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1 Introduction

High speed motorsports such as IndyCar, Nascar, and Formula 1 have been critical in pushing the
limits of automotive technology to develop higher-performing, more efficient, and - most importantly
- safer products for the public. The technologies developed by these competitions have a heavy
influence on the design of hardware and software used by consumer vehicles, and in the end not only
save the public money, but also save lives. It is competition series like these which can be credited
for things as simple as the seat-belt [9] to more complex technologies like the turbocharger [7].

At MIT Driverless, we see the Indy Autonomous Challenge as the next step in bringing the products
of high speed motorsports to the world. This competition will bring together the brightest minds from
industry and academia to develop quick, agile, and safe autonomous vehicles. Just as it is with the
driver-based competitions, this cutting edge technology will push the industry forward by influencing
the design of autonomous vehicles on public roads, making them more affordable and safer.

There are many areas for which MIT Driverless sees benefits for the public coming from the
competition series, the three most important of which will be:

• Teams will be required to develop high-speed multi-agent planning algorithms to navigate
around their opponents. This will be critical for avoiding collisions and maneuvering to
safety on highways and which will result in countless saved lives.

• Deploying, testing, and tuning low-compute perception systems will allow the use of lower
cost processing units on vehicles, thereby saving consumers’ money. This will also allow
more complex perception algorithms to be deployed on vehicles sold to the public.

• The competition presents a unique opportunity to develop controls and planning algorithms
to exploit the unconstrained nature of the track. Most deployed autonomous vehicles
currently rely on proper lane segmentation and thus perform poorly when put on dirt roads
or poorly marked highways. Developing algorithms which take advantage of this will allow
a wider range of consumers to purchase and use autonomous vehicles in their daily lives.

It is for these reasons among many others that MIT Driverless is motivated to compete in the Indy
Autonomous Challenge. We see this as a unique opportunity to push the limits of current autonomous
vehicle technology and are excited to be part of this one-of-a-kind competition here in North America.

2 Team History

MIT Driverless was founded out of a small office at MIT with the goal of providing engineering
students from all around Massachusetts the skills they needed to succeed as roboticists. In 2018, we
partnered with TU-Delft, a strong Mechanical Engineering university, to compete in the Formula
Student Driverless Series in Europe as we believed the challenges brought by the competition would
provide countless opportunities for our team members. In twelve months, we developed a full-stack
autonomous racing platform from scratch and were awarded podium finishes at all competitions
we attended against numerous multi-year teams from around the world. With this success, MIT
Driverless is now the hub of practical autonomy at MIT and attracts the brightest minds from Boston
to come work with, contribute to, and learn from the group.

∗MIT Driverless autonomous racing team is affiliated with the MIT Edgerton Center.



Figure 1: Our team finishing on the podium in the biggest European competition FSG 2019

MIT’s history in the world of autonomy is not limited to the success of our team, as it is also
home to some of the most influential robotics researchers of the 20th century and many of the most
successful groups to compete in the Darpa Challenges. Examples include Rus Tedrake - the MIT lead
professor for the 2015 Darpa Challenge team, John Leonard - a key contributor to the development of
SLAM, Sertac Karaman - the co-founder of optimus ride, Luca Carlone - the lead professor of the
subterranean challenge, and Daniela Rus - an accomplished researcher in field of multiagent planning.
If there is any place on earth to develop algorithms for autonomous vehicles, it is here at MIT.

3 Team Structure

Because our group was set up to provide engineers of varying backgrounds the opportunity to learn
the practical skills they need to succeed as roboticists, we have developed an incredibly diverse team.
Having engineers specializing in many different fields has been extremely valuable for bringing new
ideas to the autonomous vehicle space. Our team of accomplished faculty advisors, engineers and
business members include:

• Prof. Song Han (Assistant Professor, EECS) - Song received his PhD from Stanford and
his thesis focused on efficient algorithms and hardware for deep learning. He proposed
“Deep Compression” technique that widely impacted the industry. At MIT, Song directs the
HAN Lab focusing on developing high-performance, accurate, and efficient neural network
architectures under low computational resources.

• Jorge Castillo (Industrial Engineering + MBA Candidate) - Prior to heading up the business
and operations team at MIT Driverless, Jorge led a business and development team for a
multi-billion dollar latin american company, Vitapro. Jorge led Vitapro’s expansion into
Mexico and subsequently managed the team which took over those operations.

• Shikhar Kumar (PhD Candidate, Nuclear Engineering) - Shikhar’s current research involves
working with the nation’s largest supercomputer to model nuclear reactors. Prior to leading
MIT Driverless’ computer vision group where his team develops perception algorithms,
Shikhar studied financial planning at Columbia University.

• Aaron Ray (PhD Candidate, CSAIL) - Aaron’s background in high-speed motorsports
includes experience with both MIT Driverless and Brown Formula Racing. Before joining
the team as a planning software engineer, Aaron built simulation infrastructure with Kitty
Hawk for the recently released eVTOL vehicle.

• Dan Reilly (Mechanical Engineering + LGO Candidate) - With MIT Driverless Dan is
responsible for developing industry partners and managing all sponsor relationships. Prior
to the role, Dan led the General Electric quality and production teams which manufactured
gas turbines at factories in 3 different states with an annual budget of $100M.

• Nick Stathas (Computer Science Engineer) - At NVIDIA Nick developed infrastructure for
the Driveworks team, a group focused on enabling the autonomous vehicle engineers of
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the future. With MIT Driverless he leads a group of engineers developing high accuracy
objection detection algorithms using LiDAR.

• Charlie Vorbach (Computer Science Engineer) - as the controls system architect for MIT
Driverless Charlie leads the groups developing both the high level and low level controls.
Charlie is a racing fanatic, and prior to his role developing autonomous vehicle software he
worked on the MIT Motorsports embedded software team.

• Sibo Zhu (Artificial Intelligence Research Assistant, EECS) - As the director of artificial
intelligence at MIT Driverless, Sibo leads a group of engineers developing deep neural
networks for both perception and planning. Outside of his work with the team, Sibo’s
research focuses on bridging the gap between academia and industry by bringing efficient,
high-performance, low-latency learning-based algorithms to real life.

4 Software Architecture

We intend to split our pipeline up into 4 distinct sections, each with their own dedicated group. A
high level overview of each of these sections is as follows and shown in Figure 2:

• Perception: The perception system will take in data from the cameras, LiDARs, radars, and
all other sensors available and output the driveable space in the immediate vicinity of the
vehicle. It will also be responsible for localizing all perceivable agents nearby.

• Mapping and Localization: This system will fuse data from the odometry sensors in consort
with the perception data to simultaneously produce a map of the environment based on the
known track geometry. It will also output the vehicle state and the state of other agents.

• Trajectory Planning: The trajectory planner will ingest the map of the track, the vehicle’s
current state, and the state of any other agents around the vehicle. The planner will simulta-
neously predict the future actions of the other agents as well as plan a raceline optimized
trajectory for the vehicle based on an estimated friction coefficient.

• Controls System: Based on the trajectory planner’s raceline, the controls system will
determine the optimal current outputs to the actuators. This will be split into high-level
controls which will determine the optimal acceleration and heading profiles, and low-level
controls which will convert these profiles into actuator currents.

Figure 2: Autonomous Pipeline Concept
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5 Perception

Our group has a wide range of experience using camera and LiDAR based vision. Because of our
past successes with these sensors we intend to call on this experience for developing a robust and
highly accurate perception system to determine the drivable region and localize all external agents.
The general strategy will be to use the camera based vision for schematic understanding of the
environment (i.e. 2D space localization) and then, combined with the relative pose of the LiDARs
and cameras, use LiDAR based vision for ranging.

