly used in agriculture.

Bottom-line

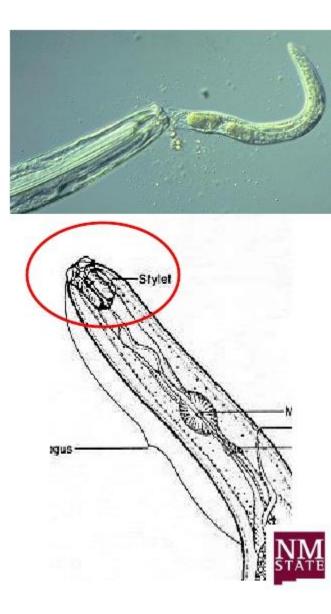
- Bacterial and fungal population and diversity depends heavily on:
 - Type and abundance of food available
 - Food is always a limiting factor
 - This ultimately affects the rate of growth and reproduction
 - The soil environmental conditions
 - Soil management in modern agriculture has a great influence on soil bacterial and fungal community

Soil Health and Microbial diversity

- Quantity and quality of the soil organic matter is central in determining SOIL HEALTH and MICROBIAL DIVERSITY
 - Bacteria respond most when starch and simple sugars are added as OM
 - Actinomycetes and Fungi respond more to cellulose and other resistant compounds
 - Fungi dominate microbial activity when residue are at the surface while bacteria are more active when incorporation takes place

Another soil organism

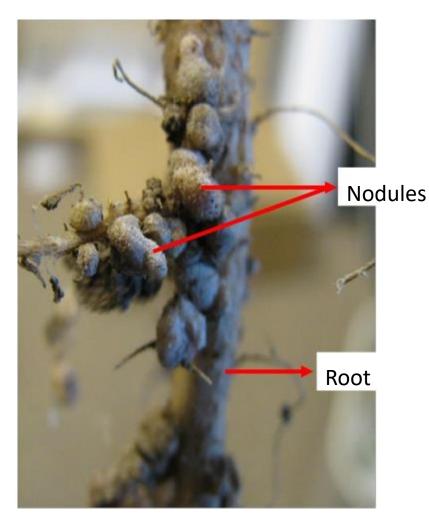
Earthworms


- Best known among larger animals
- Prefer moist environment, abundance of OM and plentiful supply of calcium
- Found mostly in fine-textured soil with high OM and not strongly acidic
- Ingest dead organic material and soil mixing them together to form cast (excrement)
- Create channels within the soil
- Help with nutrient cycling and water infiltration
- Prefer untilled soils than tilled soils

Other important soil organisms

Nematodes

- Worms that are microscopic in size
- Most abundant soil animal
- Live in water films surrounding soil particles or in plant roots
- Encyst in dry soil and repopulate when conditions are favorable
- Parasitic nematodes have stylet and are more mobile than beneficials
- Upon infection of host plants the react by forming galls, knots or deformed roots.



Other ecosystem engineers

- Millipedes
- Woodlice
- Mites
- Insects
- Springtails
- Termites
- Ants
- Beetles
- Fly Larvae
- Caterpillar

<u>Nitrogen Fixation in Legumes</u> (making nitrate-N available to crops)

Sesbania Nodules (Grown as summer green manure in Las Cruces)

- Examples of legumes are alfalfa, clovers, beans
- Bacteria that make nitrate in plant roots with plants are called Rhizobium
- Nitrogen come from the soil air (79% N₂ in soil)
- It is a relationship of give and take
- Plants supply bacteria with food and bacteria gives back nitrate to plants
- Can fix up to 300 kg/ha N (270 Ibs/ac N) in a year

