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ABSTRACT

We assess the long-term effects of managerial stress on aging and mortality. Using a difference-

in-differences design, we apply neural network–based machine-learning techniques to CEOs’

facial images and show that exposure to industry distress shocks during the Great Recession

produces visible signs of aging. We estimate a one-year increase in “apparent” age. Moreover,

using data on CEOs since the mid-1970s, we estimate a 1.1-year decrease in life expectancy

after an industry distress shock, but a two-year increase when antitakeover laws insulate CEOs

from market discipline. The estimated health costs are significant, both in absolute terms and

relative to other health risks.
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Much of the academic and policy discussion about high-profile jobs in business and other arenas
revolves around pay, performance, and incentives. In the classical agency problem, a manager
aims to extract private benefits such as higher pay, loans, or perks at the expense of the owner
(shareholders). Less attention has been paid to another type of private benefit (or cost)—managers’
personal health and well-being. The more effort managers exert and the more stressors they are
exposed to on their job, the lower this benefit.

In this paper, we document that heightened managerial stress due to industry crises and corporate
monitoring predicts significantly accelerated aging and mortality among managers. Job demands
and work-related stressors are increasingly recognized as key determinants of population health
and well-being across all levels of organizational hierarchies.1 Yet there is little quasi-experimental
evidence that links health outcomes to variation in job demands and stress. One reason for the
lack of causal evidence is that, in the typical study sample of lower-ranked workers, income loss
and financial hardship tend to confound estimates of the causal effects of job stressors. That is,
while work pressures and the consequences of underperformance are in many ways harsher in the
context of lower-ranked workers compared to managers, as they include (long-term) unemployment,
financial hardship, and loss of health insurance, these consequences also make it harder to isolate
the health effects of work-related stressors from the effects of low income and financial constraints.

We overcome these identification hurdles by focusing on chief executive officers (CEOs) of
large, publicly traded U.S. companies. The CEO context allows us to isolate the effects of high job
demands from financial and other confounds as these CEOs are wealthy and unlikely to be affected
by financial hardship even if they lose their job. That said, the role of work-related stressors in
the CEO context is of interest in its own right for several reasons. First, CEOs work long hours,
make high-stakes decisions such as layoffs and plant closures, and face uncertainty in times of crisis
(Bandiera et al. (2020), Porter and Nohria (2018)). They are closely monitored and criticized when
their firm is underperforming, and the media frequently reports on “overworked [and] overstressed”
CEOs.2 Second, CEOs bear the ultimate responsibility for the firm and its employees. Given their
overarching role in determining firm performance and job stability of workers, how incentives and
performance affect CEOs personally is of first-order importance. Third, the health implications

1 See, for example, Marmot (2005), Ganster and Rosen (2013), and Kaplan and Schulhofer-Wohl (2018).
2 See CNN’s “Route to the Top” segment (cnn.com/2010/business/03/12/ceo.health.warning/index). See also the

Harvard Business Review article “How Top CEOs Cope with Constant Stress” (hbr.org/2011/04/how-top-ceos-cope-
with-constan) and expert psychologists’ statements in “Strategies for CEOs to reduce stress” (vistage.com/research-
center/personal-development/20200402-ceo-stress).
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of CEOs’ job demands affect their ability to stay on the job and, if anticipated, their willingness
to select into a CEO position. When CEOs like Tesla’s Elon Musk talk about sleeping only a few
hours per night and working up to 120 hours a week,3 how do such remarks affect selection?

We exploit two sources of variation in work-related stress: periods of industry-wide crisis and
variation in the intensity of CEO monitoring due to changing corporate governance regulation. With
respect to the first, prior work shows that industry shocks and financial distress affect CEO pay
and turnover (Bertrand and Mullainathan (2001), Garvey and Milbourn (2006), Jenter and Kanaan
(2015)). We identify industry distress shocks based on a 30% decline in the median firm’s stock
price over a two-year period, similar to prior work (Opler and Titman (1994), Acharya, Bharath,
and Srinivasan (2007), Babina (2020)). With respect to the second source of variation, we identify
variation in CEO monitoring from the staggered passage of antitakeover laws across U.S. states
in the mid-1980s. The laws shielded CEOs from market discipline by making hostile takeovers
more difficult, reducing CEOs’ job demands and allowing them to “enjoy the quiet life” (Bertrand
and Mullainathan (2003)).4 A large prior literature uses the passage of these laws as a proxy for
less intense monitoring and demonstrates effects on CEO behavior.5 While some studies question
whether the passage of antitakeover laws did in fact reduce hostile takeover activity (e.g., Cain,
McKeon, and Solomon (2017)), it arguably constituted a significant shift in managers’ perception

of their job environment.6 Thus, the two sources of variation constitute separate and oppositely
signed changes in job demands. Importantly, both build on the notion of distress and protection
from stress in the economic literature (and on the popular notion of stress), rather than a biomedical
measurement of adrenaline or cortisol levels.7

3 See cnbc.com/2021/02/12/elon-musk-ceo-of-tesla-spacex-on-getting-six-hours-of-sleep.html.
4 The prevailing view in law and economics at the time the laws were passed was that the “continuous threat of

takeover” is an important incentive that promotes managerial performance (Easterbrook and Fischel (1981)). Scharfstein
(1988) develops a formal model in which the threat of a takeover disciplines management, and in his opinion in Edgar v.
MITE then-U.S. Supreme Court Justice Byron White emphasizes “[t]he incentive the tender offer mechanism provides
incumbent management to perform well.”

5 For example, when protected by antitakeover laws, CEOs become less tough in wage negotiations and their rate of
plant closures and openings decreases (Bertrand and Mullainathan (2003)), they undertake value-destroying actions to
reduce their firms’ risk of distress (Gormley and Matsa (2016)), they reduce their stock ownership (Cheng, Nagar, and
Rajan (2004)), and their patent count and quality decreases (Atanassov (2013)).

6 Consistent with CEOs’ perceptions of antitakeover laws changing job demands, we find suggestive evidence that
takeover-protected CEOs remain on the job longer. We also show, however, that prolonged tenure is unlikely to explain
the estimated longevity effects.

7 Stress arises from experiencing demands without sufficient resources to cope (Lazarus and Folkman (1984)).
Biomedically, changes in hormones and other bodily processes due to stress can cause long-term damage and accelerate
aging (Brondolo et al. (2017), Franceschi et al. (2018), Kennedy et al. (2014)).
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To investigate the link between work-related stress and health, we employ two measures of health
outcomes: visible signs of aging and life expectancy. Visible signs of aging, which correspond to
how old a person looks rather than their actual chronological age, are widely used by clinicians
to assess patient health. These assessments of so-called “apparent” age have been validated as
biological markers predicting mortality and other health outcomes since at least the Baltimore
Longitudinal Study of Aging (BLSA) beginning in 1958 (Borkan and Norris (1980)). Prior medical
studies identify apparent age from facial photographs (e.g., Christensen et al. (2004), Christensen
et al. (2009)) and assess visible aging by comparing photographs of an individual’s face over
time. In this paper, we build on these studies, but integrate recent developments in visual machine
learning (ML). Specifically, we employ the algorithms of Antipov et al. (2016) that are designed to
estimate a person’s apparent age. This software is trained on more than 250,000 images and won
the 2016 ChaLearn Looking At People competition in the apparent-age estimation track. Visual ML
techniques offer a promising avenue for the assessment of work-induced stress. To the best of our
knowledge, we are the first to introduce them into the finance and economics literature.

Our analysis comprises three main parts. In the first part, we exploit industry-level distress
shocks during the Great Recession and relate them to visible signs of accelerated aging, as identified
by neural network–based ML estimations. In the second part, we exploit industry-level distress
shocks from longer and earlier time periods and relate them to CEO mortality. In the third part,
we continue to focus on CEO mortality and study the effect of variation in the intensity of CEO
monitoring due to corporate governance legislation. Across both health outcome measures and both
types of variation in managerial stress, we find consistent results of very similar magnitudes.

For the first part of the analysis, we collect a sample of 3,002 facial images of Fortune 1000
CEOs serving in 2006 (the “CEO Apparent Aging Data Set”). The images are from different points
in time during a CEO’s tenure, both before and after the 2007 to 2008 financial crisis. This crisis
lends itself to analysis of the effects of managerial stress as the large disruptions associated with the
Great Recession led firms to re-optimize many aspects of their operations, including plant closures
and layoffs, two of the tasks that CEOs most avoid when corporate governance is weak (Bertrand
and Mullainathan (2003)). At the same time, the financial crisis affected different sectors differently,
providing a suitable source of variation. It is also recent enough to ensure image availability.

Using a difference-in-differences design, we estimate that CEOs in industries that experienced
a distress shock look one year older post-crisis than CEOs in other industries. The estimated
difference between distressed and nondistressed CEOs increases over time and amounts to 1 to

3



1.2 years for pictures taken five years or more after the onset of the crisis. We include a detailed
description of the procedure and address issues that have been shown to impact the use of visual
ML in other settings (Wang and Kosinski (2018), Dotsch, Hassin, and Todorov (2016), Agüera y
Arcas, Todorov, and Mitchell (2018)). To the best of our knowledge, our analysis represents the first
application of visual ML to a quasi-experimental research design. Our application illustrates the
potential of visual ML for the study of health and aging to complement standard measures based on
mortality, hospital admissions, or survey responses.

In the second and third parts of the analysis, we study mortality effects associated with industry
distress and corporate governance legislation. For these analyses, we extend Gibbons and Murphy’s
(1992) data on CEOs in the Forbes Executive Compensation Surveys from 1975 to 1991. We merge
these data with hand-collected data on the exact dates of birth and death of 1,900 CEOs of large U.S.
firms (the “CEO Mortality Data Set”), and add information on pay, tenure, and firm characteristics.

In the analysis exploiting industry distress shocks, we estimate a hazard regression model.
Controlling for a CEO’s chronological age, time trends, industry affiliation, and firm location, we
show that industry distress increases CEOs’ mortality hazard by 15%. These results are robust to an
array of alternative specifications, including models with CEO birth cohort fixed effects, additional
firm and CEO controls, and birth cohort-specific age controls.

The estimated mortality effect is sizable: experiencing industry distress is equivalent to reducing
a CEO’s chronological age by 1.1 years on average. To further put this result into perspective, we
compare the estimated mortality effect to that of other known health threats. We find, for example,
that smoking until age 30 is associated with a reduction in longevity by roughly one year, while
lifelong smoking reduces longevity by 10 years (U.S. Department of Health and Human Services
(2014), Jha et al. (2013)).

In the analysis exploiting the staggered passage of antitakeover laws, we restrict the sample
to CEOs appointed before the laws were enacted to address selection concerns. We estimate
significantly positive effects on CEO life expectancy. Specifically, using analogous hazard models,
we find that one additional year under lenient governance decreases the CEO mortality rate by about
4%, which corresponds to a two-year increase in overall life expectancy for the average “protected”
CEO in the sample. The slightly larger effect, compared to the effect of industry distress, may
reflect the more permanent nature of changes in monitoring intensity, relative to the distress-induced
changes in job demands.

The main results hold across a variety of robustness tests. For instance, our findings persist
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across sample splits and classifications of antitakeover laws designed to account for additional
firm- or state-level antitakeover provisions and the exclusion of lobbying and opt-out firms, as well
as data cuts based on firms’ industry affiliation or state of incorporation (see Cain, McKeon, and
Solomon (2017), Karpoff and Wittry (2018)).

We also test for a compensating differential in the form of lower pay for CEOs as a result of
being permanently protected from hostile takeovers. Our analysis of CEO pay builds on Bertrand
and Mullainathan (1998) and on the predictions of the CEO market model in Edmans and Gabaix
(2011). We find no evidence of a response in pay. This result may indicate that not all parties fully
account for the health implications of job demands, although we note that prior literature generally
struggles to find evidence of compensating differentials outside of select settings and carefully
designed experiments (e.g., Mas and Pallais (2017), Lavetti (2020)).

Overall, our analysis establishes significant health consequences for CEOs arising from increases
in job demands. The finding motivates further research on the interaction of job demands and CEO
selection, compensation, and feedback on firm performance. For example, one might ask whether
aspiring CEOs are (over-)confident about their health, or whether women are vastly underrepresented
in the C-suite in part because they anticipate the health costs of such positions. Another question is
which job characteristics and hierarchy levels likely come with the highest personal cost. While all
comparisons in our analysis are within the CEO group, an important next step is to explore other
hierarchy levels as well as other professions or population groups.

Our paper contributes to research examining CEOs and firms. Recent literature sheds light
on CEOs’ demanding job and time requirements (Bandiera et al. (2020), Bandiera et al. (2018),
Porter and Nohria (2018)). Working long hours requires physical stamina, and consistent with
our hypothesis, previous work documents that CEO health impacts performance. Bennedsen,
Perez-Gonzalez, and Wolfenzon (2020) study the negative effect of CEO hospitalizations on firm
performance. Keloharju, Knüpfer, and Tåg (2023) find that corporate boards in Scandinavia
factor CEO health into CEO appointment and retention decisions. None of these papers, however,
examines the effect of CEO job demands on CEOs’ health trajectories. To the best of our knowledge,
we are the first to explore quasi-random variation to establish significant health costs in terms of both
mortality and visible aging. The only prior work on executives’ health outcomes is Yen and Benham
(1986), who compare the age-adjusted mortality rate of 125 executives in the banking industry to
that of executives in other industries, and Nicholas (2023), who focuses on mortality patterns across
organizational hierarchy levels at one large U.S. firm (white-collar employees at General Electric in
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the 1930s). Our significantly larger sample and quasi-experimental design allows us to control for
industry-specific selection into job environments and to implement a rigorous survival analysis.

Our paper also contributes new quasi-experimental evidence to the literature on the health effects
of stress, socioeconomic status, and recessions. A vast literature in psychology, medicine, and
biology associates chronic stress with changes in hormone levels, brain function, cardiovascular
health, DNA, and health outcomes (McEwen (1998), Epel et al. (2004), Sapolsky (2005)). This has
led researchers outside of economics to identify stress, and the damage it causes, as the mechanism
underlying many health disparities (Cutler, Deaton, and Lleras-Muney (2006), Cohen, Janicki-
Deverts, and Miller (2007), Pickett and Wilkinson (2015), Puterman et al. (2016), Snyder-Mackler
et al. (2020)). In health and labor economics, stress has been proposed as an explanation for,
among other things, the effects of recessions on health (Ruhm (2000), Coile, Levine, and McKnight
(2014)) as well as the association between job loss and higher mortality (Sullivan and Von Wachter
(2009)).8 In particular, the latter study examines job displacement in a population of male workers
in the 1970s and 1980s (i.e., from similar birth cohorts as the CEOs we study), and finds that job
displacement at age 40 increases the mortality hazard by 10% to 15% and reduces life expectancy
by 1 to 1.5 years. The displacement shock, however, is different in nature than the CEO distress
shock: it reduces time and effort spent at work (Krueger and Mueller (2012)), while industry crises
induce CEOs to spend more time and effort at work.

Despite the importance of stress as a potential mediator of health, and the fact that the amount of
stress experienced at work has grown steadily since at least the 1950s (Kaplan and Schulhofer-Wohl
(2018)), few papers examine causal effects of job demands on health. Hummels, Munch, and Xiang
(2016) document a negative impact of quasi-random trade shocks on workers’ stress, injury, and
illness. Evolving worker-firm interactions may have eroded protections from competition in the
product market, likely exposing workers to higher levels of stress (Bertrand (2004)). Outside of
economics, stress arising from social hierarchies (sometimes called psychosocial stress), especially
in the workplace, has been examined as an explanation for the strong relationship between socioe-
conomic status and life expectancy (Marmot et al. (1991), Marmot (2005)). Quasi-experimental

8 Stress has also been linked to the efficacy of child-tax credits (Milligan and Stabile (2011)), the health benefits
of the Earned Income Tax Credit (Evans and Garthwaite (2014)), unemployment insurance (Kuka (2020)), access to
health care (Koijen and Van Nieuwerburgh (2020)), and early-life health disparities (Camacho (2008), Black, Devereux,
and Salvanes (2016)). Relatedly, guaranteed, job-protected leave has been proposed to reduce adverse effects of
mothers’ job stress during pregnancy on infant health (Currie and Rossin-Slater (2015)). Stress is also implicated in the
intergenerational persistence of poverty (Aizer, Stroud, and Buka (2016), Persson and Rossin-Slater (2018), East et al.
(2017)).
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evidence on a causal effect of workplace promotions, however, is limited and reaches mixed conclu-
sions (Boyce and Oswald (2012), Anderson and Marmot (2012), Johnston and Lee (2013)). Turning
from the general population or poorer populations to wealthier populations, income appears to play
a small role in health disparities among the already-wealthy, while Engelberg and Parsons (2016)
document a link between stock market crashes and hospital admissions, especially for anxiety and
panic disorders. Social factors, such as the prestige of winning a Nobel prize or an election, may be
protective (Rablen and Oswald (2008), Cesarini et al. (2016), Borgschulte and Vogler (2019)). Our
paper offers complementary evidence that work-related stressors impose long-term health costs,
even for successful and wealthy individuals.

In the remainder of the paper, Section I describes the data and discusses the identifying variation.
Section II presents our results on apparent aging and industry-wide distress shocks. Section III
presents results on life expectancy and distress shocks, while Section IV presents results on life
expectancy and corporate governance regulation. Section V concludes.

I. CEO Data Sets and Variation in CEO Job Demands

A. CEO Apparent Aging Data

To study visible signs of aging in CEOs’ faces, we collect pictures of CEOs of firms in the 2006
Fortune 1000 list. Using a relatively recent CEO sample is necessary as picture availability and
quality have increased substantially over time. We focus on the 2006 cohort to exploit differential
exposure to industry shocks during the Great Recession.

We search for five images from the beginning of a CEO’s tenure and two additional images
every four years thereafter. The main challenge is finding dated images. Pictures from LinkedIn, for
instance, do not satisfy this criterion as they generally do not provide date information. In addition,
we seek pictures that are taken in daily life, such as at social events or conferences, rather than
posed pictures. The most useful source given these criteria is gettyimages.com, followed by Google
Images. We are able to identify at least two such pictures from different points in time during or
after their tenure for 453 CEOs. We refer to the resulting sample of 3,002 pictures as the CEO
Apparent Aging Data Set. We note that the vast majority of CEOs in this sample are male and white.

Table I provides summary statistics for this data set, at both the image level (Panel A) and the
CEO level (Panel B). The median picture is from 2009. On average, we find about seven images of a
CEO. The average CEO is 57 years old in 2006 and has been in office for eight years. Approximately
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65% of the CEOs in the data experienced an industry distress shock during the financial crisis (see
Section I.C for details). Moreover, about one third of CEOs experienced pre-crisis industry shocks
while in the top position, which we control for in our analyses. The majority of CEOs head firms in
the manufacturing, wholesale and retail, transportation and electric services, and finance industries
(Panel C). We discuss the remaining image-level characteristics from Panel A in Section II.B.

B. CEO Mortality Data

We collect mortality data for the universe of CEOs included in the Forbes Executive Com-
pensation Surveys from 1975 to 1991, as originally collected by Gibbons and Murphy (1992).9

These surveys are derived from corporate proxy statements and include the executives serving in
the largest U.S. firms. We choose 1975 as the start year given the source of identifying variation in
the third part of our analysis (i.e., the timing of antitakeover laws; see Section I.C), and in line with
prior studies in this literature.10 We include all firms with a PERMNO identifier in the Center for
Research in Security Prices (CRSP) database. The initial sample comprises 2,720 CEOs employed
by 1,501 firms.

