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1 About the team
Located at the University of Virginia, the Cavalier Autonomous Racing team is a mix of faculty and

students driven by the mission of building the fastest fully autonomous racing car. We believe that autonomous
racing is the next grand challenge for safe self-driving vehicles. Motorsport racing has always been the proving
grounds for new automotive technologies; and autonomous ‘battle of algorithms’ racing will play the same
role for self-driving software and hardware. In motorsport racing there is a saying that “If everything seems
under control, then you are not going fast enough” - we are building an autonomous racing AI with this as
the objective function. The team is led by Prof. Madhur Behl who is the founder, co-organizer, and the race
director for the widely popular F1/10 International Autonomous Racing Competitions (running since 2015).

2 Team members and organization
The Cavalier Autonomous Racing Club at UVA is mentored by the PI, Prof.Madhur Behl, who has

expertise in developing autonomous vehicles, and conducts research on autonomous systems at the UVA
Cyber-Physical Systems Link Lab. Autonomous racing is the ultimate engineering challenge. Students from a
variety of engineering, and non-engineering disciplines are members of the club. Autonomous racing is exposing
students to the foundations of perception, planning and control in a fun, and challenging environment. We
are train the next generation of autonomous systems researchers and experts.

The organization is divided into the following sub-teams. Each team has a team-leader and 5-8 members:

1. Varundev Sureshbabu: Overall Student Lead and Control Team Lead.

2. Sandesh Banskota: Sensor Integration Lead

3. Mert Banskota: Simulation, and Software Integration.

4. Trent Weiss: Deep Learning, Motion Planning, and Simulation.

5. Aron Harder: Head of Perception

6. Kenneth Brown: Chassis Design and Mechatronics

7. Scott Steever: Head of Operations

Dr. Madhur Behl is a professor in the departments of Computer Science, and Systems and Information
Engineering, and a member of the Cyber-Physical Systems Link Lab at the University of Virginia. He
conducts research at the confluence of Machine Learning, Predictive Control, and Artificial Intelligence with
applications in Cyber-Physical Systems, Autonomous Systems, Robotics, and Smart Cities. Examples include:
fully autonomous racing at the limits of control (Agile Autonomy), safety of autonomous vehicles (Safe
Autonomy), data predictive control for flooding in coastal cities, and AI for building energy optimization.
He is the associate editor for the SAE Journal on Connected and Autonomous Vehicles. He is the co-
founder, organizer, and the race director of the F1/10 International Autonomous Racing Competitions. He
received his Ph.D. (2015) and M.S. (2012), in Electrical and Systems Engineering, both from the University of
Pennsylvania. Dr. Behl is the winner of the American Control Conference (ACC 2017) Best Energy Systems
Paper Award, TECHCON Best Paper Award (2015), and the best demo award at BuildSys, 2012. He is also
the recipient of the Richard K. Dentel Memorial Prize awarded by the University of Pennsylvania for research
and excellence in urban transportation.
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Figure 1: We have access to more than 16 F1/10 autonomous racecars in our lab and a configurable indoor track. The F1/10
testbed instrument is enabling K-12, undergrad, and graduate outreach through our online courses and MOOCs, autonomous
racing competitions, summer schools, and hackathaons.

3 Autonomous Racing Experience
The team principal, Prof Madhur Behl, has an excellent track record of running a large scale autonomous

racing project. He has pioneered a novel effort called F1/10 Autonomous Racing. He is the lead organizer,
founder, and the race director for the F1/10 International Autonomous Racing Competitions being held
at premier cyber-physical systems, robotics, machine learning, and embedded systems conference venues
worldwide for the past four years. This ‘battle of algorithms’ is rapidly becoming the proving grounds for
pitting AI systems for self-driving cars against each other, while steadily advancing the state of the art in
perception, planning, and control. F1/10 is one of the fastest growing autonomous competitions in the world.
In the last three iterations of the competition, we have grown from 5 to more than 20 teams all over the world
who have built the F1/10 cars. Participants at F1/10 span a wide range of backgrounds, from academic, and
industrial researchers, to undergraduate, graduate students, and postdocs. Participants are experts in control
systems, robotics, embedded systems, machine learning, and software development.