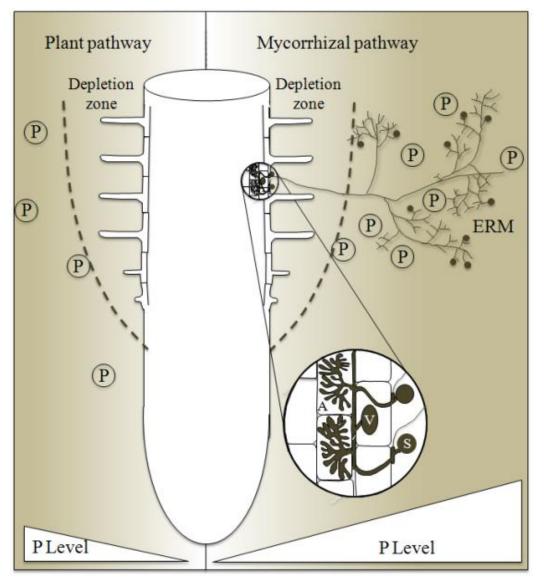
Active Nodules

Active Sesbania Nodules

Mycorrhizae

- Some types of beneficial fungi that can grow on plant roots are called Mycorrhizae
- **Mycorrhizae** fungi have many filaments that are like thin hairs around the roots

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cumming


Benefits of Mycorrhizae

- Mycorrhizae fungi helps the plant to obtain
 - Water
 - Nutrients (Phosphorus has been demonstrated)
- The plant makes carbohydrates and gives some to the mycorrhizae fungi for energy.
- The fungi help the plant and the plant helps the fungi

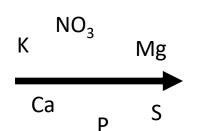
Mycorrhizae and roots

http://www.intechopen.com/books/plant-science/the-role-of-the-mycorrhizal-symbiosis-in-nutrient-uptake-of-plants-and-the-regulatory-mechanisms-und

Mineralization:

(Breakdown of Organic Matter)

- Organic materials are full of nutrients that can help crops grow in the field. Example of such nutrients include:
 - Nitrogen, phosphorus, sulfur
- Example of organic materials are:
 - Cow manure, dead leaves and plant residue, compost, chicken manure, etc.
- Mineralization is the release of these nutrients in forms that growing crops can use



How does soil mineralization happen? As the microbes feed on soil organic matter, nutrients are released

Microorganisms (bacteria, fungi and others)

Small and large animals (earthworms, bugs, nematodes)

Fertile soil with nutrients will produce good crops

Decomposition of OM dependent on

- Temperature (Low in winter high in summer)
- Moisture (problems too dry or too wet)
- Food Supply (Amount of Organic Matter)
- Oxygen (problem low O₂)
- C:N Ratio (next slide)

Relative Decomposition Rate

slower

	Carbon to Nitrogen	Ratio	
Material		C:N Ratio	
Wood chips		700:1	Less N available
Sawdust or pe	ellets	500:1	700 units of Carbon to
Paper		170:1	1 unit of Nitrogen
Straw, wheat		130:1	
Bark		100:1	
Straw, oat		80:1	
Leaves		60:1	
Cornstalks		60:1	
Peanut hulls		50:1	30 units of Carbon to
IDEAL RA		30:1 —	1 unit of Nitrogen
		30.1	More N available
Legume grass	s hay	25:1	
Grass clipping	şs	19:1	
Poultry house	e litter, stockpiled	15:1	
Yard waste		14:1	
Fresh manure	e, cattle	8:1	
Fresh manure	e, swine	6:1	
Fresh manure	e, poultry	6:1	

Positive & Negative Roles of Microbes

• Positive

- Mineralization
- Nitrogen fixation
- Aggregate stabilization
- Mycorrhizae association
- Predation on pests and pathogens

Negative

- Immobilization
- Denitrification
- Pathogens (disease causing agents)

Soil Organic Matter

- Percentage small (often <5%) but effects profound!
 - Influence physical, chemical and biological properties
 - Provide much of the soil's cation exchange capacity
 - Provides much of the water holding capacity
 - Help formation and stabilization of aggregates
 - Hold tremendous amounts of nutrients that are slowly released, especially N
 - -Food for microbes in the soil