We manually search for (i) the exact date of a CEO’s birth, (ii) whether the CEO has died, and,
if so, (iii) the date of death. All CEOs not identified as deceased by the cutoff date of October 1,
2017 are treated as censored. Our main source of birth and death information is Ancestry.com,
which links historical birth and death records from the U.S. Census, the Social Security Death Index,
birth certificates, and other historical sources. We validate Ancestry’s information with online and
newspapers searches, for example, on birth place, elementary school, or city of residence. Verifying
that a person is alive turns out to be more difficult as there is little coverage of retired CEOs. We
classify a CEO as alive whenever recent sources confirm the alive status, such as newspaper articles
or websites that list the CEO as a board member, sponsor, donor, or chair of an organization or
event.11

We obtain the birth and death information for 2,361 CEOs from 1,374 firms in the post-1975
sample, implying an identification rate of 87%. We refer to this data set as the CEO Mortality

9 We are very grateful to Kevin J. Murphy for providing the data.
10 Bertrand and Mullainathan (2003), Giroud and Mueller (2010), and Gormley and Matsa (2016) all start their

sample in the mid-1970s. Our results are robust to varying the start year (see Section IV.D).
11 We use sources dated January 2010 or later to infer alive status since recent coverage of a retired CEO makes it

very likely that news outlets would also have reported their passing had it occurred by the cutoff date (October 1, 2017).
Our results are robust to restricting the sample period to end in January 2010 for CEOs classified as alive as of October
2017, as we discuss in Sections III.D and IV.D).
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Data Set. We test and confirm that the availability of birth and death information is not correlated
with our measures of variation in work-related stressors, namely, industry distress experience and
incorporation in a state that passed a business combination (BC) law (see Internet Appendix Tables
IA.XIII and IA.XV, respectively).12

We augment the CEO Mortality Data Set with several key variables. We first identify the
historical states of incorporation during CEOs’ tenure, which is needed to measure their exposure to
antitakeover laws. Since CRSP/Compustat backfills the current state of incorporation, we obtain
historical Comphist and Compustat Snapshot data as well as incorporation data recorded at issuance
and merger events in the Securities Data Company (SDC) database. In the case of discrepancies, we
rely on 10-Ks and other Securities and Exchange Commission (SEC) filings, legal documents, and
news articles to identify the correct information. We correct the state of incorporation in 169 cases,
or 6.7% of the initial sample with state-of-incorporation information (2,514 CEOs). Of the 2,361
CEOs for which we obtain birth and death information, we are able to identify the historical state of
incorporation for 2,209 CEOs.

We collect tenure information for all individuals in the CEO Mortality Data Set to fill gaps
and correct misrecorded data in the Forbes Executive Compensation Surveys. We use Execucomp,
online searches, and especially the New York Times Business People section, which frequently
reports executive changes in our sample firms. When the exact month of a CEO transition is missing,
we use the “mid-year convention” (Eisfeldt and Kuhnen (2013)) motivated by the relatively uniform
distribution of CEO starting months in Execucomp. We further restrict the sample to firms included
in CRSP during the time of the CEO’s tenure, which results in a main CEO Mortality Data Set of
1,900 CEOs.13

Finally, we address selection concerns with regard to antitakeover law passage. For example,
our analyses would be confounded if less resilient managers, that is, those more prone to health
ailments, were more likely to seek the CEO position when governance regulation relaxes CEO
monitoring. To alleviate such concerns, we focus the antitakeover law analyses on CEOs appointed
prior to the enactment of the BC laws (1,605 CEOs). That said, our results are robust to using the
enlarged sample that includes CEOs who assume the CEO position after the passage of the BC laws
(1,900 CEOs). Similarly, in the analysis exploiting industry distress, we consider CEOs appointed

12 The Internet Appendix is available in the online version of the article on the Journal of Finance website.
13 Relative to the previously mentioned restriction to firms with a PERMNO in CRSP, we drop CEOs who served,

for instance, before their firm went public.
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before the distress shock, regardless of whether they left their position during the crisis.
Table II presents summary statistics. The median CEO in this sample was born in 1927, became

CEO at age 52, and served as CEO for nine years. The heterogeneity in tenure is relatively large,
with an interdecile range of 16.5 years. Noninteger values result from CEOs starting or ending
their tenure not at the end of the year. Turning to mortality, 66% of our CEOs passed away by
the censoring date (October 1, 2017). The median CEO died at age 82, and passed away in 2006.
About 40% of the CEOs witnessed industry distress during their tenure, but multiple distress shocks
are rare—more than 80% of CEOs experienced no or at most one distress shock. Throughout, we
employ a binary rather than a cumulative distress measure.14 We further find that about 40% of the
CEOs are protected by a BC law at some point during their tenure.

C. Variation in Job Demands

We exploit two sources of variation in job demands: industry-wide distress shocks and the
implementation of state-level antitakeover protection.

Industry-Wide Distress Shocks. Industry distress shocks lead to a temporary increase in job
demands. Similar to Opler and Titman (1994), Babina (2020), and Acharya, Bharath, and Srinivasan
(2007), we define an industry as distressed in year t if the median firm’s two-year stock return
(forward-looking) is less than −30%. As in Babina (2020), we generate an annual industries-in-
distress panel (i) restricting attention to single-segment CRSP/Compustat firms, that is, dropping
firms with multiple reported segments in the Compustat Business Segment Database, (ii) dropping
firms if the reported single segment sales differ from those in Compustat by more than 5%, (iii)
restricting attention to firms with sales of at least $20 million, and (iv) excluding industry-years
with fewer than four firms. This annual distress panel serves as the foundation for our mortality
analysis (Section III). For the apparent-aging analysis of the 2006 Fortune 1000 CEO cohort, we
specifically examine industry distress during the Great Recession (see Section II for additional
details). Following prior work, we use three-digit SIC classifications to identify industry affiliation
and we rely on historical SIC codes for the firms in our sample.

Antitakeover Laws. Antitakeover statutes increase the hurdles for hostile takeovers and help
protect a CEO’s job. They therefore induce a shift in the opposite direction of industry distress, and
they are more permanent in nature.

14 The indicator also helps avoid endogeneity from picking up additional industry shocks long into a CEO’s tenure.
Long-serving CEOs are associated with longer lifespans in the data.
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Following prior literature, we focus on the second generation of antitakeover laws, which states
started passing in the mid-1980s after the first-generation laws were struck down by courts in the
1970s and early 1980s (Cheng, Nagar, and Rajan (2004), Cain, McKeon, and Solomon (2017)). The
statutes included BC laws, control share acquisition, fair price, and directors’ duties laws, as well as
poison pills. We follow prior literature and focus on BC laws as the most potent type of statutes, but
we return to the other types of laws in Section IV.D.

Figure 1. Introduction of business combination laws over time. The map omits the states of Alaska and
Hawaii, which never passed a BC law.

BC laws significantly reduced the threat of hostile takeovers by imposing a moratorium on
large shareholders conducting certain transactions with the firm, usually for a period of three to five
years. The constitutionality of BC laws was established in a 1989 ruling by the U.S. Seventh Circuit
Court of Appeals (Amanda Acquisition Corp. v. Universal Foods Corp.). From an identification
standpoint, an important assumption is that firms’ BC law coverage is plausibly exogenous. As
Karpoff and Wittry (2018) write, “for most firms the laws can be treated as exogenous” (p. 678) as
there was no widespread corporate lobbying for the laws. At the same time, Karpoff and Wittry
(2018) identify 46 firms that did lobby for the adoption of second-generation laws. As we discuss
below, our results are robust to various tests related to lobbying firms, firm-level defenses, and
opt-out provisions, among others, proposed in Karpoff and Wittry (2018). We refer the reader to
Bertrand and Mullainathan (2003) and Karpoff and Wittry (2018) for a more detailed discussion of
the political economy of antitakeover laws.
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An advantage of using antitakeover laws as a source of identifying variation is that these laws
apply based on the state of incorporation, not the state of firms’ headquarters or operations. The
frequent discrepancies between a firm’s location and state of incorporation enables us to assess the
impact of the laws while controlling for shocks to the local economy. Figure 1 depicts the staggered
introduction of BC laws across states.15 The map illustrates the variation across both time and states.
As can be seen, 33 states passed a BC law between 1985 and 1997, with most laws passed in 1987
to 1989. As in prior work, the most common state of incorporation in our data is Delaware. Other
common states include New York and Ohio.

II. Industry-Wide Distress Shocks and Apparent Aging

In our first analysis, we focus on visible manifestations of adverse health effects in CEOs’ faces.
Research in medicine and biology has established numerous links between stress and visible signs of
aging, such as hair loss (Choi et al. (2021)), hair whitening (Zhang et al. (2020)), and inflammation,
which accelerates skin aging (Heidt et al. (2014), Kim et al. (2013)). Moreover, these visible signs
of aging predict mortality and other adverse health outcomes in longitudinal studies. For example,
the apparent age of Danish twins, rated from facial photographs, predicts short-term mortality over
the next two years (Christensen et al. (2004)) and long-term survival of twins aged 70 and older
(Christensen et al. (2009)). Christensen et al. (2009) also establish strong correlations between
apparent age and physical functioning (e.g., strength and endurance), cognitive functioning (e.g.,
verbal fluency and recall), and leucocyte telomere length (which is associated with aging-related
diseases and mortality).

We test whether experiencing industry distress predicts accelerated apparent aging in the CEO
Apparent Aging Data Set. We exploit CEOs’ differential exposure to industry shocks during the
Great Recession in a difference-in-differences framework.

A. Apparent-Age Estimation

To analyze visible CEO aging, we make use of recent advances in ML. While earlier generations
of age-estimation software focused on a person’s chronological or “true” age (Antipov et al. (2016)),
recent developments aim to estimate a person’s apparent age or how old a person looks. This
distinction is important. As the medical literature shows, differences between assessed age and

15 Internet Appendix Figure IA.9 contains a similar map based on the earliest enactment of any of the five types of
second-generation antitakeover laws listed above.
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chronological age can be large, they are recorded even when the physician conducting the assessment
knows the chronological age, and they are highly predictive of illness and mortality (Hwang et al.
(2011)). Accordingly, we use the difference between a CEO’s apparent or perceived and their
chronological age as our main outcome variable in the first part of the analysis.

The algorithmic implementation of age assessments, and thus the construction of the age gap
variable, has been made possible by the development of deep learning and convolutional neural
networks (CNNs) as well as the increased availability of large data sets of facial images with
associated true and apparent ages, where the apparent ages are estimated by people. A CNN is
a neural network that employs the method of convolution, that is, of transforming the data by
sliding (or convolving) over it using a slider matrix, to abstractly determine intermediate features
about the data such as edges or corners. (We provide a detailed discussion of CNNs in Section
II.A of the Internet Appendix.) We use ML-based software (Antipov et al. (2016)) that has been
specifically developed for estimation of apparent age. This software, which is based on Oxford’s
Visual Geometry Group deep CNN architecture, was the winner of the 2016 Looking At People
apparent-age estimation competition.

In a first step, the software was trained on more than 250,000 images with information on
people’s true age from both the Internet Movie Database and Wikipedia. In a second step, it was
fine-tuned for apparent-age estimation using a newly available data set of 5,613 facial images, each
of which was rated by at least 10 people in terms of the person’s age. The addition of fine-tuning
using these human estimates of age is particularly important, as it led to the software’s largest
improvement in accuracy (of more than 20%) in the apparent-age estimation of the competition
data (see Table 2 in Antipov et al. (2016) and Section II.A of the Internet Appendix). Both the
distribution of true ages used for training and the human age estimations used for fine-tuning the
software cover people from all age groups, including elderly people. The neural network produces a
100×1 vector of probabilities associated with apparent ages from 0 to 99 years. The apparent-age
point estimate is the expected value of the software output. A more detailed description appears in
Section II.A of the Internet Appendix.

As indicated above, the software has been successfully validated in an apparent-age competition
against other ML-trained apparent-aging software. Nevertheless, we further validate it within our
CEO context by comparing it against human assessments. We create 250 random pairs of CEO
images such that each pair involves CEOs of similar chronological age (five-year bins), and for each
pair we ask a team of research assistants to indicate which person looks older. The software agrees
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with the median human assessment in approximately 70% of cases, and in almost 90% of cases
when the software-based apparent-age difference between the two images is in the upper tercile of
the distribution.

Panel A. Distribution Panel B. Correlation

Figure 2. CEO apparent age and chronological age. The figure plots apparent and chronological ages
for our sample of 3,002 CEO images. Panel A shows the CEO apparent-age distribution in red, and the
chronological-age distribution in blue, with the overlapping areas appearing as purple. Panel B shows a
scatter plot of CEOs’ apparent age against chronological age. The dotted line represents the 45° line.

Figure 2 plots the distributions and correlation between chronological age and apparent age for
the 3,002 images in the CEO Apparent Aging Data Set. Panel A shows that the distributions of
apparent age and chronological age largely overlap, although the apparent-age distribution is shifted
to the left. That is, consistent with a large prior literature on the “looks,” stature, and health-related
measures of CEOs and other high-earning individuals,16 the software estimates CEOs as looking
younger than their chronological age. (See also Table II discussed in Section I.B.) We note that our
analyses do not rely on comparisons between CEOs and the general population, but rather focus on
within-CEO comparisons and account for chronological age.

The scatter plot of CEOs’ apparent age against chronological age in Panel B confirms both the
high correlation and the shift in apparent age relative to chronological age, with a greater mass
below the 45° line. In this figure and in the regression analysis below, we trim the sample at the
top and bottom 0.5% of the apparent-age gap distribution, that is, the distribution of the difference

16 See Hamermesh and Biddle (1994), Persico, Postlewaite, and Silverman (2004), Loh (1993), Steckel (1995), and
Averett and Korenman (1996). See also Chetty et al. (2016) on better access to health care, healthier nutrition, and
higher life expectancy of individuals with high socioeconomic status.
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between apparent and chronological age, to ensure that outliers in age estimation do not affect the
results.

It is worth reiterating that the difference between chronological age and apparent age should not
be thought of as a “mistake.” By design, the ML software is first trained to predict chronological
age and then fine-tuned to match human age assessment. As the medical literature shows, the
differences between human assessment and chronological age can be large, and, importantly, these
differences are highly predictive of illness and mortality.17

B. Illustrative Example and Potential Confounds from Image Heterogeneity

To illustrate the link between industry shocks and aging, we first discuss a specific example.
James Donald was the CEO of Starbucks from April 2005 until January 2008, when he was fired
after Starbucks’ stock plunged by more than 40% over the preceding year. Figure 3 presents two
images of Donald: the left one from December 8, 2004, before his appointment at Starbucks, and
the right one 4.42 years later, on May 11, 2009, after his dismissal. Donald was 50.76 years old in
the first image and 55.18 years in the second. The ML-based aging software estimates his apparent
age in the earlier image as 53.47 years and in the later image as 60.45 years. Thus, the software
estimates that he aged by 6.98 years, or, 2.5 years more than the amount of time that had passed.

Figure 3. Sample images (James Donald, CEO of Starbucks from 2005 to 2008). The left picture was
taken on December 8, 2004. The right picture was taken on Monday, May 11, 2009. Chronological ages
based on data from Ancestry.com (date of birth March 5, 1954): 50.76 years and 55.18 years, respectively.
Apparent ages based on aging software: 53.47 years and 60.45 years, respectively.

17 See, for example, Hwang et al. (2011). Other medical research that documents a positive relationship between
apparent age in facial images and life expectancy and health status includes Gunn et al. (2016) and Dykiert et al. (2012).
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This example is also useful to discuss concerns one may have about image heterogeneity. One
noticeable difference between the two images is that Donald smiles in the image in which he looks
younger but not in the other one. Hence, one potential identification concern is that photographers
and newspaper editors might select different types of images during good and bad times, in a way
that is correlated with firm or industry performance. Other differences between the two images
include possible variations in lighting in the two images, and the left image may have been taken
in a more staged setting. Researchers have noted that accounting for image context and facial
positioning may be important in related settings, such as in assessments of an individual’s character,
attractiveness, or sexual orientation from facial images (Wang and Kosinski (2018), Dotsch, Hassin,
and Todorov (2016), Agüera y Arcas, Todorov, and Mitchell (2018)).

The image-processing software is designed to account for such “picture management.” In
particular, the image pre-processing and fine-tuning steps help account for image heterogeneity as
described in Section II.A of the Internet Appendix. Nevertheless, we go a step further and manually
assess all images in our sample along thirteen dimensions: logo, side face, professional clothes,
magazine shot, magazine quality, natural pose, natural lighting, glasses, facial hair, smile, mood,
self-confidence, and style. Section I of the Internet Appendix provides definitions of these variables,
which are all indicator or categorical variables. To highlight a few definitions, smile assesses facial
expression (smile, frown, or neither), mood assesses mood (happy, grim, or neutral), self-confidence

assesses the degree of portrayed self-confidence (not very, normal, or very), and style assesses the
predicted amount of time the CEO spent getting their face styled and ready in the morning. By
controlling for these variables in our estimations, we further alleviate concerns about spurious aging
effects. As we will see, our results are not affected (and sometimes strengthened) by the inclusion
of the additional controls.

C. Difference-in-Differences Results

We formalize our analysis of job-induced apparent aging in a difference-in-differences design,
analyzing differences between CEOs whose industry was in distress during the 2007 to 2008
financial crisis and those whose industry was not in distress. As we detail in Section I.C, we use
three-digit SIC codes and a 30% decline in equity value criterion to identify firms that experienced an
industry shock during the crisis years. This approach classifies 78 out of 146 industries represented
in the CEO Apparent Aging Data Set as distressed during at least one of the two crisis years.
Industries classified as distressed during these years include real estate and banking. Nondistressed
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industries include agriculture, food products, and utilities.
To account for potential selection bias due to CEOs departing from their job during the Great

Recession, we identify treated CEOs based on intended exposure. That is, the treatment variable
Industry Distress j is equal to one if CEO j’s firm operates in an industry that was distressed in 2007,
2008, or both years, regardless of whether the CEO stepped down between 2006 and 2008. For
example, Industry Distress j is equal to one for a CEO departing in 2007 and whose industry was
distressed in 2008.18

Graphical Evidence. We start by plotting the difference in aging trends between distressed
and nondistressed CEOs in Figure 4. For this purpose, we bin our sample of images into eight
roughly equal-sized and equal-spaced groups over the sample period, t ∈ T = {pre-2001,2001-04,
..., post-2015}, and estimate the difference-in-differences model

Apparent Age Gapi, j,t = β0 + ∑
t∈T,

t 6=2005-06

β1,t Industry Distress j×1t +β
′
2Xi, j,t +δt +θ j + εi, j,t , (1)

where i denotes an image, j a CEO, and t a time bin, Apparent Age Gapi, j,t is the difference between
CEO j’s apparent age in image i as assessed by the aging software and their chronological age at
time t when the picture was taken, and 1t are time indicators, where the t th indicator is equal to one
for pictures taken in time bin t. We interact the time indicators with Industry Distress j, so that the
interaction is equal to one if the firm of CEO j shown in image i was distressed in 2007 or 2008.
For the graphical presentation, we normalize against the pre-crisis bin (t = 2005-2006).

The vector of control variables Xi, j,t includes time-varying controls for a CEO’s pre-2007
industry shock experience and pre-2007 CEO tenure as well as extensive controls for image setting
and characteristics discussed above and a control for image sharpness. We measure sharpness using
an image’s Laplacian, that is, the second spatial derivative of an image, as described in Section II.B
of the Internet Appendix. Note that for any of these image controls to affect the results in the first
place, they would have to systematically affect the software’s age estimate and be correlated with
industry distress experience. (We discuss such potential concerns in Section II.D.)