For semantic understanding we intend to use a machine learning based approach with a separate
network for each of the two tasks. Agent localization will be accomplished using a custom YoloV3 [8]
based network developed internally at MIT Driverless. Over the last 2 years of development, our
work has reduced the latency of this neural network by over 20x and reduced its misclassification
rate by 50% relative to the vanilla implementation [12]. This makes it possible to use such a deep
network for 2D space agent localization. A common pitfall of most 2D space localizers is the
noisiness in the bounding boxes which can cause issues for downstream networks as the output
of Yolo is constantly jittering. To smooth this out, we intend to deploy the recent work from the
MIT HAN lab, the Temporal Shift Module [5] which exchanges information from the feature maps
of neighbouring frames to inform the current frame of what happened in the past. This greatly
reduces jitter without any computational burden. For driveable region determination we are currently
still exploring machine learning based approaches however we believe that an image segmentation
approach will be most appropriate.

We also intend to explore a machine learning based approach for agent ranging using LiDAR. After
the point cloud is filtered using the detection from the camera, this information needs to be turned into
a single range estimate for the agent’s location. For this, we intend to draw on our group’s experience
developing PVCNN [6] which is capable of segmenting point clouds to separate the agent from the
background. With the agent being segmented, taking the centroid of the remaining point cloud would
then be possible. PVCNN takes advantage of the low memory footprint of point cloud based models,
and the computational efficiency of voxel based models.

6 Localization

As the sensor fusion output feeds almost all downstream nodes it becomes a high risk node for failure.
To compensate for this, a dual redundant vehicle state estimator will be used. The main estimator
will be based off of a custom built extended kalman filter with output prediction capable of accurately
localizing the vehicle at 250Hz with 10cm accuracy. In its current use case with an ADIS16497 IMU
and dual antenna Trimble BD992 GPS polled using a pixhawk flight controller, the system outputs
state estimates with latencies of approximately 5ms. For simplicity purposes and risk mitigation,
the redundancy kalman filter will be based solely on odometry without input from the perception
system. Information about the current built up map and the anticipated map (the Indy Oval) will also
be leveraged to assist in localization.

The exact formulation of how the map generation process will be combined with the sensor fusion
process is still yet to be defined. On our current platform, we are developing a SLAM system based
on iSam2 which will be considered for the Indy Challenge. Prior to map generation, evidence of the
world will come in from the perception system and be filtered and matched to the existing map in the
data association node. In the past we have accomplished this using a Multiple Hypothesis Tracker
algorithm [2]. This filtered local data will then be fused with the current map in the mapper node.

7 Trajectory Planning and Behaviour Prediction

Our trajectory planning subsystem will generate high-level plans for the controls system to follow.
These plans must take into account both static track layout (e.g. the optimal racing line around each
corner) and dynamic responses of other cars (e.g. overtaking and collision avoidance). Traditional
autonomy systems have often considered these pieces separately. A behavior prediction system
predicts how other agents will behave over a short horizon, and then a path planning algorithm
finds the fastest collision-free path. These systems often attempt to plan paths that are guaranteed
to be collision-free under any reaction of other agents which we believe falls short in competitive
situations such as racing. If some cars always yield to others in order to prevent collisions, then
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an aggressive car can take advantage of these safer cars by driving more dangerously knowing that
the safer cars will yield. As a result, a car planning a guaranteed collision-free path must be overly
conservative. We believe the solution is to leverage recent work in simultaneous path planning and
behavior prediction in competitive game situations. Recent work from MIT has shown that directly
considering opponents responses during the planning process can dramatically improve performance
in drone racing [11], and online estimation of cars’ aggressiveness can greatly improve trajectory
estimation [10].

In addition to these multiagent planning considerations, our trajectory generation pipeline will
consider optimal racing lines. Leveraging existing work on racing line optimization [1], our car will
be able to follow the globally optimal racing line. We will extend existing offline optimization tools
to account for observed friction on the track, which may deviate from the predicted friction map due
to modeling inaccuracies, weather differences, or change during the race (tire and track heat changes).
The ability to loop the online friction estimation directly into the planning and control algorithms
gives us hope of exceeding the limits of how well a human driver can perform.

8 Controls

Our controls strategy will use a high-level predictive controller in combination with a low-latency
low-level feedback controller. The high-level controller is intended to be formulated as a nonlinear
model predictive controller. Assuming the vehicles have individually actuated brakes, the low-
level controller will perform traction control and torque vectoring at a higher sample rate than the
computationally intensive high-level controller. This fast feedback allows us to control dynamical
responses which would otherwise be too fast for our high-level controller. In addition to this, our
low-level controller can use feedback cancellation to simplify the vehicle dynamics the high level
controller must account for and thereby reduce solve times.

To aid the trajectory planner’s friction estimates we can perform online parameter estimation for our
vehicle dynamics model from driving data with a fitted value iteration scheme. This allows us to
refine a greybox vehicle model to real-life conditions, including track friction and tire temperature.
This will greatly improve the accuracy of the high-level predictive controller.

9 Training Infrastructure

To aid in designing and training the perception system networks and any others downstream we
will deploy the Once For All [3] network, developed by the MIT HAN lab. The network builds a
specialized neural network for specific hardware by selecting custom architectural settings (depth,
width, kernel size and resolution), without any additional training. The result of this is a low-latency
network customized for the hardware it is being deployed on. To further reduce network latency
model compression and quantization will be used to allow complex models to run with limited
compute resources. Conventional model compression/quantization techniques rely on hand-crafted
heuristics and rule-based policies that require domain experts to explore the large design space. To
accelerate this process, we use MIT HAN lab’s recent researches: AutoML for Model Compression [4]
and Hardware-aware Automated Quantization [13], which both leverage reinforcement learning to
provide model compression and quantization policies which consistently result in networks with
higher accuracy, low latency, and lower memory footprint than their conventionally tuned counterparts.
By utilizing AutoML and Once For All neural network architecture search, we have a whole pipeline
that automatically design and optimize deep learning model, improving performance and efficiency
significantly. It is worth to note that our AutoML techniques can outperform human designed model’s
performance and received 1st place in Low Power Computer Vision Challenge, both classification
and detection track.

10 Testing

The majority of our testing efforts will be focused on physical testing. Although we have benefited
significantly from the CI/CD and automated simulation infrastructure we’ve set up, a key contributor
to our team’s success during the 2018-2019 Formula Student Racing season was the development
of our testbed. Shown in Figure 3, our testbed is a quarter scale version of our race vehicle which
enabled the team with a low-cost and low-activation-energy avenue to test out features they had been
developing on a weekly, and sometimes daily basis. Although scaled down, the testbed has a full set
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of the autonomous hardware which greatly simplifies integration onto the large vehicle as many of
the systems-level issues are quickly rooted out. An additional benefit is the lack of constraints on
testing space this provides. Since the vehicle is much smaller, it can easily be tested in parking lots
rather than needing to find designated testing areas, yet it is still capable of going 80kph. This top
speed puts the vehicle into a regime where the models used by the controls team must be dynamic
rather than kinematic which is similar to those that will be used on the full scale Indy-Light. For full
scale testing, the team will use our connections at Palmer Motorsports Park to test out the full vehicle
at its design speed in a representative environment.

Figure 3: 25% scale testbed vehicle of MIT Driverless

11 Fundraising

MIT Driverless has developed strong relationships with important industry players (Magna, Waymo,
Arrow, etc.). Currently, 100% of the team is funded by corporate sponsors who not only value the
branding opportunities that the team provides but also the chance to recruit talented MIT engineers
who have experience in applied autonomy. We are already having discussions with our current
sponsors to extend their support and funding for the Indy Autonomous Challenge. Additionally, the
team is engaging in promising discussions with new potential sponsors, as well as some internal
departments within MIT which could also provide funding.