The team has designed educational materials and a 1/10 autonomous vehicle test-bed, and the broader
research community is extremely excited about using this infrastructure for educational purposes. What we
have done is essentially to design a program analogous to the FIRST LEGO League, but for autonomous
vehicles. The course material developed by him for F1/10 is opensource. It has been used by more than a
dozen universities around the world to build their own versions of the 1/10 scale autonomous cars and has
been adapted for teaching cyber-physical systems and autonomous systems courses at multiple universities.
Due to the experience and expertise of running an international level autonomous racing completions for 1/10
scale vehicles, the team is highly confident that they can be very successful in the next step - moving away
from 1/10 scale vehicles to a university wide program to develop a full scale autonomous Indy light racecar.

Cavalier Autonomous Racing: Video Highlights
• World’s first high speed fully autonomous racing overtake. [F1/10]: https://youtu.be/Dw_Fg_JLcNg
• 3rd F1/10 Autonomous Racing Competition 2018 - Torino, Italy:
https://youtu.be/VlE2Wb_XhoQ

• 2nd F1/10 Autonomous Racing Competition 2018 - Porto, Portugal: https://youtu.be/ZwRGtrXYgmI
• F1/10 Undergraduate Course at UVA [Spring 2019]:
https://youtu.be/RpEVCgt18P4

• F1/10 Undergraduate Course at The University of Virginia [Spring 2018]: https://youtu.be/ZQg61UNbr7Q
• UVA LinkLab F1/10 Autonomous Race Car on ESPN! https://youtu.be/Rp8aUOytpno

4 Autonomous Racing Research

2

https://youtu.be/Dw_Fg_JLcNg
https://youtu.be/VlE2Wb_XhoQ
https://youtu.be/ZwRGtrXYgmI
https://youtu.be/RpEVCgt18P4
https://youtu.be/ZQg61UNbr7Q
https://youtu.be/Rp8aUOytpno


Figure 2: Overview of research approaches for autonomous racing published by the team in recent years.

4.1 Research: Planning and Control

The decision making systems utilized on AVs have
progressed significantly in recent years; however they
still remain a key challenge in enabling AV deploy-
ment [1]. While AVs today can perform well in simple
scenarios such as highway driving; they often strug-
gle in scenarios such as merges, pedestrian crossings,
roundabouts, and unprotected left-turns. Conducting
research in difficult scenarios using full-size vehicles is
both expensive and risky. In this section we highlight
the research on algorithms for obstacle avoidance, end-
to-end driving, model predictive control conducted by
our group.

4.2 Obstacle avoidance

Obstacle avoidance and forward collision assist are
essential to the operation of an autonomous vehicle.
The AV is required to scan the environment for ob-
stacles and safely navigate around them. For this rea-
son, many researchers have developed interesting real-
time approaches for avoiding unexpected static and
dynamic obstacles [2, 3]. To showcase the capability
of the F1/10 testbed, we implement one such algo-
rithm known as Follow The Gap (FTG) method [4].
The Follow the Gap method is based on the construc-
tion of a gap array around the vehicle and calculation

of the best heading angle for moving the robot into
the center of the maximum gap in front, while simul-
taneously considering its goal. These two objectives
are considered simultaneously by using a fusing func-
tion. The three steps involved in FTG are:
(a) Calculating the gap array using vector field his-
togram, and finding the maximum gap in the LIDAR
point cloud using an efficient sorting algorithm,
(b) Calculating the center of the largest gap, and
(c) Calculating the heading angle to the centre of the
largest gap in reference to the orientation of the car,
and generating a steering control value for the car.

4.3 End-to-end driving

Some recent research replaces the classic chain of
perception, planning, and control with a neural net-
work that directly maps sensor input to control out-
put [5, 6, 7], a methodology known as end-to-end driv-
ing. Despite the early interest in end-to-end driv-
ing [8], most self-driving cars still use the perception-
planning-control paradigm. This slow development
can be explained by the challenges of verifying sys-
tem performance; however, new approaches based on
reinforcement learning are being actively developed
[9].

The F1/10 testbed is a well suited candidate for
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experimentation with end-to-end driving pipelines,
from data gathering and annotation, to inference, and
in some cases even training.