We also include CEO fixed effects θ j and time fixed effects δt . The CEO fixed effects absorb
any time-invariant CEO facial characteristics such as facial shape. The CEO fixed effects also
account, for example, for CEO-specific aging and determinants of aging such as risk attitudes and

18 Regressing actual industry shock exposure in 2007 or 2008 on intended exposure yields a coefficient of 0.92
(t-statistic of 41.17).
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selection into riskier industries. The time fixed effects absorb time trends, such as improving image
quality. While the aging software was trained on a large number of faces and images of differing
quality, these fixed effects tighten the identification and absorb the main effects of the time-industry
shock interaction in the regression.

We weight observations by image sharpness, that is, images in which detail is rendered more
clearly receive larger weight. We discuss robustness to other weighting choices below with the
regression results.

Figure 4. Differences in apparent aging between CEOs with and without industry distress exposure
during the Great Recession. This figure depicts the estimated coefficients from β1 on the interaction terms
between the time-period indicators and the Industry Distress indicator from model (1), where Industry Distress
is equal to one if the CEO’s firm was exposed to industry-wide distress during 2007 or 2008. Apparent-Age
Gap is the difference between apparent and chronological age. Observations are weighted by image sharpness.
N denotes the number of images in each time bin.

Figure 4 plots the estimated components of vectorβ1=(β1,pre-2001, ...,β1,t , ...,β1,post-2015). They
capture differences in the gap between apparent and chronological age between the treated group and
the control group at different points in time, after controlling for covariates and normalizing against
the pre-crisis bin (t = 2005-06). The difference in apparent-age gap between future distressed and
nondistressed CEOs is small and stable over time before the crisis, consistent with aging in both
groups following parallel pre-trends. In particular, there is no evidence that CEOs who experience
an industry downturn during the Great Recession age faster than control CEOs before the crisis.
After the onset of the Great Recession, however, the difference in the apparent-age gap increases
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markedly, first to about half a year, then to about 0.75 years around 2010, then to a full year around
2013. The difference stabilizes at a level of about one year after 2015. In other words, the graphical
evidence indicates that exposure to industry distress accelerates apparent aging starting around the
time of exposure and levels off after a few years to a persistent difference of one year.

We note that the rapid onset of accelerated aging and full realization after a few years are
consistent with biological mechanisms linking the hormone responses to cellular damage during
periods of chronic stress exposure. For example, a similar time horizon stretching over two to three
years has been found for the relationship between stress and mortality in a population with a similar
age-cohort distribution to our mortality sample and with access to health care (Nielsen et al. (2008),
Rutters et al. (2014)).

Regression Model. We next turn to estimating the full difference-in-differences regression model,
using a specification similar to model (1) above:

Apparent Age Gapi, j,t =β0 +β1 Industry Distress j×1{t>2006}+β
′
2Xi, j,t +δt +θ j + εi, j,t . (2)

As before, i denotes an image and j a CEO, but t now represents a calendar year. All variable
definitions remain as specified for equation (1), and we include the same set of control variables
and fixed effects. We also continue to weight observations by image sharpness. Internet Appendix
Table IA.II shows the robustness to other weighting choices and treatments of outliers. Internet
Appendix Table IA.III shows that our measure of image sharpness is uncorrelated with industry
distress exposure during the Great Recession. We cluster standard errors at the three-digit SIC code
level, at which industry shocks are defined (Abadie et al. (2017)). The key coefficient of interest
is β1, which gives the change in the apparent-age gap after the start of the crisis and during the
post-crisis years (t > 2006) if the CEO’s firm experienced industry shocks during 2007 to 2008.

Table III presents the regression results. In column (1), the coefficient on the interaction term
between Industry Distress and the post-2006 indicator 1{t>2006} is 0.806 (significant at the 5%
level). This indicates that CEOs look about 0.8 years older for a given chronological age if their
firm has experienced an industry distress shock between 2007 and 2008. In column (2), we add the
extensive set of image controls for smile versus frown, mood, portrayed self-confidence, etc. The
coefficient on the post-treatment interaction term is very similar (now 0.883, again significant at the
5% level).

In columns (3) and (4), we split the post-period into two subperiods, 2007 to 2011 and 2012
onward. The estimates indicate that longer-horizon effects are driving the results. Consistent with
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Figure 4, we estimate a distress-induced apparent-aging effect of around 0.65 years over the earlier
five-year horizon that is insignificant or only marginally significant, but an effect of 1 to 1.2 years
over the later horizon, which is significant at the 5% or 1% level. The estimated effects are similar
whether we include the additional image controls or not.

The long-term persistence of the distress-induced aging effects ameliorates potential concerns
about “picture management.” If the media or firms engage in picture selection in a manner that
is correlated with distress exposure, it could affect the apparent-age estimates. However, such
differential image management is unlikely to occur years after the distress crisis. We further discuss
these and other remaining identification concerns in detail in the next subsection.

Overall, the apparent-aging analysis provides robust evidence that increased job demands in
the form of industry distress accelerate visual aging. In Section III below, we further show that the
effects of industry distress on CEO mortality are very similar in magnitude. Hence, the appearance
of aging may presage a shorter lifespan for CEOs whose industries experienced downturns in the
Great Recession.

D. Robustness Tests

In this section, we perform a series of robustness tests. All figures and tables are relegated to
Section II.E of the Internet Appendix.

CEO Appearance Management. One potential confound of our results is that CEOs may engage
in “appearance management.” For example, given their public status, young CEOs may prefer
to grow some facial hair to look older, whereas older CEOs may prefer to dye their hair to look
younger. Such behavior, while plausible, is unlikely to affect our estimates for two reasons. First,
there is no difference in chronological age between distressed and nondistressed CEOs as of 2006,
the year prior to treatment assignment (Internet Appendix Table IA.IV). Thus, general appearance
management incentives should not differ by treatment status. Consistent with this view, both groups
have parallel aging pre-trends, as shown in Figure 4. Second, image-type control variables such as
the facial hair and style controls help alleviate this concern.

Differential Selection of Images During Good and Bad Times. Another potential confound
is that newspaper editors may select more grim-faced (and possibly older-looking) CEO images
during the crisis, particularly if the firm is in distress. We address this concern in three ways. First,
we point to the stability of the aging effect. Our main result holds after five years and throughout
the 2010s, when news about the industry’s distress and possible criticism of the CEO would have
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subsided. In these later images such selection is unlikely to be at work (see Figure 4). Moreover,
the results are robust to including image heterogeneity controls, including assessed smile versus
frown, happy versus grim, and the degree of the CEO’s self-confidence.

Second, we show directly that CEOs’ facial expressions in our sample are not correlated with
treatment. That is, when we use facial expression as the outcome variable (with +1 = smiling, 0 =

neutral, and −1 = frowning) and test whether industry distress exposure predicts the outcome, we
fail to reject the null hypothesis of no significant relationship. This result continues to hold when
we interact industry distress with a post dummy to restrict the comparison to pictures from 2007
onward (see Panel A of Internet Appendix Table IA.V).

We do find, however, that the apparent-age gap is correlated with facial expressions (see Panel
B of Internet Appendix Table IA.V). More precisely, we estimate no significant relation when
controlling for the full slate of control variables, but there is a significantly positive relation with the
frowning indicator when we omit the mood controls (happy versus grim), which are correlated with
the smile controls (smiling versus frowning).

In light of these findings, we go a step further in addressing the role of smiling versus frowning
and use artificial intelligence (AI)-based image manipulation techniques to change facial expression.
Specifically, we use software that creates natural-looking transformations of faces using ML and
neural network techniques to change grim expressions towards happier expressions (neutral and
even faint smiles). We discuss these manipulations in detail in Section II.C of the Internet Appendix.
We then include the 341 resulting “fake images” in our analysis and apply the apparent-age software
to reestimate our model. As shown in Internet Appendix Table IA.VI, we replicate our findings.

Differential Image Selection Due to CEO Departures. A further concern is that CEO departure
rates may differ by industry distress experience, which might then lead to differences in the type of
images we can find. For example, news of CEO departures is often accompanied by photos of a
more grim-faced CEO, and after stepping down, CEOs may assume less prestigious positions with
fewer incentives for appearance management. This could drive the differential patterns in apparent
aging, even in the long run.

To address this concern, our analysis includes controls for “magazine quality” (which assesses
the degree to which an image can be used in a magazine) and “style” (which assesses the time an
individual spent styling their face in the morning). In addition, we show that our results are not
driven by differential finding rates of post-crisis images depending on whether CEOs experienced
distress during the crisis (Internet Appendix Figure IA.6 and Internet Appendix Table IA.VII).
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To further address this concern, we collect information on the departure date and post-departure
career trajectory of each CEO in our sample. We then reestimate the results on the subsample of
CEOs that remain in the position until 2010 or thereafter.19 As we show in more detail in Section
II.D of the Internet Appendix, in this subsample CEO departure rates and image “types” (in-office,
post-departure but nonretired, retired) are similar across distressed and nondistressed CEOs. This
result mitigates concerns related to departure-driven image heterogeneity and selection. Moreover,
our aging results continue to go through (Internet Appendix Table IA.VIII).

Alternative Empirical Specification. We also replicate our results when using apparent age as
the outcome variable and chronological age as an additional control variable (Internet Appendix
Table IA.IX), rather than using the apparent-age gap as the outcome variable.

Alternative Combination of Trained Neural Networks. Precisely speaking, the software forms the
primary apparent-age estimate by averaging estimates across eleven separately trained sub-models
(see Section II.A of the Internet Appendix for details), an approach akin to bootstrap-aggregating
or “bagging” (Breiman (1996)). Our results are not sensitive to how the 11 trained neural nets
are combined. The results remain unchanged when we use the median, rather than the average,
apparent-age estimate across the trained sub-models in the regressions (Internet Appendix Table
IA.X).

E. Possible Mechanisms

As discussed earlier, the rapid onset of visible signs of aging is consistent with the medical
literature on stress responses. Cortisol and other immediately triggered “flight-or-fight” hormonal
reactions to chronic stress are plausibly linked to our finding of accelerated aging. In particular,
Harvanek et al. (2021) find that higher insulin resistance (which can be caused by excess cortisol)
positively predicts a person’s epigenetic age, which is a strong predictor of mortality (see Föhr et al.
(2021)).

In light of these plausible biomedical underpinnings of our results, we explore ways to tease out
related physical changes from the image sample. First, we consider changes in body mass index
(BMI). Biochemically, chronic stress increases cortisol levels (Van der Valk, Savas, and van Rossum
(2018)), which slows metabolism and triggers a desire for “comfort foods.” Both can lead to weight
increases. In addition, excessive work demands triggered by the crisis may by themselves induce

19 Of course, whether CEOs remain in office until 2010 is endogenous. Selection from this conditioning likely works
against identifying the effect of distress, as distressed CEOs who remain in office are presumably more “resilient.”
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unhealthy eating due to time constraints and adversely affect exercise behavior. These behavioral
changes can evolve into unhealthy habits in the long run, even after heightened job demands subside.

Accordingly, we retrieve ML-based estimations of the BMI from facial images (Sidhpura et al.
(2022)). Applying these estimation techniques to our CEO image data, we find suggestive, albeit
insignificant, evidence of higher BMI levels among treated CEOs over time (Internet Appendix
Table IA.XI). While more data and less noisy estimates would be needed to draw conclusive
evidence, the estimates are suggestive of a slow-moving, long-run behavior change.

In addition to poor diet and lack of exercise, stress might induce other behavior changes that
can accelerate aging, including lack of sleep and excess alcohol consumption. To test for such
channels, we have constructed measures of the degree of puffy eyes, red eyes, dark areas under
eyes, and red face. We find no evidence that these facial aspects are significantly related to industry
distress exposure (Internet Appendix Table IA.XII). While it is possible that a larger sample and
refined definitions of the above features would allow for the detection of a statistically significant
relationship, the null effect is consistent with such features more likely reflecting very recent sharp
changes in behavior.

In summary, our CEO Apparent Aging Data Set does not allow us to identify specific biomedical
or behavioral channels beyond the main result on visible signs of aging, which are a widely used
indicator in medicine. Our additional results here are suggestive of changes in BMI, which are
consistent with hormonal responses to stress as well as worse diet and exercise behavior.

III. Industry-Wide Distress Shocks and Life Expectancy

In the remaining two parts of the analysis, we move from apparent aging to mortality as the
outcome variable. In this section, we examine the link between mortality and industry distress, and
in Section IV we examine the link between mortality and governance regulation. In both sets of
analyses, we use the longer and earlier CEO Mortality Data Set described in Section I.B, which
allows us to analyze mortality outcomes and accommodates the timing of variation in antitakeover
laws.

A. Empirical Strategy

We employ stratified Cox (1972) proportional hazards models to estimate the effect of variation
in the exposure to industry distress on longevity. CEOs enter the analysis (“become at risk”) in the
year they are appointed, and they exit at death or the censoring date. Specifically, we estimate
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lnλ(t|Industry Distressi,t ,Xi,t) = lnλ0, j(t)+β Industry Distressi,t +δ
′Xi,t , (3)

where λ and λ0, j are the hazard rate and the baseline hazard rate, respectively, with the latter
allowed to vary across the Fama and French (1997) 49 industries j, and Industry Distressi,t is an
indicator variable equal to one if CEO i has experienced distress by year t, that is, if in year t or a
prior year during the CEO’s tenure, the forward-looking two-year stock return of the median firm
in the industry is less than −30%. Note that when a CEO steps down, the value of the distress
indicator remains constant at its value at departure. Control variables are contained in vectorXi,t .
In our baseline specifications, the controls include a CEO’s chronological age, time trends (linear
or fixed effects), and location fixed effects. The location fixed effects are based on firms’ state of
headquarters and absorb state-level characteristics such as general business conditions and pollution
to the extent that such factors are time-invariant. We also present specifications with birth-cohort
fixed effects. We cluster standard errors at the three-digit SIC code level, at which industry shocks
are defined (Abadie et al. (2017)).

B. Graphical Evidence

Before presenting the main estimation results, we provide graphical evidence on the mortality
effects of CEOs’ exposure to industry distress. Figure 5 plots Kaplan-Meier survival graphs, with
the vertical axis showing the survival rate and the horizontal axis the time elapsed (in years) since
becoming CEO, split by whether CEOs experienced industry distress during their tenure. The
nonparametric Kaplan-Meier estimator discretizes time into intervals t1, ..., tJ and is defined as
λ̂KM

j =
f j
r j

, where f j is the number of spells ending at time t j and r j is the number of spells at risk at
the beginning of time t j.

For the graphical presentation, we restrict the sample to CEOs who were appointed no earlier
than 10 years prior to the retirement age of 65 and who stepped down no later than 10 years after
the retirement age.20 This restriction increases similarity with respect to age among CEOs and
thus accounts indirectly for age being a strong predictor of both mortality and treatment (due to
the fact that once treated, CEOs remain classified as treated in subsequent years). In the univariate
Kaplan-Meier survival graphs, we cannot control for age directly since these graphs plot survival
unadjusted for covariates. In our Cox (1972) regressions below, we are able to directly control for

20 Internet Appendix Figure IA.7 plots the retirement hazard for CEOs in our main sample. The figure confirms
a large spike in retirements at age 65, consistent with the evidence in Jenter and Lewellen (2015). While CEOs may
continue to work after stepping down, few (32 in total) become CEO at another firm in our sample.
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age as a covariate in the model.

Figure 5. Kaplan-Meier survival estimates. This figure shows Kaplan-Meier survival plots of the relation
between industry distress experience and longevity. The vertical axis shows the fraction of CEOs who are still
alive. The horizontal axis reflects time elapsed (in years) since a person became CEO. The figure compares
the survival of CEOs who never experienced industry-wide distress during their tenure (dark blue) to that of
CEOs who did experience such distress (light red). The figure focuses on CEOs appointed up to 10 years
prior to the retirement age of 65 and stepping down up to 10 years after the retirement age.

Figure 5 shows that the survival line for CEOs who were exposed to industry distress during
their tenure is visibly left-shifted at longer horizons, that is, distressed CEOs have significantly
worse long-run survival patterns than nondistressed CEOs. For example, about 67% of distressed
CEOs passed away within 30 years of their appointment, whereas this percentage is only reached
after approximately 32 years in the nondistressed CEO group. The hazard coefficient on industry
distress corresponding to the survival patterns in Figure 5 is 0.178, which is in the ballpark of the
Cox (1972) regression estimates that we discuss next. The survival plot offers initial, suggestive
evidence that experiencing industry distress as CEO is associated with adverse consequences in
terms of life expectancy. Our hazard analysis below formalizes the observed patterns.
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C. Main Results

Table IV presents the hazard model results on the relationship between industry distress and
CEOs’ mortality rates, based on equation (3) and stratified by industry. All columns show the
estimated hazard coefficients (β,δ). A coefficient greater than zero indicates that the risk of failure
(death) is positively associated with a given variable.

The specification in column (1) estimates the model with the industry distress indicator, a linear
control for age, a linear control for time trends, and location fixed effects based on firms’ state
of headquarters, which absorb state-level characteristics such as general business conditions and
pollution to the extent that such factors are time-invariant. In column (2) we replace the linear time
control with year fixed effects, and in column (3) we include CEO birth-year fixed effects instead of
year fixed effects. Columns (4) to (6) reestimate columns (1) to (3), including as additional control
variables CEO pay (from Gibbons and Murphy (1992)) and firm size (assets and employees from
Compustat). These controls are available for 96% of sample observations.

Across specifications, we estimate a robust and statistically and economically significant ef-
fect of industry distress on the mortality hazard. Averaging the estimates across columns, dis-
tress experience increases CEOs’ log mortality hazard by 0.136, that is, given a hazard ratio of
exp(0.136) = 1.145, the mortality hazard increases by 14.5%.21

Turning to the control variables, the effect of age is significantly positive across specifications,
reflecting the fact that older people have a higher risk of dying. Note that the linear age term is
motivated by the Gompertz (1825) “law of mortality,” the empirical regularity that the risk of dying
follows a geometric increase after middle age (Olshansky and Carnes (1997)). We obtain virtually
identical estimates when including higher-order age terms. The linear time control in columns (1)
and (4) is close to zero and insignificant, suggesting no general time trends in the survival of CEOs
over the sample period.

Economic Significance. One way to evaluate the magnitude of the estimated distress effect on
longevity is relative to other predictors, in particular, relative to age: what increase in chronological
age does the effect of distress exposure on mortality correspond to? Averaging across all columns,
the estimated effect of age on the log mortality hazard is 0.120. This means that the effect of

21 Results using firm distress instead of industry distress find coefficients of a smaller magnitude, although within
the confidence intervals of the industry distress estimates. A possible reason could be that robust CEOs select into
vulnerable firms. Another possibility is that industry-wide shocks bring about a broader set of stressors than those
arising from own-firm performance, such as lenders being less willing to support firms in a declining industry.
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industry distress exposure corresponds to the effect of being 1.1 years older (0.136/0.120≈ 1.1).
This “in-sample” comparison has the advantage that it is based on data from the sample CEOs,

who have a higher baseline life expectancy. Alternatively, we can compare the estimated mortality
hazard with mortality statistics of the general U.S. population. For example, at age 57 (the median
CEO age in our sample), the one-year mortality rate of a male American born in 1927 (the median
birth year in our sample) is 1.337% (Human Mortality Database (2019)). Industry distress experience
while CEO pushes this rate up to 1.532%, which is roughly the mortality rate of a male born in 1927
at age 59, that is, when two years older.

Finally, we can compare our mortality estimates to the estimated effect of other economic stres-
sors in different populations. For example, in Sullivan and Von Wachter (2009), job displacement
increases the mortality hazard by 10% to 15% and reduces life expectancy by 1 to 1.5 years. This
effect is similar to our industry distress point estimates, although as already noted, job displacement
reduces time and effort spent at work (Krueger and Mueller (2012)) whereas industry distress leads
CEOs to spend more time and effort at work. Nicholas (2023) estimates larger mortality differences
in his sample of General Electric employees, finding that working as an executive was associated
with a three- to five-year reduction in longevity compared to lower-hierarchy employees.