12 Project Management

As shown in Figure 4, the team’s organizational structure will be set up as follows:

Figure 4: MIT Driverless Organizational Structure
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The captain position, engineering lead, and two sub-team leads will be filled with PhD students and
postdocs from the following labs:

1. HAN Lab, led by professor Song Han, will provide PhD students to lead the perception
pipeline.

2. We are currently in conversation with CSAIL to provide postdocs and PhD students to fill
the Team Captain, Engineering Lead, and Planning Lead positions.

The localization and controls leadership positions will be covered by two of the current sub-team
leads in the MIT Driverless team. Additionally, the 20 engineers currently working in the team
will continue to be part of the 4 engineering departments. The current business operations team,
composed of MBA students from MIT Sloan, will continue leading the fundraising, partnership
management, procurement, marketing, and HR efforts. Finally, a technical product manager (TPM)
will be recruited from the Product Management Group at MIT Sloan. The TPM oversees the project
timeline, sprints, leads status/planning meetings, etc. The team uses Asana as its main planning tool.
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Introduction: 
With the rise of autonomous vehicles in research and industry, robust autonomy algorithms and              
systems are in high demand. Companies such as Argo AI, Uber ATG, and Waymo are all                
working towards creating autonomous vehicles that can be deployed in the general public. The              
Indy Autonomous Challenge strives to have teams tackle this emerging need in the rather unique               
environment of a racetrack. This competition offers an edge case to rival current advancements              
in the field by having teams race head to head in a high-speed competition. 
 
This whitepaper will give some background information on our team, and introduce technologies             
related to robotics on a high-level. After which it will go deeper into the challenges to these areas                  
that are introduced by the high-speed environment. Finally, it will discuss some of our              
approaches to these challenges and our approach as a whole. It is important to note that since the                  
hardware platform has not yet been determined much of this is based on what sensors and                
compute we expect we might have. Once the hardware platform is determined our strategies will               
be developed in greater depth in a way that may or may not line up with the technologies and                   
approaches discussed in this paper. 

Our Team: 
Our team is comprised of members from the University of Pittsburgh’s Robotics and Automation              
Society (Pitt RAS) club. In addition, a significant number of our team are former Pitt RAS                
members who are now master students, full-time engineers, or research interns at the Robotics              
Institute at Carnegie Mellon University. Overall, our team has a unique mix of individuals with               
varying skills and experience. 
 
From involvement with the Robotics Institute, many of our team members have worked on              
cutting edge technologies and research areas in robotics, including Unmanned Aerial Vehicles            
(UAVs), Simultaneous Localization and Mapping (SLAM), localization, multi-agent planning,         
mapping, motion planning, object detection and classification, and more. Other members of our             
team have engaged in personal projects that have allowed them to gain experience with computer               
vision, hardware development, and systems integration. Due to the diverse background that our             
team possesses, we believe that we have the resources and knowledge to do well in this                
competition. 

Current Technologies: 
Robotics is an interdisciplinary field; for a robotic system to operate efficiently, many             
mechanical, electrical, and software components need to be designed and integrated successfully.            
If any of these areas are lacking, the system as a whole has suboptimal results. Since this                 
competition is software focused, we will be focusing primarily on software-related solutions. 

Perception:  
A robot’s perception system’s purpose is to take in multiple sensor sources in order to gain                
information about their environment and surroundings. Often the sensor data comes from a             

 



 

LIDAR, which provides highly accurate long-distance information; or a high-speed camera,           
which provides a much higher resolution and rapid refresh rate. The actual task of identifying               
objects is accomplished using machine learning and other algorithms, which process incoming            
data in real-time to identify and track features in the environment.  
 
The multi-modal aspect of perception is particularly important to robust sensing. Another vehicle             
may be identified from inter-car communication, LIDAR point-cloud processing, and camera           
images. To combine and make sense of information from these three modalities, the state              
estimates can be fused in something like an Extended Kalman Filter (EKF), which provides a               
statistical and non-linear filter for state estimation. By fusing these inputs intelligently the robot              
will be able to maintain an accurate awareness of the environment regardless of sensor dropout               
or inaccuracies. 

Localization: 
Localization is the generalized field of maintaining an accurate belief of where the robot is in the 
world. Through sensor sources as well as visual features, a robot can infer it’s position in the 
world. With an accurate pose estimate, it can both navigate and interact with the environment 
around it. Localization is often difficult to accomplish due to noisy data from sensors as well as 
the prevalence of featureless environments. 
 
In order to tackle this concern, a variety of state estimation solutions are applied. But, the most 
common application is an Extended Kalman Filter (EKF). Although there are many solutions 
meant to span a range of applications, the base implementation relies on multiple sensor 
estimates that are globally “correct” but jump, such as GPS and other estimates that drift over 
time but are continuous, such as wheel encoders, and Inertial Measurement Units (IMUs). Our 
approach to localization is discussed in greater depth later. 

Mapping/SLAM: 
In order for a robot to accurately navigate in an environment over time, it needs to understand the 
location of the objects it perceives in the world around it. It can then use this map to make 
inferences about the world as well as craft a global plan or trajectory to follow. 
 
A common solution for mapping is Simultaneous Localization and Mapping. This process 
combines both localization and mapping into one function to give a robot the ability to both 
create a map of the world around it as well as place itself and localize the said map. Most SLAM 
algorithms take in data from LIDARS, cameras, IMUs, and laser range finders in order to 
accurately reflect limitations and obstacles in the environment. 
 
These sources are used to create a 3d point cloud map of the world. A point cloud is a set of 
points within a space that are usually extracted from depth measurements. Depending on the 
quality of measurements a point cloud the quality of the cloud can range from being sparse to 
being dense. In order to make this map a useful source for planning, a 2D occupancy grid is 
created. An occupancy grid is a grid representation of a space where zero indicates free space 
and numbers above zero indicate free space. It is created from the projection of the 3D point 

 



 

cloud onto a 2D plane. Motion planning algorithms utilize this occupancy grid to navigate in the 
environment. 

Motion Planning:  
Motion planning is the culmination of mapping, perception, and localization. The robot uses its              
current map and its position, obtained via localization, to plot its next course of action (i.e. lane                 
changes, swerving in a lane, etc.). The planner takes into account both the current goal and                
obstacles present on the map to chart an ideal path. This path is constantly being updated to                 
account for dynamic changes to the environment. 
 
It is important that motion planning occurs rapidly, as the vehicle is moving very fast and the                 
map is also being updated at a high rate. Conventional search and optimization-based planners              
and trajectory generators suffer from potentially being unable to generate a valid plan, which              
leaves the vehicle in a position where it does not have an updated path to follow. To get around                   
this, state of the art systems use an ensemble of planners, which reduces the chance that the                 
whole system cannot produce a viable plan. 

Controls:  
Most low-level control structures are implemented using Proportional Integral and Derivative           
(PID) control loops. A PID controller generates a control signal to reach and maintain the desired                
state that is a function of the target state and the current state, which is obtained via sensor data.                   
The target state and current state are compared to produce an error, which is fed to the PID                  
control algorithm. The PID controller then takes a weighted summation of the proportional error              
and the integral and derivative of the error over time to generate a response. The weights used                 
during the summation are parameters that must be tuned in order to achieve the optimal               
performance of the control loop. 

Challenges: 

The main challenge of this competition is the issue of speed and the effects that it has on the                   
autonomous performance of the vehicle in addition to the presence of other vehicles on the track.                
Since the competition is an extreme edge case in regards to current robotics work being done in                 
the field, it tests the limits of current algorithms widely used and implemented in existing               
applications. 

Perception: 
With computer vision, we will have to detect the other vehicles in both a fast and accurate 
manner. A traditional object detection algorithm distorts the image and runs it through a neural 
network or other feature extraction algorithms. This process is often resource-intensive and slow. 
The fast nature of the competition precludes slow algorithms. Most of our efforts on this front 
will be placed towards optimizing our algorithms so they can run at the rate required for the 
competition. 