Partly inspired by Pilotnet [5] end-to-end work,
we implemented a combination of a LSTM [10] and a
Convolutional Neural Network(CNN) [11] cell. These
units are then used in the form of a recurrent neu-
ral network (RNN). This setup uses the benefits of
LSTMs in maintaining temporal information (critical
to driving) and utilizes the ability of CNN’s to extract
high level features from images.

To evaluate the performance of the model we use
the normalized root mean square error (NRMSE) met-
ric between the ground truth steering value and the
predicted value from the DNN. As can be seen in
the point-of-view (PoV) image in Figure ??[Left], our
DNN is able to accurately predict the steering angle
with an NRMSE of 0.14.

4.4 Path planning
AVs operate in relatively structured environments.

Most scenarios an AV might face feature some static
structure. Often this is the road geometry, lane con-
nectivity, locations of traffic signals, buildings, etc.
Many AVs exploit the static nature of these elements
to increase their robustness to sensing errors or uncer-
tainty. In the context of F1/10, it may be convenient
to exploit some information known a priori about the
environment, such as the track layout and floor fric-
tion. These approaches are called static, or global, and
they typically imply building a map of the track, sim-
ulating the car in the map, and computing offline a
suitable nominal path which the vehicle will attempt
to follow. Valuable data related to friction and drift
may also be collected to refine the vehicle dynamics
model. More refined models can be adopted off-line
to compute optimal paths and target vehicle speeds,
adopting more precise optimization routines that have
a higher computational complexity to minimize the
lap time.

Once the desired global path has been defined, the
online planner must track it. To do that, there are two
main activities must be accomplished on-line, namely
localization and vehicle dynamics control. Once the
vehicle has been properly localized within a map,
a local planner is adopted to send longitudinal and
transversal control signals to follow the precomputed
optimal path. As the local planner needs to run in
real-time, simpler controllers are adopted to decrease
the control latency as much as possible. Convenient
online controllers include pure pursuit path geomet-
ric tracking [12]. The F1/10 software distribution in-

cludes an implementation of pure pursuit, nodes for
creating and loading waypoints, and path visualiza-
tion tools. For the interested reader we recommend
this comprehensive survey of classical planning meth-
ods employed on AVs [13].

4.5 Model Predictive Control
While data annotation for training end-to-end net-

works is relatively easy, the performance of such meth-
ods is difficult to validate empirically [14] especially
relative to approaches which decompose functionality
into interpret-able modules. In this section we outline
both a local planner which utilizes a model predictive
controller (MPC) and a learned approximation of the
policy it generates detailing one way planning compo-
nents can be replaced with efficient learned modules.
Components: The F1/10 platform includes a MPC
written in C++ comprised of the vehicle dynamics
model, an optimization routine which performs gradi-
ent descent on the spline parameters. Peripheral sup-
port nodes provide an interface to road center line in-
formation, a multi-threaded goal sampler, a 2D occu-
pancy grid, and a trajectory evaluation module. Ad-
ditionally, we include a CUDA implementation of a
learned approximation of the MPC which utilizes the
same interface as described above.
Cubic Spline Trajectory Generation: One lo-
cal planner available on the F1/10 vehicle utilizes the
methods outlined in [15] and [16] and first described
in [17]. This approach is commonly known as state-
lattice planning with cubic spline trajectory genera-
tion. Each execution of the planner requires the cur-
rent state of the vehicle and a goal state. Planning
occurs in a local coordinate frame. The vehicle state
x is defined in the local coordinate system, a subscript
indicates a particular kind of state (i.e. a goal) In this

implementation we define x as: ~x = [sx sy v Ψ κ]T ,
where sx and sy are the x and y positions of the cen-
ter of mass, v is the velocity, Ψ is the heading angle,
and κ is the curvature.