Another benchmark for comparison are other known health threats. For example, smoking until
age 30 is associated with a reduction in longevity of roughly one year (Jha et al. (2013)). The
reduction in life expectancy from industry distress exposure is thus slightly larger than the reduction
from smoking in the first three decades of one’s life.

In sum, unexpected changes in the work environment and in the job demands of CEOs arising
from industry-wide distress have substantial health consequences not only in terms of short- to
medium-term visible aging but also in terms of long-term mortality.

D. Robustness Tests and Mechanisms

We perform several additional robustness tests, with all figures and tables relegated to Section
III of the Internet Appendix.

First, to further examine potential confounds around heterogeneity in life expectancy over
time, and this heterogeneity being correlated with industry distress exposure, Internet Appendix
Table IA.XIV estimates alternative specifications that allow the effect of age on mortality to be
cohort-specific. Specifically, we sort CEOs into quintiles based on birth year and allow for separate
age estimates. While there are small differences in age effects across CEO cohorts, the industry
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distress coefficients are little affected and remain statistically and economically significant.
Second, we reestimate the effect of industry distress when varying the censoring year for CEOs’

alive status. This check alleviates concerns that we may have failed to identify some deaths, thereby
granting “extra years” of life to these CEOs (see footnote 11). The coefficients remain stable as we
gradually move the censoring date for CEOs identified as alive as of October 2017 from October 1,
2017 to December 31, 2010 (Internet Appendix Figure IA.8).

Third, we explore specific recession periods similar to the analysis in Section II, such as the
1987 stock-market downturn or the recession of 1981 to 1982. However, fewer than 5% of the CEOs
in our sample experienced either of these shocks so we lack statistical power when applying the
same methodology. The corresponding estimates indicate that CEOs who experienced these specific
shocks tend to have a higher mortality hazard, but they are generally not statistically significant.

We also explore the availability of data on the causes of death, as they might elucidate the
mechanisms relating industry downturns to mortality. We find that cause of death is sometimes
reported in CEOs’ obituaries and in news articles, albeit less commonly than date of death, and it is
never reported on Ancestry.com, one of our primary sources for death dates. We are able to extract
cause of death information for 493 of the 1,247 CEOs who passed away in our sample. Within
this relatively small and possibly selected sample, industry distress is associated with a higher
frequency of deaths due to heart disease or stroke, and a lower frequency of deaths due to cancer or
Alzheimer’s disease. We lack power, however, to rule out that these differences are due to chance.

In summary, while the results are robust to a wide range of mortality specifications, the data do
not allow us to pin down specific crises or specific medical causes of mortality.

IV. Corporate Monitoring and Life Expectancy

In our final analysis, we exploit the staggered passage of antitakeover laws across U.S. states in
the mid-1980s as the source of identifying variation to study CEO mortality effects.

A. Empirical Strategy

Our main analysis continues to use the Cox (1972) proportional hazards model, again stratified
by industry. First, we estimate a modified version of equation (3):

ln λ(t|BCi,t ,Xi,t) = ln λ0, j(t) +β I(BCi,t)+δ
′Xi,t , (4)
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where I(BCi,t) is an indicator variable equal to one if CEO i in industry j has been exposed to a
BC law by year t. As in Section III.A, in the baseline modelsXi,t includes chronological age, time
trends (or fixed effects), and state-of-headquarters fixed effects. We also verify again that all of our
results are robust to specifications that account for CEO birth cohorts. Furthermore, we add as an
additional control an indicator variable capturing a CEO’s exposure to first-generation antitakeover
laws to all specifications. Karpoff and Wittry (2018) emphasize the importance of accounting for
the historical political economy of the BC laws and therefore include a control for first-generation
laws in their empirical tests. In Section IV.D, we also implement a host of further robustness tests
proposed by Karpoff and Wittry (2018).

Second, we test for differential effects depending on BC law exposure intensity. Given that the
laws led to a permanent corporate governance regime change, rather than a temporary exposure (as
in the case of industry distress), we replace the indicator I(BCi,t) with a measure BCi,t that counts
the exposure length in years until year t:22

ln λ(t|BCi,t ,Xi,t) = ln λ0, j(t) +βBCi,t +δ
′Xi,t . (5)

Relative to the binary measure, the cumulative exposure measure is more prone to endogeneity
concerns for long-serving CEOs. We address this concern in Section IV.D, where we examine initial
versus incremental exposure as well as predicted exposure length.

As with the distress indicator in the previous section, the values of the BC law indicator and
BC law exposure length variables remain constant once a CEO has stepped down. We now cluster
standard errors at the state-of-incorporation level, given that the BC laws apply based on firms’ state
of incorporation (Abadie et al. (2017)).

B. Graphical Evidence

We again start by plotting Kaplan-Meier survival graphs. As in Figure 5, we focus on CEOs
who started and ended their tenure within +/- 10 years around the retirement age of 65, so that the
univariate plots account for CEO age to some degree.

Panel A of Figure 6 plots the survival lines of this set of CEOs, comparing those who became
CEO in the 1970s and were never shielded by a BC law, those who became CEO in the 1980s and
were not shielded by a BC law, and those who became CEO in the 1980s and were insulated by BC

22 In these specifications, we also replace the indicator for first-generation law exposure with an exposure length
measure. In both cases, we calculate exposure length up to daily precision. For example, Delaware’s BC law was adopted
on Feburary 2, 1988, and a CEO’s exposure in Delaware in 1988 is calculated as BCi,1988 =

365−doy(2/2/1988)
365 = 0.92.
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Panel A. By cohort Panel B. By state

Figure 6. Kaplan-Meier survival estimates. This figure shows Kaplan-Meier survival plots for the relation
between antitakeover law protection and longevity. The vertical axis shows the fraction of CEOs who are still
alive. The horizontal axis reflects time elapsed (in years) since a person became CEO. Panel A compares the
survival of CEOs starting in the 1970s who never served under a BC law (dark blue) to those who became
CEO in the 1980s and never served under a BC law (light blue) and those who became CEO in the 1980s and
were eventually exposed to a BC law (light red). Panel B splits the CEOs from Panel A based on whether
their state never passed a BC law (dark blue), passed a BC law after the CEO stepped down (light blue), or
passed a BC law while in office (light red). As in Figure 5, both panels focus on CEOs appointed up to 10
years prior to the retirement age of 65 that had stepped down up to 10 years after the retirement age.

law protection during their tenure.23

Two results emerge. First, the survival patterns of the 1970s and 1980s cohorts without BC
exposure are remarkably similar, allaying concerns that our BC law–mortality results pick up
general changes in survival patterns between the 1970s and 1980s. Second, the survival line for
the 1980s cohorts with BC exposure is visibly right-shifted compared to the no-BC-cohorts. For
example, 20 years after their appointment, about 25% of CEOs in the 1980s cohorts without BC
exposure had died, whereas it takes closer to 25 to 30 years for a similar share of CEOs in the 1980s
cohorts with BC exposure to die.

23 For the 1970s cohorts, maximum elapsed time since our sample start is t = 47.75 (time elapsed between January
1, 1970 and the censoring date, October 1, 2017). Similarly, for the 1980s cohorts, maximal elapsed time is t = 37.75.
We restrict the graph to periods when at least 10 CEOs in either cohort group are uncensored, explaining the slightly
differential ends of the survival lines.
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To address concerns about systematic differences between BC and non-BC states affecting
the results, Panel B reshuffles CEOs in Panel A’s no-BC-cohorts, grouping them by whether their
state eventually enacted a BC law after the CEO stepped down (light blue) or not (dark blue). The
survival lines for these groups are virtually identical. Only CEOs in BC states with BC exposure
(light red) show a more beneficial survival curve. Thus, there is no evidence of BC states being
inherently different prior to BC enactment. We also note that all estimations below include location
fixed effects and are robust to using state-of-incorporation fixed effects.

The survival plots suggest significant adverse consequences in terms of life expectancy associated
with serving under more stringent corporate governance regimes. The underlying hazard coefficient
on BC law exposure is −0.228, which is very similar to the Cox (1972) hazard model results we
turn to next.

C. Main Results

Table V shows the hazard estimates based on empirical model (4) in the first four columns and
based on model (5) in the last four columns, that is, in columns (1) to (4) we summarize the total
effect of BC law exposure with the indicator I(BCi,t), which is equal to one if CEO i had been
exposed to a BC law by time t, and in columns (5) to (8) we estimate the linear effect in years of
exposure, BCi,t . We include fixed effects and controls as in the Table IV specifications with year
controls (linear or fixed effects), in addition to the control for first-generation law exposure.

Across all columns, we estimate a statistically and economically strong effect of BC law
protection on mortality. For the BC indicator in columns (1) to (4), the hazard coefficient ranges
from −0.198 to −0.234. For the cumulative BC exposure measure in columns (5) to (8), the
coefficient ranges from −0.037 to −0.040. Averaging the latter estimates across columns, a one-
year increase in exposure to more lenient governance is estimated to reduce a CEO’s mortality risk
by 3.8%. For a CEO with typical BC law exposure, both BC exposure measures imply very similar
effects on longevity.24

The estimated effects of control variables on mortality rates mirror those in Table IV, with the
linear time control being insignificant and age strongly predicting mortality rates. The coefficients
on the first-generation antitakeover controls are negative throughout, pointing to health benefits
also arising also from first-generation law protection. These estimates are not reliably significant,

24 The cumulative measure estimates a 16% shift in mortality hazard associated with the median BC exposure of
4.41 years, close to the 18% to 21% shift estimated with the BC indicator.
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however, and their magnitudes fluctuate across specifications.

Economic Significance. The estimates pertaining to the BC exposure variables imply meaningful
effect sizes. First, we again use the “in-sample” comparison to other CEOs. Based on the average
hazard coefficient estimates from the specifications with the BC indicator variable (−0.217 for BC
exposure and 0.112 for age), the effect of BC law protection on mortality is equivalent to being
about two years younger. This effect size is of a similar order of magnitude as the 1.1-year increase
estimated for exposure to industry distress. The somewhat larger mortality effect, compared to the
industry shock experience, might reflect the more permanent nature of the BC law experience.

Second, we again use the general U.S. population life tables to assess the magnitude of the
estimate. Here, the median exposure to lenient governance of 4.41 years pushes the 1.337% mortality
rate of males born in 1927 down to 1.128%, which is roughly the mortality rate of males born in
1927 at age 54.5, that is, when 2.5 years younger.

As with the industry distress analysis, we also collect data on the causes of death. We are able to
locate information for 450 of the pre-BC law CEOs, which accounts for about 35% of passed CEOs
in the pre-BC-law sample. The data do not allow us to detect a specific cause of death as the driver
of the relationship between BC laws and lifespan, although the frequency of strokes is somewhat
higher in the high-job-demands (i.e., non-BC) subsample, as in the industry distress analysis.

Overall, we find variation in job demands based on antitakeover laws to be associated with
substantial mortality effect sizes.

D. Robustness Tests

Our results are robust to a series of additional tests, some analogous to the robustness checks of
the distress–longevity relation in Section III.D, and some specific to the use of antitakeover laws
as a source of identifying variation. We provide a brief overview of the tests here; we present a
detailed discussion of the tests in Section IV of the Internet Appendix.

Other Specifications and Sample Choices. We first test and confirm that our results are robust to
using birth-year fixed effects, using the same specification as in columns (3) and (6) in the industry
distress regressions in Table IV (Internet Appendix Table IA.XVI). Mirroring the robustness test
in Section III.D, the results also hold with age-by-birth-cohort controls (Internet Appendix Table
IA.XVII).

Next, as in Section III.D, our results are robust to different censoring date choices (Internet
Appendix Figure IA.10).
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Finally, while it is standard in the BC law literature to assign location fixed effects based on firms’
headquarters (Gormley and Matsa (2016)), the results are robust to using state-of-incorporation
fixed effects (Internet Appendix Table IA.XVIII). The stability of the estimates suggests that firm
locations do not affect the relationship between governance and longevity. Alternatively, the results
are robust to keeping state of headquarters fixed effects but dropping CEOs who stepped down
significantly before the passage of the BC laws (Internet Appendix Figure IA.11), which further
ameliorates concerns specific to the BC law results around differences between BC-protected and
nonprotected CEOs.

Other Antitakeover Laws. The results are also robust to using the first-time enactment of any of
the five second-generation antitakeover laws as a source of identifying variation (Internet Appendix
Table IA.XIX). This test highlights that our results should be interpreted more broadly, applying to
different corporate governance mechanisms rather than narrowly to BC laws.

Karpoff-Wittry and Related Tests. All results are robust to the extensive robustness checks
proposed in Karpoff and Wittry (2018). We account for firms lobbying for the passage of BC laws
or opting-out, as well as confounding effects of firm-level defenses, and further restrictions based on
the first-generation antitakeover laws (Internet Appendix Tables IA.XX and IA.XXI). Additionally,
the results are robust to data cuts based on state of incorporation and industry affiliation (Internet
Appendix Table IA.XXII).

Nonlinear Exposure Effects and Predicted Length of Exposure. The final two robustness checks
address concerns that the cumulative BC specification in equation (5) picks up CEOs’ endogenous
selection into a long tenure. We note that this concern does not apply to the indicator strategy, and
thus does not threaten our main findings in Table V; it only relates to the magnitude of the per-year
estimates in columns (5) to (8).

We first address this concern by separately examining the mortality effects of initial years and
incremental years of BC law exposure. Columns (1) and (2) in Internet Appendix Table IA.XXIII
reestimate columns (5) and (6) of Table V, but with BCi,t split into below- and above-median
exposure, BC(min-p50)

i,t and BC(p51-max)
i,t . Here, the below-median exposure variable counts exposure

years up to the sample median (conditional on exposure) of 4.41 years, and the above-median
exposure variable records incremental exposure.25 In both columns, the hazard coefficient on

25 For example, for a CEO with a current BC exposure of four years, BC(min-p50)
i,t would take the value of four and

BC(p51-max)
i,t the value of zero. In the following year (t +1), BC(min-p50)

i,t+1 would be set to 4.41 and BC(p51-max)
i,t+1 to 0.59. In

33



below-median BC exposure is strongly significant. By contrast, the coefficient on above-median
BC exposure is close to zero and insignificant. These results imply that the estimated survival gains
are driven by the initial years of reduced monitoring, rather than by the tails of long-tenured CEOs.

Second, we estimate a hazard model using a CEO’s predicted rather than true length of BC
exposure. The prediction model only uses information from prior to the BC law passage to predict
CEOs’ remaining tenure over time, from which predicted BC exposure is derived; see Section IV of
the Internet Appendix for full details. The results are reported in columns (3) and (4) of Internet
Appendix Table IA.XXIII. The hazard coefficient estimates of −0.042 in both columns are very
similar to those in Table V, while the standard errors, now bootstrapped (since we use a generated
regressor), are larger.26

In Section IV of the Internet Appendix, we also analyze how tenure responds to antitakeover
laws. We find evidence of increases in tenure under BC laws, consistent with the laws affecting
managers’ perceptions of job demands.

E. Business Combination Laws and CEO Pay

The permanent corporate governance regime changes induced by BC laws also lend themselves
to studying the extent to which managers account for the health implications of their jobs, for
example, in negotiating pay. We conduct a simple calibration exercise that builds on the literature on
the value of a statistical life (Viscusi and Aldy (2003)). (See Section IV of the Internet Appendix for
details.) We estimate that, if CEO pay reflects working conditions, then a reduction in mortality risk
of 4.0% per year of BC exposure (as estimated in column (5) of Table V) would imply a change in
CEO pay between −2.5% and −10%.27 By contrast, when we turn from the theoretical calibration
to the empirical relationship between BC law protection and pay, we estimate a positive albeit
statistically insignificant effect of BC law passage on pay (Internet Appendix Table IA.XXIV). The
estimates indicate a pay increase of around 4.5% to 7.6%.28 The apparent lack of a compensating
differential casts doubt on whether all parties fully account for the health implications of different

year t +2, BC(min-p50)
i,t+2 would remain at 4.41, and BC(p51-max)

i,t+2 would increase to 1.59.
26 A regression of true BC exposure on predicted exposure yields a coefficient of 1.215, which indicates that the

prediction well approximates the true exposure. The estimated effects remain sizable if we divide them by 1.215,
amounting to −0.042/1.215 =−0.035.

27 We thank Xavier Gabaix for suggesting this calibration exercise.
28 In comparing the results to the earlier work (Bertrand and Mullainathan (1998)), who estimate a (more significant)

5.4% pay increase, it is important to note that our analysis is conducted on our CEO Mortality Data Set, a CEO-level
sample, and restricts the sample to incumbent pre-BC CEOs.
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governance regimes.

V. Conclusion

In this paper, we assess the health consequences of being exposed to increased job demands
and a more stressful work environment while in a high-profile CEO position. We analyze the
consequences for CEOs’ aging and mortality using two sources of variation in job demands, namely,
industry-wide distress shocks and the staggered introduction of antitakeover laws.

We first show that industry distress is reflected in short- to medium-term signs of adverse health
consequences—faster visible aging. To the best of our knowledge, we are the first to collect and
use panel data of facial images and apply ML-based apparent-age estimation software in social
science research. Implementing a difference-in-differences design that exploits variation in industry
distress during the Great Recession, we estimate that CEOs who experienced industry distress
during the 2007 to 2008 financial crisis look roughly one year older than those whose industry did
not suffer the same level of distress. The effect of distress on aging becomes slightly larger over
time, increasing to 1.18 years if we analyze images from 2012 and afterwards.

Using an earlier CEO sample, we next document more long-term adverse health outcomes
associated with strenuous job demands. CEOs who experienced periods of industry-wide distress
during their tenure die significantly earlier. We estimate a mortality effect corresponding to that
of a 1.1-year increase in chronological age. In line with these results, we observe significant
improvements in life expectancy for CEOs who became shielded by an antitakeover law during
their tenure.

In sum, our results indicate that financial distress and stricter corporate governance regimes—
the latter of which are generally viewed as desirable and welfare-improving—impose significant
personal health costs on CEOs. While we lack direct physical or medical measures of heightened
stress, the evidence implies a substantial personal cost for CEOs in terms of their health and
life expectancy. As such, our findings also contribute to the literature on the trade-offs between
managerial incentives and private benefits arising from the separation of ownership and control. We
document and quantify a previously unnoticed yet important cost—personal health cost—associated
with serving under strict corporate governance.

Our findings suggest further avenues of investigation. One open question is whether managers
fully account for these personal health costs as they progress in their careers, and how these costs
affect selection into service as a CEO. Are some high-ability candidates for a Forbes-level CEO
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career more aware of these consequences than others and select out? Alternatively, candidates might
differ in their preferences, with some embracing the “wild ride” of a CEO career and others aiming
for a healthier and more balanced life.

Another important question is which jobs and hierarchy levels come with the largest adverse
health consequences. For the reasons discussed in the introduction, the highest tier of management
is important to study because of their impact on firm outcomes and the identification opportunities
it offers. But managers just one tier below might be more affected by work-related stressors, and
workers at the bottom might suffer the most, also in light of looming financial hardships. Going
beyond the realm of corporations, we might hypothesize that minimum wage and temporary workers
with rigid schedules, such as delivery drivers, suffer even more. Or, it could be the case that people
in “life-or-death” jobs, such as emergency room doctors and airline pilots, have more adverse health
consequences. In all cases, it would be important to understand the health consequences and explore
whether any dimension of compensation responds to these job demands.