 



 

Localization: 
The big challenge with localization is the significant drift that will occur from traditional filter 
sources. Traditionally, odometry data is highly susceptible to drift which is further exacerbated 
by the high speeds and can cause poor mapping conditions.  

Mapping/SLAM: 
Most of the challenges occur when trying to achieve loop closure while creating the map. Loop                
closure is the stitching of two different maps based on the recognition that a location has been                 
visited before. There will also be noisy point cloud data from other cars surrounding our own.                
This will create challenges since the creation of a map depends highly on having many               
distinguishing features in an environment.  
 
There are several challenges as it pertains to SLAM at high speeds. Many popular SLAM               
algorithms rely on point cloud data from a LIDAR, but time synchronization issues can occur               
between different sensors when a vehicle is moving at high speeds. This time synchronization is               
necessary in order to achieve both loop closure and to create a map that is reflective of the                  
environment. In addition, the imperfect nature of circling the track may cause distortions with              
our map. 

Motion Planning: 
The main challenge with motion planning is having a planner that can both predict the actions of 
other vehicles as well as navigate around them. The probabilistic dynamics and constraints for 
the car may prove to be computationally expensive. This is further complicated by the algorithm 
having to be performed in real-time.  

Controls:  
When discussing PID control for use in autonomous vehicles there are two main areas of               
concern. The first issue is that due to ever-changing road conditions the desired state, or               
“setpoint”, maybe constantly shifting or even oscillating. This means that we will have to tune               
our controller to be more aggressive such that the output will match the setpoint faster. However                
aggressive tuning has its own issues such as higher overshoot and lower margin of stability,               
which can translate to oversteering and even a complete spin out for the vehicle. So then our                 
challenge becomes to tune the loop so that it is sufficiently aggressive while also minimizing               
overshoot and maximizing stability.  
 
Another key issue is that the dynamics of our system may change over time. Since classical PID                 
control assumes that the input/output relationship of the system is static, as the dynamics drift               
from the initial system our control loop will become slower and less stable as a result. This                 
means that we may need to figure out how to recompute the dynamics of the system and return                  
the PID coefficients on the fly in order to maintain optimal movement. If we find that PID                 
control is insufficient for the resolution and control necessary to operate at high-speeds with              

 



 

Ackerman steering, we are prepared to implement an LQR control scheme instead. While this              
increases the complexity of control it should achieve robust control for this application. 

Our Approach: 

In order to perform despite these active challenges in vehicular autonomy, we will utilize several               
approaches. As discussed in the introduction there is some uncertainty as to what will be on the                 
competing vehicle so we are providing an approach that accounts for varying degrees of              
specifications of the competition. We anticipate that the car will have a sensor suite including               
lidars, cameras, encoders, GPS, IMUs, and radar and will strategize around that. 

Overall Software Stack: 
All the members of our team have extensive experience with the Robot Operating System              
(ROS). ROS is a comprehensive framework for inter-process communication, data visualization           
and various other software capabilities that allows for the rapid integration of software for              
robotics systems development. If ROS is unable to run the algorithms at the high rate required                
for the competition, we have several members who are experienced with multi-threaded            
applications and inter-process communication who would be able to craft a custom software             
framework that is able to meet our needs. 

SLAM: 
While there is some uncertainty as to what sensors will be on the vehicle, our overall SLAM                 
strategy will involve feature extraction from a few data-rich sensors while using wheel odometry              
and IMU data or basic interpolation of velocity and acceleration data to achieve the update rate                
required for planning algorithms. 
 
A few examples of what data-rich sensors might be used as inputs are global-shutter cameras,               
LIDAR sensors (like the VLP-16) or perhaps a radar. This data must be filtered to remove                
distortion due to the high speed (with either image processing if necessary or individual point               
stamping). Then another filter will be used to differentiate dynamic features from static features.              
The static features can be used to localize unto the track and build a map thereof. The dynamic                  
features (cars) can be tracked over time for use in the planning algorithms. 
 
The odometry from data-rich sensors and wheel odometry and IMU data will continually feed              
into each other to provide a reliable position The integrated position from wheel odometry and               
IMU data will give a high rate pose estimate that can be used as a baseline for the data-rich                   
sensors to localize unto the map from. Once these data-rich sensors determine a pose they can                
feed that back into the high-rate odometry. 
 
It is important to note that these sensors must be positioned somewhere they will detect features                
around the track and not solely dynamic features or features common to the whole track (eg: part                 
of a railing or a mark on the track itself that is repeated the length of the track). While we find                     
this case unlikely, if no such data is available we will adapt to a different SLAM approach that is                   
driven by internal sensors and perhaps a GPS if that is available. 

 



 

Motion Planning: 
Although the amount of information shared between the vehicles has not been finalized yet, we 
presume that this information can be used to influence our decision. We plan to use the 
information swapped between cars in order to predict the future movements of race cars around 
us. Depending on what information is available, we will attempt to fill in the gaps in the data 
with statistical filtering and prediction to estimate future vehicle movement and avoid collisions. 

Testing Approach: 

Simulation: 
The Gazebo simulator is a robust simulator that allows for close to real-life testing of robotics                
systems. Simulation is a great testing tool for observing how software and physical systems              
translate to real life, but one of the drawbacks is that it occurs under ideal conditions. When                 
dealing with physical systems there are many uncontrollable factors including lighting, weather,            
as well as imperfect controls, and actuation that cause unintended results. Although many details              
of the simulation are unknown, we will be taking these factors into consideration when receiving               
and working with the simulation software as well as developing the software for our vehicle. 

Physical System: 
In order to test our physical system, we plan to coordinate a test track with the Formula SAE                  
team at the University of Pittsburgh to safely test our vehicle. Every year in Pittsburgh, PA the                 
Pittsburgh Shootout event is held for Formula SAE teams. The event is held at the Pittsburgh                
International Race Complex. We plan on coordinating with managers in this space to gain access               
in order to test and validate the performance of our vehicle. 
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Abstract—With recent advancement in hardware and software
design we have seen rise in the field of research for autonomous
driving in past few years. There is a lot of research going
on in this field and autonomous driving is being expanded to
various other fields like space exploration, delivery robots and
industrial transport vehicles. With this project, we would like to
design, research and implement an autonomous vehicle for car
racing. Car racing is a more complex subfield of autonomous
driving as the autonomous system is not only responsible for
safe driving but also participating in the competition of racing.
The competition of racing requires minimizing lap times though
increase speed and trying to hit certain way points along with
trying to gain position on the track and avoid crashing into
other competitors. Further, the environment itself introduces new
challenges and opportunities for design of autonomous vehicles.
Learning algorithms uses information from variety of on board
sensors which are highly dependent on the features they grab
on to. So, in this paper we propose the details regarding the
process and the procedure on how we plan to going about with
the project, how the management of the project is going to be,
how we are going to get the required funding and also how we
are capable technically to carry out the various required tasks.

I. INTRODUCTION

This paper is designed to outline the Rochester Institute of
Technology’s (RIT) official entrant into the Indy Autonomous
Challenge, RIT Autonomous Racing, and the team’s plan to
meet the goals of the competition. This paper will outline
the history and formation of the team, previous experience
with autonomous systems, team management and plans to be
successful in the Indy Autonomous Challenge.

A. Team History

The team was formed at the end of November and is
recognized by the Kate Gleason College of Engineering as
RIT’s official entrant into the Indy Autonomous Challenge.
The first recruitment meeting was performed at the start of
January, 2020. The team was formed specifically to compete
in the Indy Autonomous Challenge, but pulls students from
other racing competitions like Formula SAE.