In this formulation, trajectories are limited to a
specific class of parameterized curves known as cubic
splines which are dense in the robot workspace. We
represent a cubic spline as a function of arc length
such that the parameters ~p = [s a b c d]T where s is
the total curve length and (a, b, c, d) are equispaced
knot points representing the curvature at a particular
arc length. When these parameters are used to de-
fine the expression of κ(s) which can be used to steer
the vehicle directly. The local planner’s objective is
then to find a feasible trajectory from the initial state
defined by the tuple ~x to a goal pose ~xg.
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We use a gradient descent algorithm and forward
simulation models which limit the ego-vehicle curva-
ture presented in [16]. These methods ensure that the
path generated is kinematically and dynamically fea-
sible up to a specified velocity.

4.6 Simultaneous Localization and Map-
ping (SLAM)

The ability for a robot to create a map of a
new environment without knowing its precise location
(SLAM) is a primary enabler for the use of the F1/10
platform in a variety of locations and environments.
Moreover, although SLAM is a well understood prob-
lem it is still challenging to create reliable real-time
implementations. In order to allow the vehicle to drive
in most indoor environments we provide interface to
a state of the art LIDAR-based SLAM package which
provides loop-closures, namely Google Cartographer
[18]. Included in our base software distribution are
local and global settings which we have observed to
work well empirically through many trials in the class-
room and at outreach events. In addition we include a
description of the robots geometry in an appropriate
format which enables plug-and-play operation. For
researchers interested primarily in new approaches to
SLAM the F1/10 platform is of interest due to its
non-trivial dynamics, modern sensor payload, and the
ability to test performance of the algorithm in motion
capture spaces (due to the small size of vehicle).

In addition to SLAM packages we also provide an
interface to an efficient, parallel localization package
which utilizes a GPU implementation of raymarching
to simulate the observations of random particles in a
known 2D map [19]. The inclusion of this package en-
ables research on driving at the limits of control even
without a motion capture system for state estimation.

4.7 Computer Vision
Our distribution of F1/10 software includes the

basic ingredients necessary to explore the use of deep
learning for computer vision. It includes CUDA en-
abled versions of PyTorch [20], Tensorflow [21], and
Darknet [22]. We include example networks for se-
mantic segmentation [23], object detection [24], and
optical flow [25]; we focus on efficient variants of the
state-of-the-art that can run at greater than 10 FPS
on the TX2. Recently, it has come to light that many
DNNs used on vision tasks are susceptible to so called
adversarial examples, subtle perturbations of a few
pixels which to the human eye are meaningless but
when processed by a DNN result in gross errors in

classification. Recent work has suggested that such
adversarial examples are not invariant to viewpoint
transformations [26], and hence not a concern. The
F1/10 platform can help to enable principled investi-
gations into how errors in DNN vision systems affect
vehicle level performance.

4.8 Adaptive Pure-Pursuit for Racing
Using pure-pursuit for autonomous racing has a

unique set of challenges. Our work focuses on the
problem of designing an adaptive lookahead pure-
pursuit controller for an autonomous racecar to op-
timize racing metrics such as lap time, average lap
speed, and deviation from a reference trajectory. The
challenge is to do so without mathematically mod-
eling the dynamics of the racecar; but instead us-
ing a ROS based simulator. We propose a greedy
lookahead algorithm to compute and assign optimal
lookahead distances for the pure-pursuit controller
for each waypoint on a reference trajectory for im-
proving the lap time. We also present a new ROS
F1/10 autonomous racing simulator which is open-
source and well suited to address challenges in au-
tonomous racing. We use the simulator to design
and evaluate the adaptive pure-pursuit algorithm and
compare our method with seminal pure-pursuit con-
trollers. Finally, we demonstrate our approach on a
real testbed using a F1/10 autonomous racecar. Our
method results in a significant improvement (> 50%
in simulation, and > 20% on the real F1/10 testbed)
in the lap times of the autonomous race car com-
pared to the baseline of Ackermann-adjusted pure-
pursuit. In our research we have demonstrated that
adaptive lookahead pure-pursuit out performs seminal
pure-pursuit and Ackermann-steering adjusted pure-
pursuit in terms of race related metrics such as lap
time, lap distance and average lap speed and is a
novel fit for autonomous racing, both in simulation
and the F1/10 testbed. The analysis focuses on the
single agent setting, where a single race car is tasked
with following a reference trajectory (often the race-
line), with the minimum lap time. We have also
contributed an F1/10 autonomous racing simulator
that allows the community to experiment on racing
related challenges, including incorporating reinforce-
ment learning, and multi-agent settings. Our future
work also involves using the adaptive lookahead pure-
pursuit for multiple autonomous racecars & creating a
formal framework for autonomous overtaking in high
speeds and close-proximty situations.
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Figure 3: Our group has developed the ROS F1/10 Autonomous Racing simulator, and also the Deep Racing Forumla 1 racing
simulator.