Finally, another promising avenue is the more fine-grained identification of stressors. Which
aspects of individual job situations and which decisions tend to have the largest adverse health
consequences, for either management or regular employees? In the context of CEOs, our results on
the mortality-improving effects of takeover protection point to a role for shareholder scrutiny and
disciplining mechanisms. Our results on accelerated aging and mortality in response to industry
distress suggest that recession-triggered “tough” decisions such as downsizings and layoffs may
also be particularly relevant.29 Consistent with a mechanism related to layoffs, Guenzel, Hamilton,
and Malmendier (2025) find evidence of a personal cost for CEOs associated with firing employees.
Furthermore, heightened workplace stress can also adversely affect other aspects of life, including
marriage, divorce, and parenting. We leave these topics for future research.

29 We also explore whether the adverse health outcomes in response to industry-wide equity-value declines vary
with CEO compensation structures. We find no evidence that the mortality or aging results differ by the degree of a
CEO’s cash compensation or salary relative to performance-contingent pay, which speaks against a channel related to
changes in material well-being induced by distress shocks as an important driver of our findings.
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Table I
Summary Statistics for CEO Apparent Aging Data

Panel A presents image-level summary statistics. Panel B presents CEO-level statistics. Panel C contains
information on the industry distribution of our sample. Industry Distress (2007–2008) is an indicator variable
for distress experience during these years. Industry Distress (pre-2007) is an indicator variable for distress
experience prior to 2007. All variables are defined in Section I of the Internet Appendix.

Panel A: Image Statistics

N Mean SD P10 P50 P90

Picture Year 3,002 2008.86 5.68 2003 2009 2016
Chronological Age 3,002 59.02 8.09 48.96 58.88 69.04
Industry Distress (2007-2008) 3,002 0.67 0.47 0 1 1
Apparent Age 3,002 55.14 7.00 45.71 55.85 63.35
Image Sharpness 3,002 2.57 0.74 1.55 2.58 3.54
Logo 3,002 0.19 0.39 0 0 1
Side Face 3,002 0.23 0.42 0 0 1
Professional Clothes 3,002 0.81 0.40 0 1 1
Magazine Shot 3,002 0.00 0.04 0 0 0
Magazine Quality 3,002 2.80 1.04 1 3 4
Natural Pose 3,002 0.67 0.47 0 1 1
Natural Lighting 3,002 0.18 0.38 0 0 1
Glasses 3,002 0.32 0.47 0 0 1
Facial Hair 3,002 1.19 0.56 1 1 2
Smile 3,002 1.69 0.67 1 2 3
Mood 3,002 1.76 0.69 1 2 3
Self-Confidence 3,002 2.22 0.65 1 2 3
Style 3,002 3.22 0.70 2 3 4

Panel B: CEO Statistics

N Mean SD P10 P50 P90

No. of Pictures per CEO 453 6.63 4.36 2 6 12
Chronological Age in 2006 453 56.68 6.96 48 57 65
Tenure (Pre-2007) 453 8.36 7.89 2 6 18
Industry Distress (2007-2008) 453 0.65 0.48 0 1 1
Industry Distress (pre-2007) 453 0.38 0.48 0 0 1

Panel C: Industry Distribution

Industry No. of CEOs

Finance, Insurance, and Real Estate 66
Manufacturing 174
Services 44
Transportation, Communications, Electric, Gas, and Sanitary Services 69
Wholesale and Retail Trade 70
Other Industries 30
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Table II
Summary Statistics for CEO Mortality Data

This table shows summary statistics for the CEO longevity analyses. Industry Distress is an indicator variable
that equals one if a CEO experienced industry-wide distress during his tenure. BC denotes years of exposure
to business combination laws. All variables are calculated at the CEO level and are defined in Section I of the
Internet Appendix.

N Mean SD P10 P50 P90

Birth Year 1,900 1926.87 9.48 1915 1927 1940
Passed Away (by October 2017) 1,900 0.66 0.48 0 1 1
Year of Death 1,247 2003.72 9.83 1989 2006 2015
Age at Death 1,247 80.89 9.91 67 82 92
Age Taking Office 1,900 51.87 6.87 43 52 60
Year Taking Office 1,900 1978.74 8.04 1969 1979 1989
Tenure 1,900 10.04 6.69 2.5 8.75 19
Industry Distress 1,900 0.39 0.49 0 0 1
BC 1,605 2.21 4.20 0 0 8.24
BC | BC> 0 616 5.75 5.05 0.75 4.41 12.37
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Table III
Industry Distress and CEO Aging

This table shows OLS estimates of the effect of industry distress during the Great Recession on CEO apparent
aging, as identified from CEOs’ facial images. The dependent variable is the apparent-age gap, that is, the
difference between apparent and chronological age. Industry Distress is equal to one if the CEO’s firm was
exposed to industry-wide distress during 2007 or 2008. Observations are weighted by image sharpness. All
variables are defined in Section I of the Internet Appendix. Standard errors, clustered at the industry level, are
shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress × 1{t>2006} 0.806∗∗ 0.883∗∗

[0.382] [0.382]

Industry Distress × 1{2006<t<2012} 0.634 0.670∗

[0.386] [0.396]

Industry Distress × 1{t≥2012} 1.049∗∗ 1.183∗∗∗

[0.462] [0.448]

CEO FE Y Y Y Y
Year FE Y Y Y Y
CEO Controls Y Y Y Y
Picture Controls Y Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002
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Table IV
Industry Distress and Mortality

This table shows hazard coefficients estimated from a Cox (1972) proportional hazards model. The dependent
variable is an indicator that equals one if the CEO dies in a given year. The main independent variable
Industry Distress is an indicator of a CEO’s exposure to industry distress shocks. All variables are defined in
Section I of the Internet Appendix. Standard errors, clustered at the industry level, are shown in brackets.
*p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4) (5) (6)

Industry Distress 0.108∗∗ 0.103∗ 0.147∗∗ 0.140∗∗ 0.137∗∗ 0.178∗∗∗

[0.053] [0.055] [0.058] [0.059] [0.061] [0.063]

Age 0.119∗∗∗ 0.119∗∗∗ 0.121∗∗∗ 0.117∗∗∗ 0.117∗∗∗ 0.125∗∗∗

[0.006] [0.006] [0.007] [0.006] [0.006] [0.007]

ln(Pay) −0.005 −0.011 0.011
[0.045] [0.046] [0.047]

ln(Assets) −0.078 −0.084∗ −0.091∗

[0.047] [0.048] [0.052]

ln(Employees) 0.029 0.033 0.038
[0.049] [0.049] [0.051]

Year −0.003 0.001
[0.005] [0.006]

FF49 Strata Y Y Y Y Y Y
Location FE Y Y Y Y Y Y
Year FE Y Y
Birth Year FE Y Y
No. of CEOs 1,900 1,900 1,900 1,818 1,818 1,818
Observations 58,034 58,034 58,034 55,796 55,796 55,796
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Table V
Business Combination Laws and Mortality

This table shows hazard coefficients estimated from a Cox (1972) proportional hazards model. The dependent
variable is an indicator that equals one if the CEO dies in a given year. The main independent variables
are a binary indicator of BC law exposure, I(BC), in the left four columns and a count variable of years
of exposure, BC, in the right four columns. All variables are defined in Section I of the Internet Appendix.
Standard errors, clustered at the state-of-incorporation level, are shown in brackets. *p < 0.10, **p < 0.05,
***p < 0.01.

(1) (2) (3) (4) (5) (6) (7) (8)

I(BC) −0.234∗∗∗ −0.229∗∗∗ −0.208∗∗ −0.198∗∗

[0.086] [0.083] [0.085] [0.081]

BC −0.040∗∗∗ −0.039∗∗∗ −0.038∗∗∗ −0.037∗∗∗

[0.006] [0.006] [0.008] [0.008]

I(FirstGen) −0.035 −0.101∗∗ −0.036 −0.109∗∗

[0.048] [0.047] [0.042] [0.043]

FirstGen −0.016 −0.024∗ −0.012 −0.020∗

[0.014] [0.014] [0.011] [0.011]

Age 0.111∗∗∗ 0.112∗∗∗ 0.111∗∗∗ 0.112∗∗∗ 0.108∗∗∗ 0.108∗∗∗ 0.109∗∗∗ 0.109∗∗∗

[0.004] [0.004] [0.005] [0.005] [0.004] [0.004] [0.005] [0.005]

ln(Pay) 0.001 0.001 −0.009 −0.008
[0.035] [0.035] [0.040] [0.040]

ln(Assets) −0.030 −0.040 −0.007 −0.015
[0.035] [0.035] [0.032] [0.032]

ln(Employees) 0.004 0.008 −0.013 −0.012
[0.032] [0.032] [0.033] [0.034]

Year −0.001 −0.001 −0.003 −0.002
[0.005] [0.005] [0.006] [0.006]

FF49 Strata Y Y Y Y Y Y Y Y
Location FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y
No. of CEOs 1,605 1,605 1,553 1,553 1,605 1,605 1,553 1,553
Observations 50,530 50,530 49,052 49,052 50,530 50,530 49,052 49,052
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Internet Appendix for

“CEO Stress, Aging, and Death”

MARK BORGSCHULTE, MARIUS GUENZEL, CANYAO LIU, and ULRIKE MALMENDIER*

This Internet Appendix supplements the main article. Section I provides variable definitions.
Section II presents additional details and results on industry-wide distress shocks and CEO apparent
aging. Section III reports supplementary results on industry-wide distress shocks and CEO life
expectancy. Section IV provides additional results on corporate monitoring and CEO life expectancy.

* Citation format: Borgschulte, Mark, Marius Guenzel, Canyao Liu, and Ulrike Malmendier, Internet Appendix
for “CEO Stress, Aging, and Death,” Journal of Finance [DOI STRING]. Please note: Wiley is not responsible for
the content or functionality of any additional information provided by the authors. Any queries (other than missing
material) should be directed to the authors of the article.
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I. Variable Definitions

Variable Name Definition

Panel A: CEO Apparent Aging Analysis

Apparent Agei,t How old CEO in image i taken in year t looks. The apparent age is estimated
using a machine-learning based software by Antipov et al. (2016) that has been
specifically developed for apparent-age estimation. See Section II.A of the
Internet Appendix for additional details.

Chronological Agei,t CEO i’s age in year t.
Apparent-Age Gapi,t Difference between CEOs’ apparent age in image i taken in year t and their

chronological age in year t.

Industry Distressi,t Indicator equal to one if CEO i is exposed to industry distress, defined as in
Panel B of this table, in 2007 and/or 2008.

Image Sharpness Sharpness of image measured as detailed in Section II.B of the Internet
Appendix.

Logo Indicator equal to one if there is a logo (e.g., the GettyImages logo) on the
CEO’s face in the image.

Side Face Indicator equal to one for images showing a side face instead of a front face.
Professional Clothes Indicator equal to one if CEO is in “work mode,” say wearing business clothes,

and zero if in “casual mode,” say wearing a T-shirt.
Magazine Shot Indicator equal to one if image is taken from a magazine cover.
Magazine Quality Five-point categorical variable assessing the degree to which an image could be

used in a magazine (no chance, likely not, maybe, yes, definitely).
Natural Pose Indicator equal to one if CEO did not expect the picture to be taken and zero if

CEO expected the picture (e.g., photo call).
Natural Lighting Indicator equal to one if lighting appears natural and zero if lighting appears

unusual, e.g., black-and-white image, stage lighting, etc.
Glasses Indicator equal to one if CEO wears glasses.
Facial Hair Three-point categorical variable assessing the degree of facial hair (none, very

little or stubble, regular).
Smile Three-point categorical variable assessing facial expression (smile, frown,

neither).
Mood Three-point categorical variable assessing mood (happy, grim, neutral).
Self-Confidence Three-point categorical variable assessing the degree of portrayed

self-confidence (not very, normal, very).
Style Five-point categorical variable assessing time person spent getting ready (with

their face) in the morning (none, less than usual, normal, more than usual,
celebrity-level effort).
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Panel B: CEO Mortality Analysis

Agei,t CEO i’s (chronological) age in year t.
Birth Year CEO’s year of birth.
Dead (by Oct. 2017) Indicator for whether a CEO has passed away by October 1, 2017.
Year of Death CEO’s year of death, calculated up to monthly level.

Age Taking Office CEO’s age when appointed as CEO.
Year Taking Office Year in which a CEO is appointed.
Tenurei,t CEO i’s cumulative tenure (in years) at time t.

Industry Distressi,t Indicator equal to one if CEO i is exposed to an industry shock by year t. Industry
shock is defined as median two-year stock return (forward-looking) of firms in the
same industry below −30%. As in Babina (2020), we (i) use SIC3 industry classes,
(ii) restrict attention to single-segment CRSP/Compustat firms, i.e., drop firms with
multiple segments in the Compustat Business Segment Database (CBSD), (iii)
drop firms if the reported single-segment sales differ from those in Compustat by
more than 5%, (iv) restrict attention to firms with sales of at least $20m, and (v)
exclude industry-years with fewer than four firms. We use firms’ modal SIC code
across CRSP, Compustat, and CBSD, and the latter in case of a tie.

I(BCi,t) Indicator equal to one if CEO i is insulated by a BC law in year t; remains at one in
all subsequent years τ > t, including after CEO departure.

BCi,t CEO i’s cumulative exposure to a BC law during tenure up to time t (in years);
remains constant after CEO departure.

BC(min-p50)
i,t CEO i’s below-median (4.41 years) cumulative BC law exposure during tenure up

to time t (in years); remains constant after CEO departure.
BC(p51-max)

i,t CEO i’s above-median (4.41 years) cumulative BC law exposure during tenure up
to time t (in years); remains constant after CEO departure.

I(FirstGeni,t) Indicator equal to one if CEO i is insulated by a first-generation antitakeover law
(Karpoff and Wittry (2018)) in year t; remains at one in all subsequent years τ > t,
including after CEO departure.

FirstGeni,t CEO i’s cumulative exposure to a first-generation antitakeover law during tenure
up to time t (in years); remains constant after CEO departure.

I(FLi,t) Indicator equal to one if CEO i is insulated by the first-time enactment of a
second-generation antitakeover law (FL) in year t; constant after CEO departure.

FLi,t CEO i’s cumulative exposure to the first-time enactment of a second-generation
antitakeover law (FL) during tenure up to time t (in years); constant after CEO
departure.

Yeari,t Year of a subspell; used in hazard models when linearly controlling for time.

Payi,t CEO i’s total pay in year t (Gibbons and Murphy (1992)); missing data is
interpolated.

Assets j,t Firm j’s total assets in year t (Compustat); missing data is interpolated.
Employees j,t Firm j’s number of employees in year t (Compustat); missing data is interpolated.
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II. Industry-Wide Distress Shocks and Apparent Aging: Apparent-Age Estimation Details
and Robustness Tests

A. Apparent-Age Estimation

We use machine learning (ML)-based software by Antipov et al. (2016), henceforth referred
to as ABBD. This software was developed for the purpose of apparent-age estimation, and was
the winning solution of the second edition of the ChaLearn Looking At People competition in the
apparent-age estimation track. Apparent age traces visible signs of aging in people’s faces to capture
how old they look. By contrast, chronological age is the time elapsed since birth, and generally
differs from the apparent age.

At the core of ABBD’s apparent-age estimation tool is the training of a convolutional neural
network (CNN). A CNN is a special class of neural networks that is particularly useful for image
recognition and computer vision problems. A neural network is a system that learns to perform
a task by studying training data.1 It is architectured with three classes of layers: input, output,
and hidden layers. The input layer receives the external data being evaluated, and the output data
contains the network’s response to the input. The hidden layers in between abstractly determine
intermediate features of the data. A CNN is a neural network in which some of the hidden layers
employ the method of convolution, that is, of transforming the input by sliding (or, convolving) over
it, to detect patterns (such as edges or corners), which are then passed on to the next layer.

Figure IA.1 below provides a simplified example of how convolution works in CNNs. Here,
the fictional input is a shape that is roughly recognizable as a face (numbers between −1 and 1
determine pixel color). The filter matrix slides over the input and produces the output as the sum of
element-wise matrix multiplication of 3×3 pixel regions with the filter matrix. As can be seen in
the convoluted output, this specific filter matrix identifies right vertical edges. Convolutional layers
further along in a system may be able to detect more advanced patterns such as, in our application,
eyes or wrinkles.

CNNs have become widely used over the past 10 to 20 years, with numerous applications,
in particular to image recognition and classification. In an influential article on deep learning2

published in Nature, LeCun, Bengio, and Hinton (2015) summarize that CNNs have “brought about
a revolution in computer vision” and “breakthroughs in processing images, video, speech and audio,”
and they are “now the dominant approach for almost all recognition and detection tasks.”

1 The task is referred to as supervised learning if the data is labeled (annotated), as is our training data.
2 A neural network is considered deep if it has multiple hidden layers.
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Figure IA.1. Simplified example of convolution. The fictional input image (left) with 20× 20 pixels is
roughly recognizable as a face. In this fictional image, each pixel (“cell”) is encoded with a number between
−1 and +1 determining its color, with −1.0 defined as black and +1.0 defined as white. The output image
(right) is obtained through convolution. The 3×3 filter matrix (center) slides over each possible 3×3 region
in the input image and outputs the sum of element-wise matrix multiplication of these 3×3 image regions and
the filter matrix. Example inspired by material by Jeremy Howard (youtube.com/watch?v=V2h3IOBDvrA)
and deeplizard (deeplizard.com/learn/video/YRhxdVk sIs).

ABBD’s apparent-age estimation software starts from a pre-trained version of a state-of-the-art
CNN for face recognition called VGG-16,3 and involves two key steps: training and fine-tuning
of the CNN. In a first step, this CNN is trained on a large data set of more than 250,000 facial
images from the IMDb (Internet Movie Database) and Wikipedia, which also contains information
on the chronological age of the person. The training step is implemented by minimizing the mean
absolute error between predicted age and chronological age. In a second step, the software is
fine-tuned for apparent-age estimation on a unique data set of 5,613 facial images that also contains
information on people’s apparent age, consisting of at least 10 human age estimates (per picture),
which were specifically collected for the ChaLearn Looking At People competition. The fine-tuning
step is implemented by minimizing a metric that penalizes deviations from the average (human)
age estimate more when the disagreement about the person’s apparent age is low.4 Training and
fine-tuning essentially mean that the software learns to estimate the age of the people in the two

3 VGG-16 is a deep CNN introduced by Simonyan and Zisserman (2014). ABBD’s software uses a VGG-16 version
by Parkhi, Vedaldi, and Zisserman (2015), which was trained for the purposes of face recognition (identifying identities
from facial images) on 2.6 million images. Both works have been widely used and cited.

4 The metric is defined as ε = 1− exp
(
− (x̂−µ)2

2σ2

)
, where x̂ is the predicted apparent age, and µ and σ are the

image-level mean and standard deviation across the human-based age estimates.
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datasets using the information on chronological and apparent age by adapting learning parameters
in the hidden layers.

ABBD’s software and apparent-age estimation tool have a variety of notable features:

Age distribution in training datasets. Both the IMDb-Wikipedia data and the dataset employed
for human-based fine-tuning include people from all age groups, and in particular people aged 50
and above. This ensures that the software is trained and fine-tuned on data that includes people with
similar facial characteristics as our CEOs, such as with regard to baldness patterns, hair color, and
wrinkle development. For reference, the CEO at the 10th (50th, 90th) percentile in our dataset is 48
(57, 65) years old in 2006 (see Table I of the main article).

Image pre-processing. Before feeding the pictures into the CNN for training and fine-tuning,
ABBD “standardize” them, a process they label picture pre-processing. Specifically, they use
existing software solutions to detect, scale, and align the face in each image, and resize each image
to 224× 224 pixels. Intuitively, standardizing images reduces the noise present when training
and fine-tuning the software and improves performance (see Table 2 in Antipov et al. (2016)).
The software’s performance on the ChaLearn Looking At People competition data improves by
approximately 1% as a result of image-preprocessing (see Table 2 in Antipov et al. (2016)).