B. Team Composition

The team currently consists of a talented and diverse group
of 40 students from RIT. This includes students from the
Kate Gleason College of Engineering, Saunders College of
Business, Golisano College of Computing and Information
Sciences, College of Engineering Technology and College of
Science. Due to having students from a wide selection of

colleges at RIT, this means that the team has a variety of
majors being studied to help support the team’s efforts. This
also includes majors not typically associated with machine
learning or autonomous solutions. Members of our team are
also receiving degrees in imaging science along with web
and mobile development. Currently the team comprises both
graduate and undergraduate students, including master stu-
dents in the discipline of autonomy. Currently members of the
team are conducting research to provide autonomous operation
for industrial equipment. This includes adding localization
to fork trucks using 60GHz millimeter-wave (mmWave) by
designing a machine learning based localization system and
UWB beacon using time of flight information.

II. TEAM BACKGROUND

Two (2) students from the team are also involved with
a project where they are working on automating a forklift
for a warehouse. The goal of the project would be to use
various sensors, similar to this autonomous car racing project,
to make the forklift capable of carrying on various complex
warehouse tasks on its own without human intervention. Hence
the knowledge gained there could be transferred here and
hence in this way the team would gain expertise in automated
driving systems.

A group of eight (8) students from the team are also
participating in a local AWS Deepracer competition. The final
race for this competition will be in March, but will provide
valuable skills to racing that will carry over into the Indy
Autonomous Challenge. This includes training reward based
machine learning models, racing line, turn shape and speed
control.

III. COMPETITION DEVELOPMENT

The section outlines current assumptions about the competi-
tion and how the teams plans to tackle the different challenges
of an autonomous vehicle.

A. Software and Hardware

All the code that we write would be in either a python
based framework like Keras,Tensorflow,PyTorch, etc or C++
or a mixture of both depending on what base libraries are
available for the task. Also, we feel that we would use ROS
and its libraries like Gazebo and RVIZ for simulation before
we get the actual car or its simulator. We have already started



to simulate a small Ackermann Steering based car on ROS
and Gazebo to see how we could give velocity commands to
it and how we could get the odometry from the vehicle.

B. Navigation Localization

Localization and navigation are two of the fundamental
requirements of any autonomous system. The localization
enables the agent to answer the question of where I am
given an environment. Further, navigation uses the localization
information to carry out the required task like point-to-point
navigation. Various information or features are used to provide
the localization information to the autonomous agent. For this
different sensors are used like GPS/IMU, LiDAR, RADAR.
The idea is to build a map of the environment and then
based on that the vehicle can localize. One of the most
common and heavily used techniques is called Simultaneous
Localization and Mapping (SLAM). Where typically LiDAR is
used and a map is generated based on the sensor reading of the
environment, then the generated map can be saved and used
by the agent to provide the location information. The accuracy
of SLAM varies based on the dynamics of the environment
and the sensor used, as different sensors are susceptible to
different environment changes. To mitigate the shortcomings
of different sensors, multiple sensors are used to provide more
accurate and robust localization and navigation system. GPS
can be used to provide a good startup estimate with good
accuracy but considering a 2D positioning, the accuracy of
GPS is good in the y-dimension (down the road) compared
to the x-dimension. Considering the autonomous movements
we require high precision in both the dimensions. For this,
sensor fusion approach can be used where different sensors
can provide the certainty of the position and can be combined
in a probabilistic approach to estimate accurate and precise
location. Extended Kalman Filter (EKF) and particle filter are
two common approaches towards sensor fusion. In the case of
autonomous racing, we would first map the entire circuit and
then use localisation in that mapped area. The challenge would
be to localise itself given various obstacles like the other race
cars and maybe even flying debris. Hence, we would have the
car learn various landmarks on the map and for localisation it
would refer to those previously marked landmarks. In many
cases, the landmarks would be occluded by other cars and
hence we would have to use GPS along with the other sensors
for localisation.

C. Obstacle Detection/Avoidance

The autonomous agent while in motion should be able to
identify many different obstacles and objects. The information
from it is used in path planning to estimate the best path
for navigation. Further for the safety of the surrounding and
the vehicle the object detection is very critical and requires
very high classification accuracy. For this, information from
vision based sensors can be used to train different classification
systems based on machine/deep learning systems. Typically
cameras are used to record the images of the surroundings and
the images provide the features on which different models can

be trained and deployed, then in turn we could use this data
from the models to train a model.

D. Path Planning

Path planning can be viewed as the task of moving an au-
tonomous agent from a given location to a final destination or
goal in the shortest possible time while avoiding any obstacles
in between. Different algorithms like A* (A-Star), D* (D-
Star), Dynamic Window Approach (DWA) and greedy best fit
search can be used to provide the path planning information
for the autonomous agent. Here the time complexity is of the
main concern, as we require the shortest possible time for
the algorithm to generate the path at runtime. Many different
hybrid approaches are also used with the A* to optimize
for time. Recently many Reinforcement Learning (RIL) tech-
niques are developed where the initial estimate can be provided
by the RIL for the optimizer to solve, resulting in reduction of
convergence time. Further, deep learning approaches can also
be used to provide the path information but require generation
of the dataset and simulation models to train the models. For
path planning there would exist two different planners namely
global and local. The global planner would be responsible to
route the car to the finish line while the local planner would
have certain checkpoints and would be responsible to move
the car from one checkpoint to the other while also taking
into consideration various dynamic obstacles such as other
cars. The local planner would modify the global plan based
on which route would be the safest to take. The shortest path
calculations would happen at both global and local planners
but they would not be directly responsible for learning the
racecraft. The racecraft would be learned by the deep learning
model which will come up with strategies according to the
rewards and punishments that we provide it with. For example
if we tell the model that hitting another car would be a
punishment for it, the model will eventually learn that hitting
other cars is bad. Hence in this way if we give it a combination
of different rewards and punishments, the model will learn
over time what is the best way to get to the finish line. So,
in this way the reinforcement learning/deep learning will be
integrated into the planners and will finally take over the
planners and come up with a better and fast strategy. In this
case, we would have to use multiple sensors for learning.
For example, the camera data would be responsible to let the
car know that it is going out of track and that would be a
punishment. In the same way the LiDAR data would be used
to gauge the distance between our car and the other cars or
maybe a wall and this could be used as a punishment or reward
as the model learns over time.

E. Sensor Integration and Communication

As many different sensors are used to enable the au-
tonomous driving capability, that means, the computation
requirement and the data bandwidth of these sensors are very
high. LiDAR and vision based sensors need very high data
bandwidth and processing the features from these sensors
are very computationally expensive. The need to process the



information online at runtime requires a good computation
machine and data processing capability on the vehicle. Further
as different information/decision for different tasks require
to share information among themselves the data bandwidth
reliability needs to be addressed during the development phase.

IV. TEAM ORGANIZATION

The team is organized into six groups to facilitate in
breaking up work and allowing greater participation from
those involved. Each group is dedicated to a specific task of
the challenge. The groups are path planning, path validation,
vehicle physics, data input, localization and race craft.

A. Path Planning

The path planning group is focused on determining the path
that should be taken by the race car. We say the path that the
car should take as there are times where the optimal path may
not be able to be taken. In the case of trying to perform a
pass on another car entering turn 3 of IMS, a path closer to
the inside of the turn may need to be taken. This type of
path would be not optimal in the terms of a shortest path, but
would provide an on track advantage to our team. Furthermore
the path planning group has to devise a way to save the path
that they want to take so that it can be validated by the path
validation group.

B. Path Validation

The path validation group’s responsibilities include verify-
ing how close the path taken by the car was to the path that
was intended to take. This is intended to allow feedback to
the car and team to help control outside unknown forces. Air
resistance and direction plays a role at IMS. These winds have
the tendency to push a car to the outside of a corner and
we need to be able to detect this situation and allow the car
to correct for it. This group will also work to validate how
closely the car can follow the path that was planned as this
may indicate a degradation in tire performance or issues with
the handling of the car.