5 Racing simulation research

ROS F1/10 Racing Simulator Our ROS and
Gazebo based racing simulator is designed to replicate
the behaviour of the F1/10 autonomous racecar. The
simulator was developed by the authors as a teach-
ing tool for the autonomous racing course offered at
the University of Virginia and beyond. The simulator
is also used as a verification tool to test the perfor-
mance of racing algorithms before they are deployed
on the physical platform, and is the primary tool used
for testing the algorithm proposed by this paper Some
features of the simulator include:

• High precision odometry and state estimation
(including position, velocity and acceleration)

• Compatible with most major ROS control,
SLAM and navigation packages out-of-the-box

• Ability to spawn multiple independent au-
tonomous racecars for dynamic and head-to-
head racing

The simulator is freely available onlineand supports
several algorithms out of the box (e.g. Wall Follow-
ing, Follow The Gap [27], Hector SLAM [28], AMCL
Particle Filter [29], and TEB Planner [30]). Further
details of the simulator design and operation are in-
cluded in the accompanying supplementary video file.

The race-track start/finish line is located between
turns 1 and 9, which is also the location of the map
and odom frames in the simulator. A ROS node is de-
signed for measuring the state of the racecar at all
waypoints on the racetrack including instantaneous
velocity, and deviation from the reference trajectory.
Autonomous Formula One Racing Simulator
We are developing a virtual Formula One (F1) sim-
ulator that uses the F1 2019 racing game released by
Codemastersc c©as the underlying simulation environ-

ment. This is the first time the immensely popular
and photo-realistic F1 game has been used as a plat-
form for training autonomous race cars. Due to its
realism the F1 game was the first game to be used
in the Formula One eSports Series, which debuted in
2017. There is also evidence to suggest that real-life
F1drivers use this game for virtual practicing.

F1
TM

2019 advertises a telemetry stream of in-
formation about the driver’s current behavior over
a UDP socket in a “fire and forget” type broad-
cast. Each data point in the stream, contains infor-
mation such as steering angle, brake pressure, throt-
tle pressure, velocity, acceleration, the position; ve-
locity; and acceleration of the other cars, lap-time
etc. We developed a custom software wrapper for
grabbing screenshots of the driver’s perspective in
the F1 game and automatically annotating them with
ground-truth values of the game’s state from the
UDP telemetry stream. A single dedicated process
spawns two threads: (i) For capturing screenshots of
the drivers point of view, which we call the “screen-
capture thread”, and (ii) For listening for telemetry
data from the game on a UDP socket, which we call
the “telemetry thread” Each thread has a copy of a
shared CPU timer. The screen-capture thread uses a
C++11 API, built on top of Microsoft’s DirectX, for
capturing images of the driver’s point of view and tags
each image with a timestamp.

Finally, we can also close-the-loop by au-
tonomously driving the F1 car in the game by inject-
ing controls via a virtual joystick API built on top of
vJoy. This is the first time that the F1 Code-
masters game is being used as a simulator for
autonomous racing.
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Figure 4: The team has access to several full scale test track facilities.

6 Competition Plan
6.1 Round 2: Demonstration

Our plan is to show the capability of the team by demonstrating head to head racing using our F1/10
autonomous racing testbeds. In addition, we are in the process of preparing a fully autonomous electric
Go-Kart. We will use this platform to also demonstrate the team’s autonomous capabilities.

6.2 Collaboration Plan
A racecar is never a finished product - it is always a prototype. By supporting and collaborating with the

Cavalier Autonomous Racing team, you will be supporting students who will master technologies that are going
to shape the future of autonomous vehicles. The Cavalier Autonomous Racing team will facilitate a wide range
of research, education, and training in autonomy. Approximately 30-50 students per year will be impacted
by this program. We welcome support, collaborations, and sponsorship from the industry, foundations,
universities, and other organizations in several forms - access to full scale self-driving car platform, hardware
(new sensors) and software (simulation, deep learning etc.), testing and research facilities, and student support.