ABBD’s trained software does not include image pre-processing code (and can, in fact, be
applied to “raw images” so long as they are resized). We nonetheless replicate some of their
pre-processing steps in order to increase the similarity between our CEO images and the images
used for software training. Before pre-processing a picture, we make sure that the image contains
only the face of the CEO. If a picture contains multiple faces, such as a CEO with their partner, other
managers, or a journalist, we first manually crop the picture and keep only the portion that shows
the CEO. We then use the Python-based “face recognition” package5 to detect the picture region
showing the CEO’s face, extract the face, center it in the image, and resize the image to 224×224
pixels. Note that any remaining differences to ABBD’s image pre-processing might increase the
noise in our apparent-age estimates, but not introduce bias as any potential systematic differences in
pre-processing steps would need to be correlated with industry shock exposure during the Great
Recession.

Figure IA.2 shows several examples of pre-processed facial images. Panel A shows pre-
processed images used to train ABBD’s software. One can see that they differ in terms of “tint” and

5 The full package documentation is at github.com/ageitgey/face recognition/blob/master/README.md.
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background. For example, the leftmost picture has a bluish tint and dark background, whereas the
rightmost picture has a yellowish tint and light background. This underscores the spectrum of image
characteristics the software is “exposed” to while being trained for apparent-age estimation. Panel
B shows pre-processed CEO images from our sample. Again, there are differences in terms of tint
and background, so it is worth reiterating that these are image features that the software can learn to
take into account in its estimation during the training stage. Furthermore, comparing images across
the two panels illustrates that our implementation of the image pre-processing step indeed leads to
similar results compared to ABBD’s original implementation on the training datasets.

Panel A. Training sample

Panel B. CEO sample

Figure IA.2. Examples of pre-processed images. Panel A shows examples of pre-processed facial images
used in the training of the apparent-age estimation software. Panel B shows examples of pre-processed CEO
images from our sample.

Accuracy gains from software fine-tuning. In ABBD’s software development, fine-tuning
on human age estimates led to the biggest accuracy improvement across all training and image
pre-processing steps, amounting to more than 20% (see Table 2 in Antipov et al. (2016)). This
underscores the importance of using a software trained for apparent-age estimation, rather than an
“off-the-shelf” software solely trained on images annotated with people’s chronological age.

Cross-validation. Rather than training one CNN on the 5,613 training images, ABBD’s apparent-
age estimation merges eleven CNNs, which were trained using eleven-fold cross-validation. Cross-
validation is a popular technique in prediction problems. As part of the training step, a portion
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of the data (the validation sample) is set aside for out-of-sample tests, that is, tests on data the
algorithm was not trained on. Moreover, instead of fixing the validation sample, it is common to
train separate models using nonoverlapping validation samples and to then average the results. In
ABBD’s implementation, each of the eleven “sub-CNNs” uses 5,113 images for training and 500
(nonoverlapping) images for validation; this corresponds to a near-complete partition of the full
training data into equal-sized validation samples (5,613/11 ≈ 500). Each sub-model outputs a
100×1 vector of probabilities associated with all apparent ages between 0 and 99 years. ABBD’s
final solution, on which our analyses are based, uses the average of the probabilities across all
sub-models. Averaging across the ensemble of eleven models is akin to bootstrap aggregating
(“bagging”) procedures typically aimed at improving prediction accuracy (Breiman (1996)).

Data augmentation. In the fine-tuning step of the software development, ABBD use five-times
data augmentation. This is a popular technique to enlarge the training (or fine-tuning) sample, that
is, to allow the software to learn on more data. Specifically, each apparent-age annotated image
is fed into the algorithm jointly with five modified versions: the mirrored image, a rotated image
(±5°), a horizontally shifted image (±5%), and a scaled image (±5%). To see the potential benefit
of data augmentation to reduce overfitting, suppose that among the fine-tuning sample of 5,613
images, people who look older happen to look slightly to the upper right, but that there is no intrinsic
relation between apparent age and camera angle. Including mirrored and rotated images in the
fine-tuning step reduces the likelihood that the software may learn to associate apparent age with
camera angle. In our application, data augmentation also further alleviates concerns about effects of
slight differences in image pre-processing.

To match the steps during training, ABBD’s final solution uses the same image modifications
also on new images that are fed into the tool, that is, it estimates different apparent ages for each
image in our CEO sample based on the original image and modified images as outlined above. The
final apparent age is the average across the different estimates.
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B. Measuring Image Sharpness

We follow the computer science and imaging literature6 and measure image sharpness based on
the image Laplacian, which is the second spatial derivative of an image. We first transform each
image to grayscale. We then calculate the Laplacian of the image. The Laplacian of an image with
pixel intensities I(x,y) is

L(x,y) =
δ2I
δx2 +

δ2I
δy2 .

The Laplacian determines the extent to which there are rapid changes in grayscale images.
Sharp images tend to be associated with more rapid changes, as in these images detail is rendered
more clearly and there are more “edges.” As a result, sharp images have, relatively speaking, large
positive and negative Laplacian values.

The variance of the Laplacian method for image sharpness calculation makes use of this feature.
For our purposes, we calculate image sharpness as the continuous measure sharpness= lnσ(L(x,y)),
that is, we take the natural logarithm of the standard deviation of an image’s Laplacian values.

As reported in Table I in the main article, the mean and median image sharpness values in our
sample are 2.57 and 2.58, respectively. Figure IA.3 shows two illustrative images from a CEO in
our sample (Rex W. Tillerson, former CEO of ExxonMobil). The left image has a sharpness value
of 2.14, which is close to the 25th percentile of the image sharpness distribution in our sample.
The right image has a sharpness value of 3.28, which is close to the 75th percentile of the sample
distribution.

Figure IA.3. Image sharpness in sample images.

We test that our measure of image sharpness is uncorrelated with treatment, that is, with industry
distress exposure during the Great Recession. These results are shown in Table IA.III below.

6 See, for example, Pech-Pacheco et al. (2000) and Bansal, Raj, and Choudhury (2016). See also
pyimagesearch.com/2015/09/07/blur-detection-with-opencv/.
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C. Manipulating Facial Expression in Images

As discussed in the main text, one potential concern with the aging analysis is image heterogene-
ity, in particular differential smiling versus frowning. In addition to testing how facial expression
correlates with treatment and to controlling for facial expression in our analyses (see Section II.D of
the main article for a detailed discussion), we implement an AI-based robustness test.

Specifically, for images classified as frown, we use the app FaceApp (https://www.faceapp.com/)
and create “fake” images from the original images, in which we reduce frowning towards a more
neutral expression. FaceApp is not a basic photo editing application, but uses ML and neural
network techniques to create natural-looking transformations of faces.7 We manipulate images
“from frowning to neutral” rather than “from smiling to neutral” since the latter would require
significant changes to a person’s face, for example, removing teeth visible while smiling. Thus the
former approach is closer to, loosely speaking, taking a derivative of the image with respect to facial
expression.

We apply the AI-based expression manipulation application to all 354 images in our data set that
are classified as frowning, and hand-verify for each image that the manipulated version shows a more
neutral expression, even including a faint smile, which is the case for 341 (or 96%) of the frowning
images. For each of these images, we create three versions of “fake” images, with a progressively
more neutral/faint smile expression. We present examples of these image transformations in Figure
IA.4, again for Rex W. Tillerson. The left-most images are the original, real images (these images
are the same as those in Figure IA.3). The remaining three images in each row are the three
manipulated “fake” images with a progressively more neutral expression.

We then apply the apparent-aging software to each of the 341 successfully manipulated images,
and re-estimate our main regressions using the apparent age estimate from the manipulated instead
of the original images. We report the results in Table IA.VI, included in Section II.E of the Internet
Appendix. We refer to the degree of expression manipulation as none, 1/3, 2/3, and 3/3, respectively,
and present the results without image controls, since some of these assessments may change with
image manipulation (e.g., self-confidence). Panel A of Table IA.VI contains the results for the
simple pre-vs. post split, as in columns (1) and (2) of Table III in the main article. Panel B splits
the post-period into two sub-periods, as in columns (3) and (4) of Table III in the main article. In
both panels, column (1) corresponds to the results shown in Table III of the main article (column
(1) and (3), respectively), and columns (2) to (4) present the results using the face-manipulated

7 See, for example, forbes.com/sites/haroldstark/2017/04/25/introducing-faceapp-the-year-of-the-weird-selfies/.
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apparent-age estimates.

Figure IA.4. Manipulating facial expression using FaceApp’s Artificial Intelligence techniques.

Comparing the estimates in Table IA.VI across columns, our results barely change when using
the manipulated-face apparent-age estimates, which further alleviates concerns around image
heterogeneity confounds.

D. Robustness Related to Differential CEO Departures

This section provides additional details addressing the concern about differential selection of
images due to CEO departures. In particular, if differential CEO departure rates by industry distress
lead to heterogeneity in the type of images we can find, this could explain the observed apparent
aging patterns, even in the long run. For example, news of CEO departures are often accompanied
by photos of more grim-faced CEOs. Additionally, after stepping down, CEOs may assume less
prestigious positions or retire, accompanied with less management of public perceptions and lower
incentives for appearance management. It is thus important to examine differential CEO turnovers
as a potential mechanism.

Panel A of Figure IA.5 plots CEO departure rates since 2006 (since we focus on the 2006 cohort
of Fortune firms). Consistent with prior work (Jenter and Kanaan (2015)), it is indeed the case that
distressed CEOs leave the CEO position significantly sooner, in particular during the crisis, which
reinforces the resulting concern of image heterogeneity as a potential confound.
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Panel A. All CEOs Panel B. CEOs Departing in 2010 or After

Figure IA.5. Kaplan-Meier estimates for CEO departures. This figure shows Kaplan-Meier plots for the
relation between industry distress during the Great Recession and CEO departures. The vertical axis shows
the fraction of CEOs who are still in office. The horizontal axis reflects time elapsed (in years) since 2006.
Survival lines are adjusted for CEOs’ median elapsed tenure until 2006. Panel A compares CEO departure
rates of all CEOs in our sample. Panel B compares CEO departure rates conditional on leaving office in 2010
or afterwards.

To address the concern, we start by again plotting CEOs’ departure rates in Panel B of Figure
IA.5, now conditioning on CEOs who remain in office during the crisis and depart in 2010 or
afterwards. (Of course, whether CEOs remain in office until 2010 is endogenous, though the
selection from this conditioning likely works against identifying distress effects. Distressed CEOs
who remain in office are presumably more “resilient.”) As Panel B reveals, in the conditional sample
CEO departure rates do not differ by whether CEOs were exposed to industry distress during 2007
to 2008.

We then test for differences in the “status” of CEOs (and hence the type of images available) in
this subsample of CEOs. Despite their similar departure rates, distressed and nondistressed CEOs
might still differ in what they do after leaving office, for example, retire versus continue in high-level
positions. In Table IA.I, we test for differences in the fraction of images associated with five “types”
of status: (i) CEO is still in office, (ii) CEO has left the CEO position and no longer appears in
the Execucomp database,8 (iii) CEO has left the CEO position but still appears in Execucomp in

8 Execucomp contains the full S&P 1500 companies plus companies that were once part of the S&P 1500 index and
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a non-CEO role, (iv) CEO has left the CEO position but still appears in Execucomp in a CEO
role, and (v) CEO has left the CEO position and the CEO departure is classified as “retirement” by
Gentry et al. (2021).

Table IA.I
Fraction of Images By CEO Departure Status and Industry Distress Exposure

This table shows the fraction of CEO images by CEO departure status and industry distress exposure,
conditional on CEOs leaving office in 2010 or afterwards.

Industry Distress No Industry Distress p-value for Differences

In Office 89 % 89 % 0.77
Not Retired – Non-Execucomp 4 % 3 % 0.21
Not Retired – Execucomp Non-CEO 0 % 0 % 0.94
Not Retired – Execucomp CEO 2 % 2 % 0.60
Retired 5 % 6 % 0.35

As Table IA.I reveals, within the subsample of CEOs departing in 2010 or afterwards, there
are no significant differences in status and associated fraction of images. In other words, in this
subsample, both the timing of when CEOs depart and CEOs’ appearance management incentives
from in-office versus post-departure positions are similar for distressed and nondistressed CEOs. As
a result, repeating our analysis on this subsample of CEOs departing in 2010 or later is a useful way
to “mute” the potential confound of heterogeneous CEO incentives (and resulting heterogeneous
image types) due to heterogeneous departure rates.

We do so in Table IA.VIII, included below in Section II.E, where we repeat the main analysis
from Table III of the main article conditional on CEOs leaving office in 2010 or afterwards. We
continue to find strong apparent aging effects in this subsample, which if anything are stronger
than the baseline results. These results on the subsample of CEOs for which departure rates and
images types do not significantly vary by treatment ameliorate concerns that our effects are driven
by confounds related to differential picture management incentives.

are still trading, and some of the largest 2,500 firms per year.
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E. Additional Figures and Tables

This section contains additional figures and tables referenced in Section II of the main article,
related to the analysis on industry-wide distress shocks and CEO apparent aging.

Figure IA.6. Average number of images per CEO across years. This figure depicts the average number
of images per CEO we are able to collect each year for the group of CEOs that experienced industry shocks
during 2007 to 2008 and the group that did not. The black vertical line indicates the year 2006.
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Table IA.III
Image Sharpness and Industry Distress

This table relates image sharpness to industry distress exposure during the Great Recession. The dependent
variable is image sharpness as defined in Section II.B of the Internet Appendix. Industry Distress is an
indicator variable, defined at the CEO level, capturing whether a CEO was exposed to industry distress
during the Great Recession. Columns (3) and (4) add interactions with the post-indicator. Standard errors are
clustered at the industry level. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress 0.053 0.026
[0.055] [0.054]

Industry Distress × 1{t>2006} −0.025 −0.035
[0.065] [0.061]

Year FE Y Y Y
CEO FE Y Y
CEO Controls Y Y
Picture Controls Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002
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Table IA.IV
Treatment Status and Chronological Age

Industry Distress No Industry Distress p-Value for Differences

Mean Median Mean Median t-test Wilcoxon test

Chronological Age in 2006 56.60 56.00 56.81 57.00 0.77 0.28

p-value for test of equality of distributions (Wilcoxon rank-sum test): 0.68
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Table IA.V
Image Facial Expression, Industry Distress, and CEO Aging

This table examines image facial expression, industry distress exposure during the Great Recession, and
CEO aging. In Panel A, the dependent variable is the assessed facial expression, coded as −1 = frowning,
+1 =smiling, and 0 =neutral. Industry Distress is an indicator variable, capturing whether a CEO was
exposed to industry distress during the Great Recession. Columns (3) and (4) of Panel A add interactions
with the post-indicator. In Panel B, the dependent variable is the apparent-age gap, which is the difference
between apparent age, as assessed from CEOs’ facial images, and chronological age. The specification in
column (1) of Panel B is the same as that in column (2) of Table III of the main article. The specification in
column (2) is the same as that in column (1) except that it omits the control variable assessing mood (happy,
grim, neutral). Standard errors are clustered at the industry level. *p < 0.10, **p < 0.05, ***p < 0.01.

Panel A: Image Facial Expression and Industry Distress

(1) (2) (3) (4)

Industry Distress 0.023 0.032
[0.050] [0.048]

Industry Distress × 1{t>2006} 0.102 0.053
[0.070] [0.055]

Year FE Y Y Y
CEO FE Y Y
CEO Controls Y Y
Picture Controls Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002

Panel B: Industry Distress and CEO Aging – Smiling Control

(1) (2)

Industry Distress × 1{t>2006} 0.883∗∗ 0.876∗∗

[0.382] [0.382]

Neutral 0.003 0.112
[0.285] [0.191]

Frown 0.381 0.589∗∗

[0.394] [0.281]

CEO FE Y Y
Year FE Y Y
CEO Controls Y Y
Mood Control Y
Other Picture Controls Y Y
No. of CEOs 453 453
Observations 3,002 3,002
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Table IA.VI
Industry Distress and CEO Aging – Image Manipulation Robustness

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on
CEO apparent aging as in Table III of the main article, using the sample that includes expression-manipulated
images. Panel A contains the results for the split into pre- and post-period (as in columns (1) and (2) of Table
III of the main article). Panel B splits the post-period into two sub-periods (as in columns (3) and (4) of Table
III of the main article). We refer to the degree of face manipulation of frowning images as none (i.e., original
sample), 1/3, and 2/3, and 3/3, indicating progressively more neutral and faint smile expressions. As before,
Industry Distress is equal to one if the CEO’s firm was exposed to industry-wide distress during 2007 or
2008, and observations are weighted by image sharpness. All variables are defined in Section I of the Internet
Appendix. Standard errors, clustered at the industry level, are shown in brackets. *p < 0.10, **p < 0.05,
***p < 0.01.