C. Vehicle Physics

Vehicle physics is the group responsible for determining
how the car reacts to the physical world. This group will also
work to determine the suspension geometry and set up for our
car to try and achieve the best performance possible. Vehicle
physics also has a lot to play into the other groups as they
need to understand how the vehicle will perform under certain
conditions. This is important to providing a car that can meet
the conditions provided on race day.

D. Data Input

Data input is the group responsible for collecting the data
from the sensors on the car and interrupting the information.
This includes filtering the data that comes in from the outside
world. In the case of a camera, we may not want to use
portions of data that include the sky and that introduces
noise and processing times. This group is responsible for
determining how to filter the data and get it into a usable

form for the other groups. Another responsibility of the data
input group is understanding the sensors that are available and
how to effectively use them.

E. Localization

The localization group handles determining where the car
is on the track. This is important as the system needs to know
its current location on the circuit. This group will use data
from the sensors and determine the best information to use.
Ideally we want the system to be as accurate as possible in
determining the location of the vehicle on the track. Having
a low margin of accuracy could spell disaster as the vehicle
could be too close to a wall or another vehicle. We want to be
able to be as accurate as possible with a minimal processing
time so that the systems depending on the information can
receive the current location in a timely manner.

F. Race Craft

The race craft group is responsible for the strategy during
the final race along with the acts of racing. We believe that
due to the competition and other competitors that getting a
vehicle to successfully navigate the IMS oval will not be a
challenging task, but how we deal with other competitors on
the course will be the biggest challenge to overcome. Due to
the construction of the IMS oval only allowing a single racing
line and being a short race, being able to time passes correctly
will be a crucial part of creating a successful system. The race
craft group will be responsible for making decisions related
to the art of racing. This will include when to pass another
competitor, what position to be in on the closing laps, and
what type of driving strategy will be used. Traditionally the
Freedom 100, which employs the same chassis that is used
for the competition, has had a pass for the lead on the last
lap. This makes race strategy very important to being able to
win at the Indianapolis Motor Speedway. The race craft group
is looking to tackle these challenges so that our system may
have the same race planning skills and a driver and their team
on race day.

V. PROJECT MANAGEMENT

The team is currently recognized by the Kate Gleason Col-
lege of Engineering at the Rochester Institute of Technology
and is the official team from RIT participating in the Indy
Autonomous Challenge. The team is led by a faculty advisor
and two project leads. The current faculty advisor to the team
is Amlan Ganguly the Interim Department Head for the Com-
puter Engineering Department. The project leads are Andrew
Keats and Mark Chang currently both 3rd year undergraduate
students in the Computer Engineering department at RIT.

Currently the team meets once a week to provide updates
from each group. This includes team announcements and any
information that all members must be aware of. We are using
GitHub and the Google Suite of products for file and code
sharing. These items will help to distribute the code being
used and to allow tracking of changes made. We are also using
Discord to allow communication for the team. This helps with



providing different spaces for people to communicate ideas
instead of having one long email or text chain.

VI. SPONSORSHIP/FUNDRAISING

Since the team is a new organization at RIT, there are many
challenges that we must face in providing funding for our
effort in the competition. One of these challenges is knowledge
of the program and what our goals are. RIT host every year an
event called Imagine RIT. This event is a college level science
fair that takes over the campus to showcase student projects
and organizations. One of our goals is to participate in this
event to help draw attention to the program and possibly even
make sponsorship connections.

Another challenge that we are facing is a lack of sponsor-
ship connections or inability to meet companies sponsorship
requirements. Having talked with other organizations at RIT,
many of their sponsors pay for a specific part of the project.
In the case of RIT’s Formula SAE team a company may pay
for the engine or the carbon fiber that is used. Since there is a
lack of small individual items that have to be covered by the
team, we have found it difficult to convince companies to pay
for a portion of the Dallara IL-15 chassis as it is also difficult
to convince one company to pay for the entire chassis.

Currently RIT Autonomous Racing is working with RIT’s
Corporate Relations Officer to help in initiating connections
with companies for sponsorship. This includes many local
companies to Rochester, New York. The team has also looked
at running a fundraising campaign to raise money for travel
cost and other expenditures. This fundraiser would include
perks like t-shirts, sticks, thank you notes and even an inven-
tion to the final competition.

VII. COLLABORATION

At the current time the team is not looking to collaborate
with another team. We believe that we have the talent and skill
set to meet the competition requirements as a single team. We
would also like to avoid the complications of coordinating
between two different organizations.

RIT Autonomous Racing does understand that the chal-
lenges may change as the competition evolves and that we
may need to combine with another team to be successful. We
will continue to keep an open mind in the future and will not
discourage the opportunity if one comes along.
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Introduction 
Racing has long been a proving ground for        
cutting edge automotive technology. Many of the       
features we take for granted in a modern        
vehicle, such as rear view mirrors and disc        
brakes, were innovations that originated from      
motorsports. It makes sense that autonomous      
driving, something that is on its way to        
completely transform not just the automotive      
industry but also how we live, should be tested         
in a racing environment as well. The Indy        
Autonomous Challenge provides an excellent     
opportunity for students to do exactly that. The        
University of Waterloo is proud to be announcing        
its entry to the challenge. 
 
In this paper, we will introduce some of our past          
and present vehicle projects, vehicle facilities,      
and relevant faculty/research groups such as      
Waterloo AI. We will also describe how we plan         
to tackle the challenge in terms of software        
design. Lastly, we’ll touch on project      
management and funding. 
 
History in Automated Vehicles 
With more than 60 dedicated faculty members       
and researchers working on connected and      
autonomous vehicles, the University of Waterloo      
is heavily invested in automotive research. We       
are home to Canada’s largest academic-industry      
automotive enterprise, the Waterloo Centre for      
Automotive Research (WatCAR). Under    
WatCAR, there are two major autonomous      
vehicle efforts, Autonomoose (Moose) and     
Watonomous.  
 
Moose is a Lincoln MKZ that’s been equipped        
with a fully configurable suite of radar, sonar,        
lidar, inertial, and vision sensors. It's used by        
research groups across several different     

domains, including perception, motion planning,     
and power management.  
 
In November 2016, Moose was granted a       
license to drive autonomously on public roads in        
a provincial pilot program, and it was the first car          
in Canada to do so! Less than two years later,          
Moose has already covered over 100 km on        
public roads autonomously. Using data collected      
over the past few years of driving in the harsh          
Canadian winter, Moose researchers have     
created the Canadian Adverse Driving     
Conditions (CADC) dataset, which was released      
in February 2020. It aims to promote research to         
improve self driving in adverse weather      
conditions. 
 

 
Figure 1: The Autonomoose vehicle 

 
As it is a research platform, Moose is mostly         
worked on by our graduate students. However,       
Waterloo’s undergraduate students have their     
own autonomous car as well. Watonomous is a        
student led design team that competes in the        
SAE Autodrive Challenge. With membership     
count in the hundreds, it’s one of the largest         
student organizations on campus. It has four       
divisions: software, mechanical, electrical, and     
business. In early February 2020 they used their        

 



 

autonomous Chevy Bolt to give a ride to the         
Federal Minister of Science and Innovation, the       
Honourable Navdeep Bains. 
 
 

 
Figure 2: Federal Minister of Science & Innovation 
Navdeep Bains speaks at the AVRIL opening event 

after taking a ride in the Watonomous Bolt 
 
The Watonomous Bolt even got a chance to        
participate in the TV show The Amazing Race        
Canada. As a Speed Bump challenge,      
contestants from the show took an autonomous       
ride around campus in our Bolt.  
 

 
Figure 3: The Watonomous team with their Chevy 

Bolt 
 
Aside from these two autonomous vehicle      
teams, Waterloo has several other more      
conventional vehicle teams. There are two      
Formula SAE teams, covering combustion and      
electric. Midnight Sun, our solar car team, has        
been operating since 1988. They are currently       
representing us at both the American Solar       
Challenge and the World Solar Challenge with a        
custom built solar car. We have also been        
continuously involved in EcoCAR over the past       

22 years, spanning 6 iterations of the       
competition. 
 