Organic Matter

The living

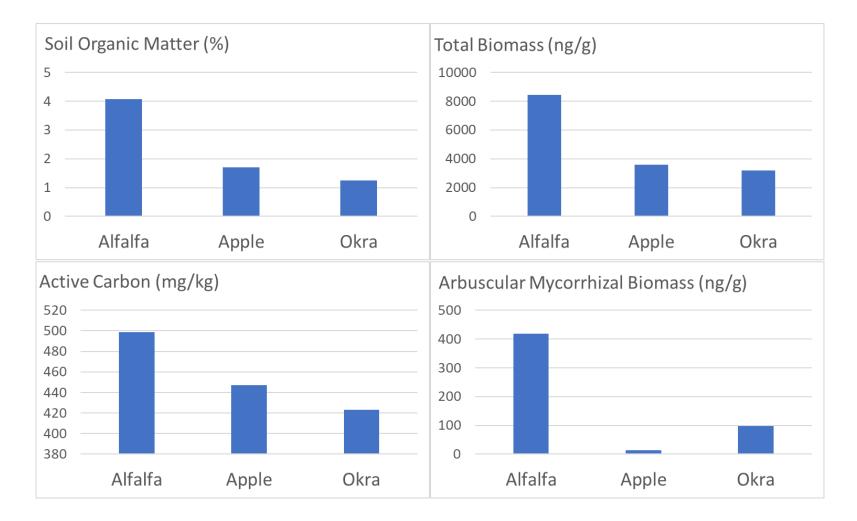
- Bacteria
- Fungi
- Viruses
- Protozoa
- Insects
- Plant roots
- Etc.

after Magdoff and van Es

The dead

Recently deceased

- Micro-organisms
- Earthworms
- Crop residues
- Plant roots
- Etc.
- Recent manure


The very dead

Humus substances

- Colloidal in nature
- Resistant to decomposition
- Very useful for water and nutrient storage

Soil Health Results

Building Soil Organic Matter

- Increasing organic carbon to improve soil structure, reduce erosion and build pest and disease suppressive soils
- Increasing SOM storage involves
 - increasing C inputs (addition)
 - decreasing rates of C decomposition (prevention)
- Best strategy is to combine both (addition + prevention)

What is Organic Fertilizer?

Derived from natural sources

- plant byproducts
- animal byproducts
- natural mineral deposits

Minimal processing

- no added chemicals
- no chemical alteration

in case of doubts: check "Organic Materials Review Institute" (OMRI.org)

Organic vs. Chemical Fertilizers

Chemical fertilizers are:

- Purified simple salts easily dissolve in water
- rapid availability => rapid uptake (or loss)
- high "salt effect" => desiccation/fertilizer burn
- no organic matter (food for beneficial microbes)
- Chemical nitrogen tends to lower soil pH

Organic vs. Chemical Fertilizers

Characteristics of Organic Fertilizers

- Complex materials more than one nutrient
- Slow to very slow release of nutrients
- Plant and animal byproducts
- Food for microbes and soil organisms
- Add organic matter to the soil
- Tend to moderate soil pH

What is a Mulch?

- A mulch is any material placed on or spread over the soil surface
- First major concern is PROTECTION of the soil surface from:
 - Erosion (water & wind)
 - Rapid evaporation of water
 - Weed infestation

Examples of organic mulches

- Compost
- Grass clippings
- Wood chips or bark
- Wood shavings
- Nut shells
- Waste papers
- Sawdust
- Straw
- Cotton gin trash
- and many other materials

Composting =Turning Trash to Treasure Processing organic waste into soil amendment

□ Composting can be done anywhere.