6.3 Round 3: Simulation Race
Our team is very strong in this area. We have developed the widely popular ROS F1/10 Autonomous

Racing Simulator being used by dozens of research groups all over the world. In addition, our group is the first
in the world to use the widely popular Formula 1 game as a simulation testbed for our DeepRacing project.

6.4 Access to test facilities.
The team has access to two test track facilities. The first is a closed-circuit private track at Perrone

Robotics, one of our collaborators. The other is the Virginia International Raceway. These will be useful
during the final stages of the competition in case we need to run the Indy light vehicle at full tracks.

7 Funding and Sponsorship
The Cavalier Autonomous Racing Club has already secured $100K in sponsorship - From the Jefferson

Trust Foundation, and industry collaborators.
Cavalier Autonomous Racing program will attract a lot of opportunities for sustained operation and

funding. To help with this process we will take advantage of websites, social media, and other methods to
promote this program. Team principal Behl has good working relationships with several industry partners
including Perrone Robotics, MITRE, Leidos, Amazon, Toyota Research, Mecredes AMG, and Nvidia who
could potentially sponsor this program. Furthermore, the program itself is closely related to the PIs research
agenda and this will allow opportunities to seek funding from federal sources such as NSF, DARPA, DOT,
and ONR in the future. Lastly, it is also possible to receive support in form of hardware donations/gifts;
e.g. a LIDAR manufacturer could give us a their prototype for testing, receive cloud computing/powerful
workstation hardware from Nvidia, and camera based sensors from Intel’s Realsense group.
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8 Videos and Websites relevant to this work:

1. DeepRacing AI: https://deepracing.ai/

2. ROS F1/10 Autonomous Racing Simulator: https://f1tenth.dev/

3. UVA F1/10 Autonomous Racing: https://linklab-uva.github.io/autonomousracing/

4. Autonomous Racing Docker Simulator: https://hub.docker.com/r/madhurbehl/f1tenth

5. F1/10 Main Website: http://f1tenth.org/

6. F1/10 Autonomous Racing research is featured on CBS 19 News: https://www.cbs19news.com/

content/news/New-UVA-Cyber-Lab-Developing--Self-Thinking--Cars-474884243.html

7. UVA Today Cover Story:
https://news.virginia.edu/content/teaching-cars-think-autonomous-future

8. Coverage of our work on Trust in Autonomous vehicles: https://morningconsult.com/2018/04/05/

americans-less-trusting-self-driving-safety-following-high-profile-accidents/

9. Research highlight in Mashable:
https://mashable.com/2018/04/12/self-driving-cars-safety-autonomous/#_JS9lyOXkOqJ

10. Radio interview regarding agile autonomy and trust in autonomous vehicles: https://wina.com/

podcasts/the-future-of-autonomous-vehicles-madur-behl/

11. ROS F1/10 Autonomous Racing Simulator: https://youtu.be/IXxNsMLHdeo

12. 3rd F1/10 Autonomous Racing Competition 2018 - Torino, Italy: https://youtu.be/VlE2Wb_XhoQ

13. F1/10 Undergraduate Course at UVA [Spring 2019]: https://youtu.be/RpEVCgt18P4

14. World’s first high speed fully autonomous racing overtake. [F1/10]: https://youtu.be/Dw_Fg_JLcNg

15. UVA LinkLab F1/10 Autonomous Race Car on ESPN: https://youtu.be/Rp8aUOytpno

16. F1/10 Autonomous Race Car Assembly [Timelapse]: https://youtu.be/Pq1WVEsdNXI

17. ROSCon ’19 Talk: ROS F1/10 Autonomous Racing Simulator: https://youtu.be/tZeA7ykIYwA

18. F1/10 Undergraduate Course at The University of Virginia [Spring 2018]: https://youtu.be/ZQg61UNbr7Q

19. 2nd F1/10 Autonomous Racing Competition 2018 - Porto, Portugal: https://youtu.be/ZwRGtrXYgmI
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