Facilities 
The University of Waterloo just opened the       
Autonomous Vehicle Research and Intelligence     
Lab (AVRIL), a $4 million dollar research hub for         
autonomous vehicles. It features 10 truck height       
bays, level two charging for EVs, and a driving         
simulator built around a fully functional Chevy       
Equinox SUV.  
 

 
Figure 4: The newly opened AVRIL building 

 
The Sedra Student Design Centre (SDC)      
consists of over 20,000 square feet of space        
dedicated to design teams and student projects.       
It includes a sanding bay, paint room, and        
garages for team projects. It is located right next         
to one of UW’s machine shops, where students        
can fabricate parts for their projects. 
 

 
Figure 5: The SDC, with room for multiple vehicle 

teams to design and build their ideas 
 
Selected Professors Working with AVs 
Krzysztof Czarnecki is a Professor of Electrical       
and Computer Engineering, and he leads the       
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Moose project. Before joining Waterloo, he was       
a researcher at DaimlerChrysler Research,     
focusing on improving software development     
practices and technologies in enterprise,     
automotive, and aerospace domains. He was a       
part of the Moose team that successfully       
delivered an autonomous vehicle demo at CES       
2017, and subsequently drove in autonomous      
mode on public roads.  
 
Sebastian Fischmeister from Electrical and     
Computer Engineering performs systems    
research at the intersection of software and       
distributed systems with applications in     
automotive systems, and avionics. His work in       
reliable and robust embedded systems is crucial       
to the Moose project. He runs the largest        
embedded systems lab in Canada. 
 
John McPhee from the Mechanical Engineering      
Department heads Waterloo’s Motion Research     
Group. He has also served as the Chair for the          
International Association for Multibody System     
Dynamics. His research focuses on modeling,      
simulation model based control, and optimal      
design of dynamic physical systems, all      
important things when it comes to making a car         
go fast. 
 
Dongpu Cao holds the Canada Research Chair       
in Driver Cognition and Automated Driving, and       
the Director of Waterloo’s Cognitive Driving Lab.       
He has published over 180 papers and 2 books         
in the fields of vehicle dynamics/control, driver       
cognition, driver-automation collaboration, and    
automated driving; all areas we will need       
expertise from for the Indy Autonomous      
Challenge. He has also led a research       
consortium, CogShift, which collaborated closely     
with Jaguar Land Rover on level 3 autonomous        
driving.  
 
Amir Khajepour holds the Canada Research      
Chair in Mechatronic Vehicle Systems and the       
General Motors Industrial Research Chair in      
Holistic Vehicle Control. As the goal of this        
competition is to get cars driving autonomously       
at racing speeds, controls will be a huge part of          

the challenge. Professor Khajepour’s insights     
will undoubtedly be of great help to us. 
 
Derek Rayside is the Director of Software       
Engineering at Waterloo. He has led      
Watonomous as its faculty advisor since its       
inception. 
 
With many knowledgeable professors and a      
history of fostering successful student design      
teams, we are confident that Waterloo will be a         
strong contender in the Indy Autonomous      
Challenge. 
 
Technical Approach 
This section details our proposed autonomous      
driving pipeline. Considering that the final race       
will be ran at an average speed of over 120          
MPH, it requires the system to have high        
autonomy ability as well as efficient and       
real-time computation performance to be safe      
and competitive. The system consists of four       
modules: perception, cognition, planning and     
control.  

 
Figure 6: Proposed system architecture 

 
Although not shown in the system architecture       
diagram, The control module should be able to        
accept input from not only the onboard planning        
module, but also signals sent from the race        
organizers for features such as flagging cars,       
emergency stop, and calling cars back to the        
pits.  
 
The perception module enables the racing car to        
localize itself on the track, and also detect and         
track drivable areas, other cars, and any other        
obstacles that may show up on track by using         
information returned by sensors, together with      
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an HD map. An experienced human racer would        
memorize all the details of a track, so they can          
anticipate different parts of the track that’s       
coming up, which makes them more prepared to        
go through them. Similarly, HD maps also       
provides the vehicle with such information about       
the track. It contains information on landmarks,       
lane lines, road networks, etc, to help the vehicle         
overcome the limited working range of onboard       
sensors.  
 
Simultaneous localization and mapping (SLAM)     
is a useful technology in low speed applications,        
and when the vehicle has no prior knowledge of         
the environment it’s operating in. Since the       
Speedway’s layout does not change every lap,       
and we will be driving at high speeds, trying to          
construct a map of the track while racing is both          
unnecessary and unsafe. The competition     
should provide HD maps of the speedway. Then        
the vehicle will just focus on localization: figuring        
out where it is on the track/map.  
 
If we are going to drive at 120 MPH, it’s critical           
that our driving pipeline has minimal delays. As        
shown in the figure above, the car first has to          
make a best guess on where it currently is         
before it can decide where to go. When racing at          
high speeds, a GPS-only system is not sufficient        
due to its low frequency and errors in the urban          
areas, so it would make that guess based on a          
combination of GNSS, Inertial Measurement     
Unit (IMU), odometry, and perhaps also lidar       
data. In general, we will deploy a Kalman filter         
frame to estimate the states of the ego vehicle.         
GNSS uses satellite signals to obtain position,       
time, and velocity. IMU directly measures the       
acceleration of the vehicle for all 6 axes of         
motion (x, y, z, yaw, pitch, roll). Although IMU         
and odometry update rates can reach up to        
1000Hz, their measurements accumulate error.     
As time goes on, these errors get larger and the          
measurements drift away from the true position.       
By fusing IMU, odometry, and GNSS readings,       
the errors can be mitigated. However, the       
update rate of GNSS tend to be much slower         
than that of IMU, at about 20Hz. Therefore, we         
use IMU data, steering angle and throttle to        

make predictions of the states in the short        
future, and IMU errors are allowed to       
accumulate between each GNSS reading by an       
acceptable amount. By comparing the Laser      
scans from lidar of the current location with the         
HD-map using the iterative closest point      
algorithm (ICP), it can serve as the odometry to         
get the position and heading of the ego vehicle.         
Combining position and velocity data from      
GNSS, and position and heading data from lidar,        
we then feed them into the update step to         
complete the localization process. Assuming we      
can reliably obtain our position at 20Hz, at full         
speed, the vehicle would have traveled about a        
full car length between readings. Even if this        
update rate is higher, we will still have to         
account for such a delay in our planning and         
control models, which will be discussed later in        
this paper.  
 
The perception module also incorporates the      
capability of detecting and recognizing obstacles      
and signal lights. Given input LiDAR, RADAR,       
and camera inputs, the obstacle submodule      
detects, segments, classifies and tracks     
obstacles in the ROI that is defined by the         
high-resolution (HD) map. The submodule also      
predicts obstacle motion and position     
information (e.g., heading and velocity). The      
signal submodule detects signals (flags) and      
recognizes their status in the images.  
 
Obstacle perception includes LiDAR-based and     
RADAR-based perception, and fusion of both      
results. The LiDAR-based obstacle perception,     
based on the Fully Convolutional Deep Neural       
Network, predicts obstacle properties such as      
the foreground probability, the offset     
displacement w.r.t. object center and the object       
class probability. Then it implements object      
segmentation based on these attributes. The      
RADAR-based obstacle perception is designed     
to process the initial RADAR data. In general, it         
extends the track ID, removes noise, builds       
obstacle results and filters the results by ROI.        
The obstacle results fusion is designed to fuse        
the LiDAR and RADAR obstacle results. In       
general, it manages and associates obstacle      
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results from different sensors, and integrates      
obstacle velocity by Kalman Filter.  
 