(1) (2) (3) (4)

Panel A: Pre- Vs. Post Period

Industry Distress × 1{t>2006} 0.806∗∗ 0.812∗∗ 0.821∗∗ 0.834∗∗

[0.382] [0.371] [0.367] [0.364]

Panel B: Short- Vs. Long-Horizon in Post-Period

Industry Distress × 1{2006<t<2012} 0.634 0.642∗ 0.633∗ 0.629∗

[0.386] [0.375] [0.375] [0.376]

Industry Distress × 1{t≥2012} 1.049∗∗ 1.051∗∗ 1.084∗∗ 1.122∗∗

[0.462] [0.459] [0.450] [0.441]

Degree of Face Manipulation None 1/3 2/3 3/3
Year FE Y Y Y Y
CEO FE Y Y Y Y
CEO Controls Y Y Y Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002
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Table IA.VII
Industry Distress and CEO Aging – Drop Post-2016 Years

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on CEO
apparent aging as in Table III of the main article, restricting our sample to years prior to and including 2016.
This robustness test is motivated by the slight divergence in image finding rates by industry distress exposure
after 2016 (Figure IA.6). As before, Industry Distress is equal to one if the CEO’s firm was exposed to
industry-wide distress during 2007 or 2008, and observations are weighted by image sharpness. All variables
are defined in Section I of the Internet Appendix. Standard errors, clustered at the industry level, are shown
in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress × 1{t>2006} 0.760∗ 0.806∗∗

[0.386] [0.392]

Industry Distress × 1{2006<t<2012} 0.565 0.598
[0.392] [0.406]

Industry Distress × 1{t≥2012} 1.133∗∗ 1.204∗∗

[0.502] [0.504]

CEO FE Y Y Y Y
Year FE Y Y Y Y
CEO Controls Y Y Y Y
Picture Controls Y Y
No. of CEOs 433 433 433 433
Observations 2,721 2,721 2,721 2,721
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Table IA.VIII
Industry Distress and CEO Aging – CEOs Departing in 2010 or After

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on CEO
apparent aging as in Table III of the main article, conditional on CEOs leaving office in 2010 or afterwards.
As before, Industry Distress is equal to one if the CEO’s firm was exposed to industry-wide distress during
2007 or 2008, and observations are weighted by image sharpness. All variables are defined in Section I of
the Internet Appendix. Standard errors, clustered at the industry level, are shown in brackets. *p < 0.10,
**p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress × 1{t>2006} 1.116∗∗ 1.126∗∗

[0.503] [0.499]

Industry Distress × 1{2006<t<2012} 0.768 0.750
[0.533] [0.544]

Industry Distress × 1{t≥2012} 1.500∗∗∗ 1.539∗∗∗

[0.569] [0.551]

CEO FE Y Y Y Y
Year FE Y Y Y Y
CEO Controls Y Y Y Y
Picture Controls Y Y
No. of CEOs 282 282 282 282
Observations 1,929 1,929 1,929 1,929
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Table IA.IX
Industry Distress and CEO Aging – Alternative Specification

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on CEO
apparent aging as in Table III of the main article, but modifies the regression specification. The dependent
variable is now the CEO’s apparent age (rather than the apparent-age gap), and the CEO’s chronological age
is included as an additional covariate in the model. As before, Industry Distress is equal to one if the CEO’s
firm was exposed to industry-wide distress during 2007 or 2008, and observations are weighted by image
sharpness. All variables are defined in Section I of the Internet Appendix. Standard errors, clustered at the
industry level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress × 1{t>2006} 0.806∗∗ 0.882∗∗

[0.381] [0.379]

Industry Distress × 1{2006<t<2012} 0.634 0.670∗

[0.385] [0.393]

Industry Distress × 1{t≥2012} 1.048∗∗ 1.181∗∗∗

[0.462] [0.447]

Chronological Age 0.849∗∗∗ 0.734∗∗ 0.850∗∗∗ 0.735∗∗

[0.282] [0.283] [0.283] [0.284]

CEO FE Y Y Y Y
Year FE Y Y Y Y
CEO Controls Y Y Y Y
Picture Controls Y Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002
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Table IA.X
Industry Distress and CEO Aging – Median Apparent-Age Estimate Across Trained CNNs

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on CEO
apparent aging as in Table III of the main article, using the median rather than average estimated apparent
age across the trained neural nets as the apparent-age estimate. As before, Industry Distress is equal to one if
the CEO’s firm was exposed to industry-wide distress during 2007 or 2008, and observations are weighted by
image sharpness. All variables are defined in Section I of the Internet Appendix. Standard errors, clustered at
the industry level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Industry Distress × 1{t>2006} 0.798∗∗ 0.875∗∗

[0.381] [0.381]

Industry Distress × 1{2006<t<2012} 0.623 0.658
[0.388] [0.399]

Industry Distress × 1{t≥2012} 1.045∗∗ 1.179∗∗∗

[0.461] [0.447]

CEO FE Y Y Y Y
Year FE Y Y Y Y
CEO Controls Y Y Y Y
Picture Controls Y Y
No. of CEOs 453 453 453 453
Observations 3,002 3,002 3,002 3,002
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Table IA.XI
Industry Distress and CEO Aging – Possible Mechanisms (1)

This table shows OLS estimates of the effect of industry distress exposure during the Great Recession on
CEOs’ estimated body mass index (BMI). BMI is estimated from CEOs’ facial images based on the deep
learning approach by Sidhpura et al. (2022), and using the estimated BMIs from their Inception-v3 and
Xception based models, the two models with the best performance on the most relevant test data involving
celebrities. The dependent variable is an indicator variable equal to one if both estimated BMIs are 25 or
above, that is, in the overweight range as per CDC definitions (cdc.gov/obesity/basics/adult-defining.html),
and zero otherwise. Industry Distress is equal to one if the CEO’s firm was exposed to industry-wide distress
during 2007 or 2008, and observations are weighted by image sharpness. Standard errors, clustered at the
industry level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2)

Industry Distress × 1{2006<t<2012} 0.020 0.022
[0.059] [0.058]

Industry Distress × 1{t≥2012} 0.067 0.071
[0.052] [0.049]

Control Mean (Pre-Period) 0.22 0.22
Control Mean (Post-Period) 0.19 0.19

CEO FE Y Y
Year FE Y Y
CEO Controls Y Y
Picture Controls Y
No. of CEOs 444 444
Observations 2,831 2,831
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III. Industry-Wide Distress Shocks and Life Expectancy: Robustness Tests

This section contains additional figures and tables, and presents further robustness tests refer-
enced in Section III of the main article, related to the analysis on industry-wide distress shocks and
CEO life expectancy.

Figure IA.7. Proportion of CEOs stepping down by age. This figure depicts the proportion of CEOs
stepping down at each age. The vertical dashed line indicates age 65.
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Figure IA.8. Estimated effect of industry distress when varying the censoring year. This figure shows
the estimated coefficients on the industry distress indicator variable using the specification from Table IV,
column (2) of the main article, but varying the censoring date for CEOs identified as alive as of October 2017.
In the main analysis, the cutoff date is October 1, 2017, that is, CEOs who did not pass away before this
date are treated as censored. The alternative censoring dates are December 31, 2016; December 31, 2015;
...; down to December 31, 2010. The number of CEOs in the sample (N = 1,900) remains unchanged when
varying the cutoff.
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Table IA.XIII
Availability of Death Status and Industry Distress Exposure

This table examines the correlation between the availability of death/alive information and CEOs’ exposure
to industry distress. The dependent variable is an indicator variable that equals one if we are able to determine
the death/alive status of a CEO. The sample is all CEOs in our initial sample (which, as described in the main
text, is a panel but has gaps and does not have full tenure histories) with data on the firm’s industry affiliation
(SIC codes). Since we did not collect full tenure histories for CEOs without death/alive information, in Model
1 the Industry Distress indicator is equal to one if the firm experienced industry distress (as defined in Section
I of the Internet Appendix) in a ten-year window starting from the first year in which a CEO is included in
our initial sample. In Model 2, the Industry Distress indicator is equal to one if the firm experienced industry
distress in a symmetric 10-year window around the first year in which a CEO is included in our initial sample
(±5 years). As in the main regressions, both models account for firms’ location (HQ state) and industry
affiliation. Standard errors are clustered at the industry level. *p < 0.10, **p < 0.05, ***p < 0.01.

Coefficient S.E. p-Value No. of Obs

Model 1:
Industry Distress 0.008 0.014 0.557 2,631

Model 2:
Industry Distress 0.010 0.016 0.537 2,631
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Table IA.XIV
Age-by-Birth-Cohort Robustness

This table reports hazard coefficients estimated as in Table IV of the main article, but allowing the effect
of (chronological) age to vary by CEOs’ birth cohort. All variables are defined in Section I of the Internet
Appendix. Standard errors, clustered at the industry level, are shown in brackets. *p < 0.10, **p < 0.05,
***p < 0.01.

(1) (2) (3) (4)

Industry Distress 0.106∗∗ 0.101∗ 0.137∗∗ 0.134∗∗

[0.054] [0.056] [0.058] [0.060]

Age × Birth Cohort 1 (oldest) 0.118∗∗∗ 0.118∗∗∗ 0.116∗∗∗ 0.116∗∗∗

[0.009] [0.010] [0.009] [0.010]

Age × Birth Cohort 2 0.118∗∗∗ 0.118∗∗∗ 0.116∗∗∗ 0.116∗∗∗

[0.009] [0.011] [0.009] [0.011]

Age × Birth Cohort 3 0.118∗∗∗ 0.118∗∗∗ 0.116∗∗∗ 0.116∗∗∗

[0.010] [0.012] [0.010] [0.012]

Age × Birth Cohort 4 0.117∗∗∗ 0.118∗∗∗ 0.115∗∗∗ 0.115∗∗∗

[0.011] [0.013] [0.011] [0.013]

Age × Birth Cohort 5 (youngest) 0.118∗∗∗ 0.119∗∗∗ 0.116∗∗∗ 0.117∗∗∗

[0.011] [0.014] [0.012] [0.014]

ln(Pay) −0.004 −0.011
[0.047] [0.048]

ln(Assets) −0.077 −0.083∗

[0.048] [0.048]

ln(Employees) 0.028 0.032
[0.049] [0.049]

Year −0.003 0.003
[0.009] [0.009]

FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,900 1,900 1,818 1,818
Observations 58,034 58,034 55,796 55,796
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IV. Corporate Monitoring and Life Expectancy: Robustness Tests

This section contains additional figures and tables, and presents further robustness tests ref-
erenced in Section IV of the main article, related to the analysis on antitakeover laws and CEO
life expectancy. We first present additional details on BC-specific robustness tests and then report
additional figures and tables.

A. Other Antitakeover Laws: First-Time Passage of Second-Generation Antitakeover Laws

Our main analysis exploits the enactment of BC laws as they have been shown to create
substantial conflicts of interest between managers and shareholders (Bertrand and Mullainathan
(2003), Gormley and Matsa (2016)). Some researchers have questioned whether BC laws were the
most important legal development impacting corporate governance at the time (see the discussion
in Cain, McKeon, and Solomon (2017) and Karpoff and Wittry (2018)). Here, we replicate our
analyses for other antitakeover legislation from the 1980s that induced plausibly exogenous variation
in corporate monitoring intensity.

In addition to BC laws, four other types of antitakeover laws were passed by individual states
since the 1980s. First, control share acquisition (CSA) laws prohibited acquirers of large equity
stakes from using their voting rights, making it more difficult for hostile acquirers to gain control.
Second, fair price (FP) laws required acquirers to pay a fair price for shares acquired in a takeover
attempt. Fair could mean, for example, the highest price paid by the acquirer for shares of the target
within the last 24 months (see Cheng, Nagar, and Rajan (2004)). Third, directors’ duties (DD)
laws extended the board members’ duties to incorporate the interests of noninvestor stakeholders,
even if not necessarily maximizing shareholder value. Fourth, poison pill (PP) laws guaranteed
that the firms had the right to use poison pill takeover defenses. We refer to the first of these five
laws (including BC laws) passed by a state as the First Law (FL). Antitakeover law exposure is
similar when jointly looking at all five second-generation laws. For example, conditional on any FL
exposure, the median CEO experiences 4.12 years, close to the 4.41 years in the BC-based analysis.

Figure IA.9 visualizes the FL enactment by states over time.
Table IA.XIX reestimates Table V of the main article using FL enactment as a source of

identifying variation. We limit the sample to the 1,510 CEOs who are appointed in years prior to
the FL enactment of any of the five second-generation antitakeover laws. Consistent with our main
findings, we estimate a significant increase in longevity for CEOs under less-stringent governance
regimes. The estimated effect sizes are very similar to our main specification using BC laws. For
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example, for the specifications in columns (3) and (4), based on cumulative law exposure, the hazard
coefficients range from −0.040 to −0.041, compared to −0.037 to −0.040 in Table V of the main
article.

B. Karpoff-Wittry and Related Tests: Institutional and Legal Context of the Antitakeover Laws

Karpoff and Wittry (2018) propose several robustness tests to address endogenous firm responses
to antitakeover laws, which we implement in Table IA.XX. For all sample restrictions, we follow the
procedure suggested in Karpoff and Wittry (2018). In Panel A, we remove the 46 firms identified
by these authors as having lobbied for the passage of the second-generation laws. In Panel B, we
use Institutional Shareholder Services (ISS) Governance (formerly, RiskMetrics) data from 1990 to
2017 to identify firms that opted out of coverage by the laws and exclude them from the analysis. In
Panel C, we exclude firm-years in which firms had adopted firm-level antitakeover defenses. We
identify firms with firm-level defenses combining ISS data with data provided to us by Cremers
and Ferrell (2014), which extends the Gompers, Ishii, and Metrick (2003) G-index backwards to
1977 to 1989. We back out whether firms used firm-level defenses in 1977-1989 by “subtracting”
the state-wide laws from the G-index, which combines firm- and state-level defenses. Firm-level
defenses include golden parachutes and cumulative voting (see Gompers, Ishii, and Metrick (2003)
for details).

In all subsamples, the hazard coefficient on BC exposure remains significant at 5% or 1%, and
the hazard coefficient estimates are nearly unchanged, ranging from −0.195 (Panel B, column 2) to
−0.253 (Panel A, column 1) for the indicator version, and from −0.038 (Panel B, columns 3 and 4)
to −0.041 (Panel C, column 3) for the count version.

Karpoff and Wittry (2018) also point to possible confounding effects of first-generation anti-
takeover laws. They raise the concern that firms without BC exposure might experience lenient
governance before 1982 because first-generation antitakeover laws lost their effect only starting
from June 1982 after the Edgar v. MITE ruling. As discussed in the main text, we account for the
possible confound of first-generation laws in all our regressions by adding a control variable for
first-generation law exposure, as in Table IV in Karpoff and Wittry (2018).

We further address this concern in Table IA.XXI through three cuts of the data. In subsample
A, we we drop all sample-years prior to 1983 for CEOs with first-generation law exposure. In
subsample B, we drop all CEOs with first-generation law exposure who stepped down prior to 1983,
that is, we restrict the sample to CEOs without first-generation law exposure and, for CEOs with
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exposure, to those who served during the “post-first-law period.” Note that in terms of number of
CEOs remaining, subsample B is more restrictive than subsample A, and note that both subsamples
still include CEOs with first-generation law exposure. In subsample C, we restrict the sample
to CEOs without any first-generation law exposure, thus fully removing any potential remaining
concerns about insufficient accounting for first-generation laws. In all subsamples, we continue to
estimate negative hazard coefficients for both the indicator and cumulative BC exposure variables,
similar in size and statistical significance to those in the main table.

Finally, in a last set of robustness checks, we move beyond the tests suggested in Karpoff and
Wittry (2018) and create subsamples based on firms’ state of incorporation and industry affiliation,
inspired by similar robustness checks in Giroud and Mueller (2010) and Gormley and Matsa (2016).
In Table IA.XXII, we exclude firms that are incorporated in Delaware or in New York, the two most
common states of incorporation in our sample (Panel A), firms in the banking industry (Panel B),
or firms in the utilities industry (Panel C). In all three panels, the hazard coefficient estimates on
binary and cumulative BC exposure are barely affected by these data cuts.

C. Predicted Length of Exposure: Prediction Model Details

To purge the per-year estimates in the right four columns of Table V in the main article of
possible endogeneity in the length of exposure, we construct a measure of predicted BC law
exposure, and relate predicted, rather than true exposure, to CEO mortality rates.9 To this end, we
proceed in three steps. First, we estimate a prediction model for CEO tenure; we then construct
predicted BC exposure; and finally we re-estimate the hazard regressions using predicted BC
exposure as the independent variable.

We first predict for every CEO-year, including years after the passage of a BC law:

RemainTenurei,t =X
′
i,tA+ ei,t . (IA1)

The control variables are an age cubic, tenure cubic, the CEO’s cumulative exposure to the BC
law until year t, BCi,t , and fixed effects for industry, year, headquarters state, birth year, and tenure
start-year. Denoting as t∗ the year when the BC law is passed, we use the predicted remaining
tenure at t∗ from equation (IA1) to construct CEOs’ predicted exposure to BC laws,

B̂C
∗
i = I(BCLawPasseds(i),t)× ̂RemainTenurei,t∗, (IA2)

9 Directly controlling for realized tenure would result in a “bad control” problem and introduce bias (Angrist and
Pischke (2008)).
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where I(BCLawPasseds(i),t) = 1 for CEO i in state s(i) at t ≥ t∗, and ̂RemainTenurei,t∗ is backward-
looking, that is, constructed using information from years up to t∗.

Using this variable, we construct a CEO’s predicted cumulative BC exposure until year t,
B̂Ci,t as (i) B̂Ci,t = 0 ∀t in the control group; (ii) B̂Ci,t = 0 ∀t < t∗ if not yet treated; and (iii)
B̂Ci,t = min{k+1, B̂C

∗
i } for each year t following t∗, with t = t∗+ k. Note that k is allowed to be

fractional if the BC law goes into effect in the middle of the year.
We then use the predicted cumulative exposure in the following hazard estimations:

ln λ(t|B̂Ci,t ,Xi,t) = ln λ0, j(t)+β B̂Ci,t +δ
′Xi,t . (IA3)

Since this approach involves a generated regressor, we report bootstrapped standard errors, using
the block bootstrap method (a block is a state of incorporation cluster) with 500 iterations.

D. Business Combination Laws and CEO Pay

As discussed in the main article, our aging and mortality results also raise the question of
whether parties account for the health consequences of (permanent) changes in job demands. We
explore this in the context of the permanent corporate governance regime change induced by BC
laws.

The theoretical prediction on the link between BC laws and CEO pay is in fact unclear, as also
noted by Bertrand and Mullainathan (1998). On the one hand, a model of compensating differentials
would predict a decrease in pay as CEOs’ working conditions improve and imposed health costs are
reduced. In line with such a channel, Edmans and Gabaix (2011) present a theoretical model of the
CEO market in which lower effort—which is isomorphic to lower job demands—is compensated by
lower pay. On the other hand, a model of skimming would predict that CEOs use the increase in
autonomy to extract additional private benefits in the form of higher compensation. It is thus an
empirical question as to which effect dominates in our specific context.

Before estimating the empirical relation, it is useful to first calibrate what effect size we would
expect if compensation for health ramifications were the primary channel empirically. In their
meta-analysis of the literature on the value of a statistical life (VSL), Viscusi and Aldy (2003) report
an estimate around $6.7 million (in 2000 dollars) for a person with income of around $26,000, and
an income elasticity for the VSL of around 0.5. Applied to our CEO sample, this translates into a
VSL of around $47.3 million.10 Given a baseline mortality rate of 1.706% for 60-year-olds born

10 Given an average CEO pay of $1.3 million (in 2000 dollars) in our sample, we can calculate the implied VSL for
the average CEO as V SLCEO = exp(0.5× (ln($1.3m)− ln($26k))+ ln($6.7m)) = $47.3m.
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in 1927 (Human Mortality Database (2019)), a reduction in mortality risk of 4.0% per year of BC
exposure (column (5) in Table V of the main article) implies a CEO pay change between −2.5%
and −10%, depending on whether the wage adjustment reflects the entire BC-induced mortality
risk shift over the expected remaining lifespan or solely the shift over the remaining years while
serving as CEO.11

With these calibrated effects in mind, Table IA.XXIV presents the results on the relation between
CEO pay and BC law exposure. In column (1), we estimate linear regressions of CEO pay on the
BC indicator and controls and fixed effects as in the hazard analyses (now including industry fixed
effects as opposed to stratifying by industry). In column (2), we add the control variables used in
Bertrand and Mullainathan (1998): tenure, firm assets, and employees, also used in some of our
hazard specifications. Finally, in column (3), we add firm fixed effects (in place of industry fixed
effects), as in the baseline specification of Bertrand and Mullainathan (1998):

ln(Payi, j,t) = αt +β j + γ I(BCi,t)+δ
′Xi, j,t + ei, j,t ,

where i represents a CEO, j represents a firm, and t represents a calendar year.
We estimate a positive, albeit statistically insignificant treatment effect. The estimates indicate

a pay increase between 4.5–7.6%. In comparing the results to the earlier work, which estimated
a (more significant) 5.4% pay increase, it is important to note that our analysis is conducted on a
CEO-level sample, and restricts the sample to incumbent, pre-BC CEOs.

The evidence speaks against a compensating reduction in pay, but is instead suggestive of
additional rents (higher pay). However, any resulting wealth increases are unlikely to explain the
longevity results, given that the literature has found little evidence of a causal relation of income
and life expectancy for wealthy individuals (Cesarini et al. (2016)). Where evidence has been found
of an effect of wealth on health, it appears to work through reductions in stress (Schwandt (2018)).
The apparent lack of a compensating differential casts doubt on whether all parties fully account for
the health implications of different governance regimes.

11 The calculations are based on an average length of BC exposure of 5.75 years (Table II of the main article), an
average time of 23.88 years between onset of BC exposure and death, and an average annual CEO pay of $1.3 million
in 2000 dollars). For example, if we assume that the wage adjustment reflects the mortality risk shift over the expected
remaining lifespan, we can calculate the pay change as (−23.88/5.75)× (4.0%× 1.706%× $47.3mn)/$1.3mn =
−10%.
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E. Business Combination Laws and CEO Tenure

In addition to CEO pay, we can also explore how CEO tenure responds to the introduction
of antitakeover laws, which can also provide insight into how managers perceive this permanent
change in corporate monitoring to affect job demands.