Compositing where there is excess organic waste and a need for soil that is healthier for plants

Browns

High carbon materials such as

Leaves (30-80:1)

Straw (40-100:1)

Paper (150-200:1)

Sawdust (100-500:1)

Animal bedding mixed with manure (30-80:1)

Greens

High nitrogen materials such as

Vegetable/food scraps (12-20:1) Tea/Coffee grounds (20:1) Grass clippings (12-25:1)

Manure

- -Cow (20:1)
- -Horse (25:1)
- Poultry (10:1), with litter (13-18:1)

-Hog (5-7:1)

Browns

- Decay very slowly
- Coarse browns can keep pile aerated
- Tend to accumulate in the fall
- Tie up nitrogen in soil if not fully composted
- May need to stockpile until can mix with greens

Greens

- Decay rapidly
- Poor aeration may have foul odors if composted alone
- Tend to accumulate in spring and summer
- Supply nitrogen for composting
- Best composting if mixed with browns

Benefits of compost <u>Plant nutrients</u>

- Compost is <u>not</u> a fertilizer, but does contain plant nutrients
- Nitrogen and phosphorus are mostly in organic forms
 - Released slowly to plants
 - Not readily leached from the topsoil
- Compost contains many trace nutrients that are essential for plant growth

Compost Analysis Report

			Lbs / Ton	
	Analysis			Available First
	Dry Basis	Dry Basis	As Is Basis	Year
Organic N, % N	0.78	15.6	9.6	1.9
Ammonium, % N	0.016	0.3	0.2	0.2
Nitrate, % N	< 0.001	0.0	0.0	0.0
Total N (TKN), % N	0.79	15.9	9.8	2.1
Phosphorus, % P2Os	0.52	10.4	6.4	4.5
Potassium, % K2O	1.36	27.3	16.8	15.1
Sulfur, % S	0.25	5.0	3.1	1.2
Calcium, % Ca	2.77	55.4	34.0	23.8
Magnesium, % Mg	0.38	7.6	4.7	3.3
Sodium, % Na	0.15	2.9	1.8	1.8
Sodium Adsorption Ratio (SAR)	2.17			
Zinc, ppm Zn	62.9	0.1	0.1	0.1
Iron, ppm Fe	5449.0	10.9	6.7	4.7
Manganese, ppm Mn	196.3	0.4	0.2	0.2
Copper, ppm Cu	19.7	0.0	0.0	0.0
Soluble Salts, mmho / cm	14.11	18.1	11.1	11.1
pН	8.5			
Moisture, %	38.57			
Dry Matter (TS), %	61.43			
Ash, %	59.74			
Organic Matter, %	40.26			
Organic Carbon, %	23.35			
Organic C:N Ratio	29.6			