The goal of cognition module is to predict other         
vehicles’ intention, which is required by the       
planning module. First, we segment the forward       
facing image into drivable and non-drivable      
areas. Based on the historical trajectory of other        
vehicles, we can train a network to predict its         
future trajectory and intentions, like overtaking or       
making a defense. If V2X data is available,        
which provides motion and/or control states of       
other vehicles, we can get even better       
performance.  
 
For navigating the racecar, an optimal racing       
line can be generated before arriving at the track         
by solving an optimization problem, using track       
geometries and vehicle parameters as     
constraints. The optimization problem is typically      
formulated with minimizing lap time as the goal.        
Considering the vehicle’s acceleration limits in      
both lateral and longitudinal directions, a path       
and a speed profile along that path is generated.  
 
Of course, we cannot rely solely on this path in a           
head to head race, where other cars can be in          
our way and simply reducing speed and       
following behind means we’ll never win the race.        
There has to be a path planning module running         
onboard that’s constantly replanning to avoid      
obstacles and find new fastest paths. This path        
planner will use obstacle locations, predicted      
future trajectories, and drivable area fed from       
other modules to decide on a new path. Since         
this can also be solved as an optimization        
problem, we can either generate a new path and         
have a separate control module that modulates       
steering, gas, and brake to track that path, or we          
can solve for the optimal driving actions directly        
with the goal of minimizing time and risk of         
contact with obstacles with a technique called       
model predictive control (MPC).  
 
MPC is a type of controller that predicts the         
system’s future trajectory, then adjusts inputs to       
the system such that the predicted future       
trajectory lines up with a given desired future        

trajectory. In our case, the controller will predict        
the racecar’s future path, and solve for a        
trajectory of future driving inputs (such as       
steering angle, throttle percentage, and brake      
pressure) for the car to track a path given by the           
planning module. When the input trajectory is       
calculated, only the first time step from that        
trajectory is actually sent to the vehicle. The        
entire process happens over and over again as        
obstacles move and reference trajectory     
changes. The reasoning behind using only the       
first time step in the input trajectory is that the          
prediction model is a simplified version of the        
physical system and is not perfectly accurate. As        
the prediction is propagated further in time, we        
have less and less certainly that it’s       
representative of what the system is actually       
doing, therefore only the first predicted input is        
used. As the combustion engine, gearbox, and       
brake system in these Indy Lights cars have        
their own complex dynamics, directly predicting      
throttle and brake pressure would make this an        
incredibly difficult problem to solve. A more       
realistic control structure is to use the MPC to         
predict steering angle and longitudinal     
acceleration, and have a lower level controller       
that manages gear shifts, throttle, and braking       
based on that longitudinal acceleration. We      
believe MPC is crucial to building a winning        
autonomous racing system. 
 

 
Figure 7: Input and state trajectory plot illustrating 

operation of a model predictive controller 
 
Project Management 
The University of Waterloo has a campus culture        
that revolves around building innovative     
technologies. As autonomous driving could be      
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one of the most disruptive technologies of the        
new decade, Waterloo students will most      
certainly want to be apart of the team. This has          
been proven by Watonomous, which receives      
hundreds of applications at every recruitment      
round. The new Indy Autonomous Challenge      
team will be attractive to an even broader range         
of students, from computer science majors who       
are interested in the various areas of       
autonomous driving software, to mechanical     
engineering majors who just want to build the        
fastest car, to business students who would love        
the opportunity to market and attract      
sponsorship for an incredibly exciting initiative.  
 
Through building the 100+ member     
Watonomous team, we’ve learned a great deal       
about managing a large group of students and        
we will be applying those lessons in building our         
Indy Autonomous Challenge team. Watonomous     
student leadership is among Waterloo’s best      
and our management practices are     
recommended to all student teams by the       
university. We also hire 1-3 full time co-op        
students per term and the experience in       
managing full time employees will be useful for        
the Indy team as well. 
 
Similar to Watonomous, there will be 4 divisons:        
software, mechanical, electrical, and business. A      
cross divisional drive crew will form the       
backbone of the team. A lesson learned from        
Watonomous was that having a multi-level      
management structure was not conducive to      
teamwork, so we will trial a flatter hierarchy. We         
will take full advantage of project management       
tools such as Jira, Confluence, and GSuite to        
track and prioritize tasks. We’ll use the       
objectives and key results (OKR) framework to       
define long term goals and success metrics.  
 

Table 1: Tentative Timeline 

Time Task 

January 2020 - 
May 2020 

Submit video of our vehicles     
operating autonomously 
 

May 2020 - 
June 2020 

Familiarize with the ANSYS    
simulator, conduct a literature    
review on how we can solve the       
simulation round. Define goal for     
September (that is when    
summer term students leave for     
co-op). 

June 2020 - 
September 

2020 
 

Work towards September goal.    
Try to get the simulated car      
driving reliably. 

September 
2020 - January 

2021 
 

Build with the intention of     
porting our work to a real car       
later on. Work towards a     
performant driving algorithm and    
have it ready by January. 

January 2021 - 
May 2021 

 

Search for a partnering school     
with facilities to run the car, get       
ready to put code onto the car. 

May 2021 - July 
2021 

Work on getting the car running      
on our code. 

July 2021 - 
October 2021 

 

Get the car to drive safe and       
fast. 
 

 
 
Fundraising 
Due to the multidisciplinary nature of the       
challenge, we can approach sponsorship from      
many different angles. There are plenty of       
engineering related companies that could benefit      
by collaborating with us. Having their logo on our         
car, apparel, social media, and website is great        
for brand awareness since Waterloo is one the        
top engineering universities in Canada. Another      
benefit they’ll receive by sponsoring us is a        
fantastic recruitment source. If sponsorship is in       
the form of materials, parts, or expertise, it        
makes hiring a breeze as they will have already         
worked with potential hires in a technical       
capacity. We will offer tiers of sponsorship, with        
increasing levels of benefits at each tier. These        
could be more prominent logo placement, social       
media shoutouts, job posting advertisements to      
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our members, and direct access to resumes. We        
can also host tours of the team facilities.  
 
Non technical organizations will be approached      
with the same tier system, but we might have to          
describe the project from another perspective.      
For certain organizations, we can present      
ourselves as students participating in an      
engineering competition for the purpose of      
education. We can also choose to highlight the        
excitement of racing, or the safety and       
environmental benefits of bringing self driving      
cars to our roads. According to the National        
Renewable Energy Laboratory, they have the      
potential to cut energy consumption by 90% by        
reducing the number of crashes and driving in a         
more fuel efficient manner. 
 
Aside from external sponsorships, the University      
of Waterloo has sources of funding for student        
projects as well. The Waterloo Engineering      
Society (EngSoc) invites student design teams      
to apply for funding 3 times per school year, and          
more than $10,000 is distributed per round. The        
student funded Waterloo Engineering    
Endowment Fund (WEEF) provides funding to      
any engineering student, staff, and faculty.      
WEEF focuses on funding projects that benefit       
undergraduate education, which the Indy     
Challenge certainly does, as it prepares the next        
generation of engineers for the rapidly changing       
automotive industry. There is also the      
Mathematics Endowment Fund (MEF), which     
supports projects that improve the     
undergraduate experience for Math and CS      
students. We will be eligible for MEF as long as          
we have CS students onboard.  
 
Conclusion 
This white paper outlines The University of       
Waterloo’s rich experience and expertise with      
autonomous vehicles, including relevant    
professors and current vehicle programs, and      
presents our proposed technical approach to      
automating an Indy Lights car to race around the         
Indianapolis Motor Speedway. The project     
timeline and potential sources of funding were       
also discussed. Waterloo is excited about the       

coming months and is looking forward to       
shaping the future of racing, and continuing the        
tradition of using motorsports innovations to      
improve conditions of ordinary motorists. 
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