Similar to the case of CEO pay, theory does not provide a clear prediction as to how tenure
should respond to the antitakeover laws. On the one hand, CEOs may become entrenched and
stay on the job longer. On the other hand, CEOs who reduce effort on the job might be fired
more frequently. We again estimate hazard models, now analyzing CEO departure as the outcome
variable. The results in columns (1) and (2) of Table IA.XXV indicate that BC law treatment, I(BC),
decreases the separation hazard by around 19–22%, but the effect is only marginally significant with
year fixed effects in column (2), with standard errors nearly doubling. In the specifications using the
length of exposure variable BC (in columns 3 to 4), the estimated separation hazard falls by 5–9%,
but again the effect sizes are quite sensitive to controlling for time trends linearly versus via fixed
effects. Overall, the results are suggestive of increases in tenure in response to BC law passage.

Further analyses of CEOs’ age at the end of their tenure suggest that any increases in tenure
would be driven by fewer CEOs stepping down in their 50s and early 60s. Figure IA.12 plots
the retirement hazard separately for CEOs with and without BC law exposure. Exposure appears
to lower the hazard before and increase it above age 65, including a long tail of tenures into the
80s. While the raw data is not as stark as for our longevity results, nor the hazard estimates and
magnitudes as robust, it is noteworthy for another reason: It helps rule out that the end of mandatory
retirement through the amendment of the Age Discrimination in Employment Act (ADEA) in 1986
confounds our BC-law–longevity findings. Although there is a large spike in retirements at ages 64
and 65, there is no association between retirement at these ages and exposure to the BC laws.

An increase in tenure (or delayed retirement) as a result of antitakeover insulation is also unlikely
to be the channel for the estimated increase in longevity. To begin with, prior research has found
small or even beneficial effects of retirement on health in the general population (Hernaes et al.
(2013), Insler (2014), Fitzpatrick and Moore (2018)). In our population, a life expectancy advantage
arising directly from tenure would run counter to the notion that the CEO job is demanding as the
evidence in Bandiera et al. (2020) and Porter and Nohria (2018) on the intensity of CEO schedules
and the constraints imposed by the CEO position imply. Moreover, the results in Section IV.D of
the main article on nonlinearities point to initial exposure effects, with prolonged exposure (from
prolonged tenure) having no incremental impact on life expectancy.
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F. Additional Figures and Tables

Figure IA.9. First-time introduction of second-generation antitakeover laws over time. This figure
visualizes the distribution of first-time enactments of any of the five most common second-generation
antitakeover laws over time, that is, business combination (BC), fair price (FP), control share acquisition
(CSA), poison pills (PP), and directors’ duties (DD) laws. The graph omits the states of Alaska and Hawaii.
Alaska did not adopt any second-generation antitakeover laws. Hawaii adopted a CSA law on April 23, 1985,
and DD and PP laws on June 7, 1988.
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Figure IA.10. Estimated effect of the BC law exposure when varying the censoring year. This figure
shows the estimated coefficients on the BC indicator variable I(BC) and the cumulative BC variable BC when
using the specifications from Table V, columns (2) and (6) of the main article, but varying the censoring date
for CEOs identified as alive as of October 2017. In the main analysis, the cutoff date is October 1, 2017, that
is, CEOs who did not pass away before this date are treated as censored. The alternative censoring dates
are December 31, 2016; December 31, 2015; ...; down to December 31, 2010. The number of CEOs in the
sample (N = 1,605) remains unchanged when varying the cutoff.
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Figure IA.11. Estimated effect of the BC law exposure when varying the sample cutoff year. This
figure shows the estimated coefficients on the BC indicator variable I(BC) when using the specification from
Table V, column (2) of the main article, but varying the sample. In the main sample, CEOs end their tenure in
or later than 1975. We vary this cutoff year from 1975 to 1985, when the first BC law ever was passed. The
blue (dark) bars are the number of CEOs in the sample. When the cutoff year is 1975 (our main sample), the
number is 1,605 and the estimated coefficient is the same as shown in Table V, column (2) of the main article.

38



Figure IA.12. Proportion of CEOs stepping down by age. This figure depicts the proportion of CEOs
stepping down at each age, split by whether or not a CEO was exposed to a business combination (BC) law.
The vertical dashed line indicates age 65.
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Table IA.XV
Availability of Death Status and Business Combination Law Exposure

This table examines the correlation between the availability of death/alive information and BC law passage.
The dependent variable is an indicator variable that equals one if we are able to determine the death/alive
status of a CEO. The sample is all CEOs in our initial sample with data on the firm’s industry affiliation (SIC
codes) and state of incorporation. The I(BC) indicator is equal to one if the firm is incorporated in a state that
passed a BC law. As in the main regressions, we account for firms’ location (HQ state) and industry affiliation.
Standard errors are clustered at the state of incorporation level. *p < 0.10, **p < 0.05, ***p < 0.01.

Coefficient S.E. p-Value No. of Obs

I(BC) 0.014 0.019 0.459 2,514
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Table IA.XVI
Birth-Year Fixed Effects

This table reports hazard coefficients estimated as in Table V of the main article, but with birth year fixed
effects instead of year controls (linear or fixed effects). All variables are defined in Section I of the Internet
Appendix. Standard errors, clustered at the state-of-incorporation level, are shown in brackets. *p < 0.10,
**p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

I(BC) −0.233∗∗ −0.211∗

[0.114] [0.119]

BC −0.039∗∗∗ −0.038∗∗∗

[0.007] [0.007]

Age 0.114∗∗∗ 0.115∗∗∗ 0.109∗∗∗ 0.111∗∗∗

[0.006] [0.006] [0.006] [0.006]

ln(Pay) 0.022 0.018
[0.036] [0.040]

ln(Assets) −0.041 −0.021
[0.043] [0.036]

ln(Employees) 0.014 −0.003
[0.039] [0.036]

FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Birth Year FE Y Y Y Y
No. of CEOs 1,605 1,553 1,605 1,553
Observations 50,530 49,052 50,530 49,052
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Table IA.XVII
Age-by-Birth-Cohort Robustness

This table reports hazard coefficients estimated as in Table V of the main article, but allowing the effect
of (chronological) age to vary by CEOs’ birth cohort. All variables are defined in Section I of the Internet
Appendix. Standard errors, clustered at the state-of-incorporation level, are shown in brackets. *p < 0.10,
**p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

I(BC) −0.226∗∗ −0.215∗∗

[0.105] [0.104]

BC −0.034∗∗∗ −0.032∗∗∗

[0.006] [0.006]

Age × Birth Cohort 1 (oldest) 0.090∗∗∗ 0.086∗∗∗ 0.086∗∗∗ 0.082∗∗∗

[0.009] [0.010] [0.008] [0.009]

Age × Birth Cohort 2 0.089∗∗∗ 0.085∗∗∗ 0.085∗∗∗ 0.081∗∗∗

[0.009] [0.010] [0.008] [0.009]

Age × Birth Cohort 3 0.088∗∗∗ 0.083∗∗∗ 0.083∗∗∗ 0.079∗∗∗

[0.010] [0.011] [0.009] [0.010]

Age × Birth Cohort 4 0.085∗∗∗ 0.080∗∗∗ 0.080∗∗∗ 0.075∗∗∗

[0.011] [0.013] [0.010] [0.012]

Age × Birth Cohort 5 (youngest) 0.081∗∗∗ 0.074∗∗∗ 0.076∗∗∗ 0.070∗∗∗

[0.011] [0.013] [0.010] [0.012]

Year 0.019∗∗ 0.018∗

[0.009] [0.009]

FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,605 1,605 1,605 1,605
Observations 50,530 50,530 50,530 50,530
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Table IA.XVIII
State-of-Incorporation Fixed Effects

This table reports hazard coefficients estimated as in Table V of the main article, but including state-of-
incorporation fixed effects instead of state-of-headquarters fixed effects. All variables are defined in Section I
of the Internet Appendix. Standard errors, clustered at the state-of-incorporation level, are shown in brackets.
*p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

I(BC) −0.234∗∗∗ −0.235∗∗∗

[0.088] [0.086]

BC −0.042∗∗∗ −0.041∗∗∗

[0.006] [0.007]

Age 0.112∗∗∗ 0.112∗∗∗ 0.109∗∗∗ 0.109∗∗∗

[0.004] [0.004] [0.005] [0.005]

Year −0.001 −0.004
[0.005] [0.007]

FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location (Incorp.) FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,605 1,605 1,605 1,605
Observations 50,530 50,530 50,530 50,530
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Table IA.XIX
First-Time Second-Generation Antitakeover Laws and Mortality

This table reports hazard coefficients estimated as in Table V of the main article, but using the first-time
introduction of any of the five most common second-generation antitakeover laws as measure of lenient
governance. The sample is restricted to CEOs appointed prior to the introduction of the antitakeover
law(s). All variables are defined in Section I of the Internet Appendix. Standard errors, clustered at the
state-of-incorporation level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

I(FL) −0.171∗∗ −0.164∗∗

[0.070] [0.065]

FL −0.041∗∗∗ −0.040∗∗∗

[0.006] [0.006]

Age 0.111∗∗∗ 0.112∗∗∗ 0.106∗∗∗ 0.106∗∗∗

[0.004] [0.004] [0.004] [0.004]

Year −0.003 −0.002
[0.004] [0.006]

FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,510 1,510 1,510 1,510
Observations 47,994 47,994 47,994 47,994
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Table IA.XX
Excluding Lobbying Firms, Opt-Out Firms, and Firm-Years with Firm-Level Defenses

This table reports hazard coefficients estimated as in Table V of the main article, but with additional sample
restrictions. In Panel A, we exclude 46 firms that Karpoff and Wittry (2018) identify as firms that lobbied for
the enactment of the second-generation antitakeover laws. In Panel B, we exclude 61 firms that opted out of
the the laws, based on data from the Institutional Shareholder Services (ISS) Governance database. In Panel
C, we exclude firm-years in which firms used firm-level defenses as identified from the ISS data and data
from Cremers and Ferrell (2014). Controls and fixed effects for all three panels are indicated at the bottom of
the table. All variables are defined in Section I of the Internet Appendix. Standard errors, clustered at the
state-of-incorporation level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Panel A: Excluding Lobbying Firms

I(BC) −0.253∗∗∗ −0.249∗∗∗

[0.090] [0.088]

BC −0.040∗∗∗ −0.039∗∗∗

[0.008] [0.008]

No. of CEOs 1,530 1,530 1,530 1,530
Observations 48,106 48,106 48,106 48,106

Panel B: Excluding Opt-Out Firms

I(BC) −0.200∗∗ −0.195∗∗

[0.080] [0.078]

BC −0.038∗∗∗ −0.038∗∗∗

[0.007] [0.007]

No. of CEOs 1,532 1,532 1,532 1,532
Observations 48,180 48,180 48,180 48,180

Panel C: Excluding Firm-Level Defenses

I(BC) −0.235∗∗∗ −0.228∗∗∗

[0.086] [0.088]

BC −0.041∗∗∗ −0.040∗∗∗

[0.006] [0.006]

No. of CEOs 1,599 1,599 1,599 1,599
Observations 43,400 43,400 43,400 43,400

Linear Age Control Y Y Y Y
FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Linear Year Control Y Y
Year FE Y Y
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Table IA.XXI
Restrictions Based on First-Generation Laws

This table re-estimates columns (2) and (6) of Table V of the main article with sample restrictions based
on the period when the first-generation antitakeover laws lost their effect (in June 1982 after the Edgar
v. MITE ruling). In subsample A, we drop all sample-years prior to 1983 for CEOs with first-generation
law exposure. In subsample B, we drop all CEOs with first-generation law exposure who stepped down
prior to 1983, that is, we restrict the sample to CEOs without first-generation law exposure and, for CEOs
with exposure, to those who who served during the “post-first-law period.” Note that in terms of number of
CEOs remaining, subsample B is more restrictive than subsample A. In subsample C, we restrict the sample
to CEOs without any first-generation law exposure. All variables are defined in Section I of the Internet
Appendix. Standard errors, clustered at the state-of-incorporation level, are shown in brackets. *p < 0.10,
**p < 0.05, ***p < 0.01.

Subsample A:
Drop FirstGen-CEO

Pre-1983 Sample Years

Subsample B:
Drop FirstGen-CEOs

Stepping Down Pre-1983

Subsample C:
Drop FirstGen-CEOs

I(BC) −0.242∗∗∗ −0.178∗∗ −0.310∗∗∗

[0.086] [0.083] [0.085]

BC −0.043∗∗∗ −0.034∗∗∗ −0.044∗∗

[0.006] [0.009] [0.018]

Age 0.112∗∗∗ 0.108∗∗∗ 0.122∗∗∗ 0.118∗∗∗ 0.121∗∗∗ 0.115∗∗∗

[0.005] [0.005] [0.006] [0.007] [0.012] [0.014]

FirstGen Law Control Y Y Y Y – –
FF49 Strata Y Y Y Y Y Y
Location FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
No. of CEOs 1,574 1,574 1,234 1,234 548 548
Observations 40,790 40,790 39,511 39,511 15,629 15,629
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Table IA.XXII
Excluding DE or NY Incorporated, Banking, or Utility Firms

This table reports hazard coefficients estimated as in Table V of the main article with the sample restricted
based on firms’ state of incorporation or industry affiliation. In Panel A, we exclude firms that are incorporated
in Delaware or New York (the two most common states of incorporation in our sample). In Panel B, we
exclude firms that are classified as “Banking” firms in the Fama-French 49 industry classification. In Panel
C, we exclude firms that are classified as “Utilities” firms in the Fama-French 49 industry classification.
Controls and fixed effects for all three panels are indicated at the bottom of the table. All variables are defined
in Section I of the Internet Appendix. Standard errors, clustered at the state-of-incorporation level, are shown
in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

Panel A: Excluding DE/NY Firms

I(BC) −0.314∗∗ −0.303∗∗

[0.132] [0.132]

BC −0.042∗ −0.039∗

[0.022] [0.022]

No. of CEOs 738 738 738 738
Observations 22,103 22,103 22,103 22,103

Panel B: Excluding Banking Firms

I(BC) −0.292∗∗∗ −0.289∗∗∗

[0.079] [0.074]

BC −0.055∗∗∗ −0.054∗∗∗

[0.007] [0.007]

No. of CEOs 1,328 1,328 1,328 1,328
Observations 42,322 42,322 42,322 42,322

Panel C: Excluding Utility Firms

I(BC) −0.220∗∗∗ −0.216∗∗∗

[0.077] [0.075]

BC −0.038∗∗∗ −0.037∗∗∗

[0.006] [0.005]

No. of CEOs 1,422 1,422 1,422 1,422
Observations 45,017 45,017 45,017 45,017

Linear Age Control Y Y Y Y
FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Linear Year Control Y Y
Year FE Y Y
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Table IA.XXIII
Nonlinear Effects and Predicted Exposure

This table shows hazard coefficients estimated from a Cox (1972) proportional hazards model. The dependent
variable is an indicator that equals one if the CEO dies in a given year. The main independent variables
in the left two columns are BC(min-p50)

i,t and BC(p51-max)
i,t , which capture BC law exposure up to the sample

median and incremental exposure above the median, respectively. The main independent variable in the right
two columns is B̂C, a count variable of years of predicted cumulative exposure to a BC law. All variables
are defined in Section I of the Internet Appendix. For the left two columns, we present standard errors
clustered at the state-of-incorporation level, in brackets. For the right two columns, we present bootstrapped
standard errors, using the block bootstrap method with 500 iterations, in brackets. *p < 0.10, **p < 0.05,
***p < 0.01.

(1) (2) (3) (4)

BCmin−p50 −0.075∗∗∗ −0.071∗∗∗

[0.022] [0.022]

BCp51−max −0.015 −0.016
[0.016] [0.015]

B̂C −0.042 −0.042
[0.037] [0.039]

Age 0.108∗∗∗ 0.108∗∗∗ 0.110∗∗∗ 0.110∗∗∗

[0.004] [0.004] [0.007] [0.007]

Year −0.001 −0.004
[0.006] [0.007]

FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,605 1,605 1,605 1,605
Observations 50,530 50,530 50,530 50,530
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Table IA.XXIV
Business Combination Laws and CEO Pay

The table shows OLS estimates where the dependent variable is the logarithm of a CEO’s total pay in a
given year. In column (1), “Age Controls” includes linear age, and in columns (2) and (3) it includes linear
and quadratic age. “Tenure Controls” includes linear and quadratic tenure. “Firm Characteristics” includes
logarithms of asset size and the number of employees. Standard errors, clustered at the state-of-incorporation
level, are shown in brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3)

I(BC) 0.071 0.076 0.045
[0.057] [0.047] [0.051]

FirstGen Law Control Y Y Y
Age Controls Y Y Y
Tenure Controls Y Y
Firm Characteristics Y Y
FF49 FE Y Y
Location FE Y Y
Year FE Y Y Y
Firm FE Y
No. of CEOs 1,553 1,553 1,553
Observations 17,719 17,719 17,719
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Table IA.XXV
Business Combination Laws and Tenure

This table shows hazard coefficients estimated from a Cox (1972) proportional hazards model. The dependent
variable is an indicator that equals one if the CEO steps down in a given year. All variables are defined in
Section I of the Internet Appendix. Standard errors, clustered at the state-of-incorporation level, are shown in
brackets. *p < 0.10, **p < 0.05, ***p < 0.01.

(1) (2) (3) (4)

I(BC) −0.244∗∗∗ −0.205∗

[0.067] [0.110]

BC −0.090∗∗∗ −0.049∗∗

[0.024] [0.023]

Age 0.106∗∗∗ 0.104∗∗∗ 0.107∗∗∗ 0.105∗∗∗

[0.013] [0.014] [0.013] [0.014]

Year 0.083∗∗∗ 0.098∗∗∗

[0.008] [0.013]

FirstGen Law Control Y Y Y Y
FF49 Strata Y Y Y Y
Location FE Y Y Y Y
Year FE Y Y
No. of CEOs 1,605 1,605 1,605 1,605
Observations 17,864 17,864 17,864 17,864

50



REFERENCES

Angrist, Joshua D., and Jörn-Steffen Pischke, 2008, Mostly Harmless Econometrics: An Empiricist’s

Companion (Princeton University Press, Princeton, NJ).

Antipov, Grigory, Moez Baccouche, Sid-Ahmed Berrani, and Jean-Luc Dugelay, 2016, Apparent
age estimation from face images combining general and children-specialized deep learning
models, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops.

Babina, Tania, 2020, Destructive creation at work: How financial distress spurs entrepreneurship,
Review of Financial Studies 33, 4061–4101.

Bandiera, Oriana, Andrea Prat, Stephen Hansen, and Raffaella Sadun, 2020, CEO behavior and
firm performance, Journal of Political Economy 128, 1325–1369.

Bansal, Raghav, Gaurav Raj, and Tanupriya Choudhury, 2016, Blur image detection using Laplacian
operator and Open-CV, in 2016 International Conference System Modeling & Advancement in

Research Trends (SMART), IEEE.

Bertrand, Marianne, and Sendhil Mullainathan, 1998, Corporate governance and executive pay:
Evidence from takeover legislation, NBER working paper no. 6830.

Bertrand, Marianne, and Sendhil Mullainathan, 2003, Enjoying the quiet life? Corporate governance
and managerial preferences, Journal of Political Economy 111, 1043–1075.

Breiman, Leo, 1996, Bagging predictors, Machine Learning 24, 123–140.

Cain, Matthew D., Stephen B. McKeon, and Steven Davidoff Solomon, 2017, Do takeover laws
matter? Evidence from five decades of hostile takeovers, Journal of Financial Economics 124,
464–485.
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