Extension

SOIL, WATER & PLANT TESTING LABORATORY

FORT COLLINS, COLORADO 80523-1120

Phone 970-491-5061 Fax 970-491-2930

AGRICULTURAL TEST REPORT

IDEN'	<i>TIFICATION</i>			· (ROU	TINE	SOIL TES	T RESU	LTS							
метно	DD USED:	Modified AB-DTPA NaHCO3							Hot Water										
Lab No.	Sample ID	Sample Depth	pН	Salts mmhos/cm	Excess Lime	Texture E	stimate	SAR	Gyp meq 100g	Organic Matter %	Nitrate N ppm	Phosphorus P ppm	Phosphorus P ppm	Potassium K ppm	Zinc Zn ppm	Iron Fe ppm	Manganese Mn ppm	Copper Cu ppm	Boron B ppm
F245a	AF 1	Incede	8.2	0.7	Very High	Clay			1004	3.2	13	92	60.0	770	4.3	4.4	2.1	3.3	0.10
F246b	AF HHd		8.2	0.9	Very High	Clay				3.4	30	85.0	50.0	684	3.5	4.1	2.6	3.4	0.07
F247c	LS V-4	new miles	8.6	1.3	Very High	Clay				2.2	15	89.0	55.0	1052	2.5	5.1	2.8	1.7	0.10
F248d	Herb garden		8.2	2.0	Very High	Clay				2.5	68	81.0	47.0	841	1.7	6.1	5.0	2.3	0.13
F249e	AYF HH		8.3	1.1	Very High	Sandy Clay				4.5	24	142.0	100.0	863	6.6	5.2	2.2	2.6	0.12
F250f	LS HH		8.4	0.9	Very High	Sandy Clay	у			3.4	13	106.0	64.0	723	2.9	4.1	3.3	1.7	0.16
FERTI	LIZER RECO	OMMEN	DATIO	ONS:	A Street Marine	le de la constance de la const Constance de la constance de la c		1	en e	1	Sec. of Sec.	A							
I. D.	FIELD INFO							1963-1964 - 1964 - 1964 - 1965 1967 -	POUNDS OF ACTUAL NUTRIENT PER ACRE										
Lab	PISED INTO	Page 10 Pr		Prop	osed	Yield Lime (T/A) to raise p	H to:	N	P ₂ O ₅	K ₂ O	Zn	Fe	Mn	Cu	Boron	Sulfur	Gypsu
No.	Sample ID	Acres	Irrigation	Cr	op	Goal	6.0	6.5	7.0	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	lbs/A	T/A
F245a	AF 1	- Avrillan	unknown	vegetables	the last	variable				85	0	0	0	0	0	0	0	0	N/A
F246b	AF HHd		unknown	vegetables		variable				0	0	0	0	0	0	0	0	0	N/A
F247c	LS V-4		unknown	vegetables	5.00 W.S.	variable				85	0	0	0	0	0	0	0	0	N/A
F248d	Herb garden		unknown	vegetables	;	variable		-		0	0	0	0	0	0	0	0	0	N/A
F249e	AYF HH		unknown	vegetables	3	variable				40	0	0	0	0	0	0	0	0	N/A
1 K.			A star 200	14:05 14:020	1993			de la serie		1	1		1	1			1 0		1 27/4
F250f	LS HH	Care Starting	unknown	vegetables		variable	THE PARTY OF	1410000	A STREET	85	0	0	0	0	0	0	0	0	N/A

(85 lb/A)/(2.1lb N/ton of compost) = 40.48 tons compost /ac – not realistic

Using finished compost

Soil amendment

- Be sure that compost is mature, has an earthy smell (no ammonia or rotten smell), looks dark and crumbly with no recognizable feedstock
- Compost improves soil health when mixed in the top 4 to 6 inches (work in no more than a 2" layer of compost)
- Compost improves water and nutrient retention of sandy soils
- Compost loosen compacted clay soils and make them more friable

Animal Manures

Cow manure

- good general nutrient source (especially K)
- OM benefit depends on amount of bedding
- can carry weed seed

Poultry manure

- potent source N, P, Zn, and lime
- organic matter addition is relatively low
- Best if composted

Horse manure

- heavily bedded with wood shavings
- nitrogen availability can be a problem the first year

- Improves soil moisture retention
- Minor improvement to nutrient holding capacity
- Provides <u>negligible</u> nutrient benefit
- High proportions may make soil <u>hydrophobic</u>

Nutrient content of organic fertilizers

	N	P ₂ 0 ₅	K ₂ O				
	%	% (dry weight basis					
Dairy manure	2.1	3.2	3.0				
Beef manure	1.2	2.0	2.1				
Poultry manure	2.0	5.0	2.0				
Composted yard waste	1.3	0.4	0.4				
Animal tankage (dry)	7.0	10.2	1.5				
Alfalfa hay	2.5	0.5	2.5				
Blood meal	13.0	2.0	1.0				
Fish meal	10.0	6.0	0				
Kelp/seaweed	1.5	1.0	4.9				
Soybean meal	7.0	1.2	2.0				
Bone meal (raw)	3.0	22.0	0				
Bone meal (steamed)	1.0	15.0	0				
Cottonseed meal	6.0	3.0	1.5				
Rock phosphate (total P ₂ O ₅)	0	20-32	0				
Granite dust (total P_2O_5 and K_2O)	0	0	22				
Potassium sulfate (mined)	0	0	50				

Materials to Avoid

- Sawdust, wood shavings, wood chips
 - very high carbon/nitrogen ratio
 - will tie up <u>all</u> available N during breakdown
 - (immobilization)
- Worst when tilled in
 - minor detrimental effect if used as mulch

Best used as mulching materials

To apply organic fertilizer correctly

You need to test the soil

You need to test the organic material

Thanks

