
HyperCam: Low-power Onboard Computer Vision for
IoT Cameras

Chae Young Lee†, Pu (Luke) Yi†, Maxwell Fite‡, Tejus Rao‡,
Sara Achour†‡, Zerina Kapetanovic‡

†Department of Computer Science, Stanford University
‡Department of Electrical Engineering, Stanford University

ABSTRACT
We present HyperCam, an energy-efficient image classifi-
cation pipeline that enables computer vision tasks onboard
low-power IoT camera systems. HyperCam leverages hyper-
dimensional computing-based techniques to perform both
training and inference efficiently on low-power microcon-
trollers. We implement a low-power wireless camera plat-
form using off-the-shelf hardware and demonstrate that Hy-
perCam can achieve an accuracy of 93.60%, 84.06%, 92.98%,
and 72.79% for MNIST, Fashion-MNIST, Face Detection, and
Face Identification tasks, respectively, for 120 × 160 resolu-
tion grayscale images. HyperCam performs classification
with inference latency of 0.12 s, flash memory usage of about
60 kilobytes, and peak RAM usage of about 20 kilobytes.
Among other machine learning classifiers such as SVM, xg-
Boost, MicroNets, MobileNetV3, and MCUNetV3, HyperCam
is the only classifier that achieves competitive accuracywhile
maintaining competitive memory footprint and inference
latency on 4 benchmark tasks.

1 INTRODUCTION
Image sensors are everywhere now, found in smartphones,
laptops, gaming consoles, and cars. Coupled with advances
in machine learning (ML), object detection and classification
can enable practical applications in areas such as healthcare,
manufacturing, or transportation. However, ML models, es-
pecially deep neural networks (DNNs), require substantial
computing power andmemory, limiting the adoption of these
techniques to Internet-of-Things (IoT). As a result, many IoT
cameras offload images to the cloud or gateway, where more
compute resources are available [18, 30, 36, 37]. However,
this approach introduces overhead in latency, energy con-
sumption, and data privacy. It also causes the system to
depend on network communications, which can be costly
and unreliable. Recent works have shown that low-power
cameras deal with numerous packet losses and, therefore,
poor image quality for processing at the base station [18, 30].

A more recent and promising approach is onboard or em-
bedded ML techniques. Some works have shown that deep
neural networks (DNNs) can run at the sensor node using

HypervectorsKey

[1,…,1]Person A

[0,…,1]Person B

……

[1,…,0]Person C

Person B
Detected

[0,…,1,0]

encode
compare to
lookup table

share
inference

hypervector

Microcontroller

“Person B”

Figure 1: HDC for image classification. HyperCam uses
an HD classifier to perform face detection and identification
tasks onboard low-power wireless camera platforms.

accelerated hardware such as MAX78000 and Movidius Myr-
iad 2 [5, 11]. Other works use extensive network architecture
search (NAS) to find an optimized neural network model that
fits in a microcontroller (MCU) [3, 26]. However, due to the
tight resource constraints of embedded devices, ML models
perform poorly in vision tasks and are mostly inference-
only. For example, in one study demonstrating ML inference
underwater, the authors faced challenges in achieving com-
petitive classification accuracy while shrinking the neural
network to fit on a MCU [39]. Specifically, low-cost embed-
ded hardware typically lack Floating Point Units (FPUs) and
can only execute integer-based models, leading to a drop
in the accuracy and precision of ML models [4, 17]. Some
advanced hardware do include FPUs but integer-based oper-
ations are favored for better energy efficiency. Additionally,
ML models require large amounts of training data, which
might not be available for relatively smaller-scale IoT tasks.

This paper presents HyperCam, an image processing pipeline
that runs computer vision tasks onboard resource-constrained
camera systems. As shown in Fig. 1, HyperCam’s classifier
queries the captured image to its onboard model in real-time
and transmits the result to a nearby smartphone via wireless
methods. HyperCam leverages hyperdimensional computing
(HDC), which is an alternative paradigm in computing built

1

Lee et al.

Cortex-M33

8KB - Cache

786KB - SRAM

2MB - Flash

Figure 2: Memory layout of STM32U585AI.

on a set of structured data types and bit operations [22]. Com-
pared to DNNs, HDC is inherently hardware-friendly and
energy-efficient [14, 24]. However, most existing HDCworks
target time-series data because image processing poses sev-
eral challenges in resource-constrained environments. One is
the memory footprint of the HDC model. As shown in Fig. 2,
common MCUs have a small and flat memory structure in-
volving a random access memory (RAM) and a non-volatile
flash memory. Thus, optimizations are required to reduce
the memory footprint of the model in both RAM and flash
memory to fit the model onboard. Additionally, optimizing
latency is critical, not only to meet real-time requirements
but also to minimize the overall power consumption of the
system. In image processing, the amount of HD computation
load increases proportionally to the image size. For example,
a baseline HDC approach can take as long as one minute to
classify a grayscale image with 120 × 160 resolution.

HyperCam solves these challenges using novel and highly
efficient HD encoding methods and aggressively optimizing
performance in terms of memory and latency. Specifically, it
features a lightweight encoder that dynamically maps images
into HD space, eliminating the need for pre-stored mappings
as other HD classifiers. The encoder also uses a sparse binary
bundling based on Bloom Filer and Count Sketch, reducing
the number of encoding operations by two orders of magni-
tude. Integrated into an ARM Cortex M-33 microprocessor,
HyperCam is 35.87%more accurate thanMobileNet-V3-Small
and 43.17% more accurate than MicroNet in the 7-class face
identification task. It is also 2-4 times faster and 5-20 times
more lightweight than these baseline DNNs. The following
are key contributions made in this work.
• We introduce HyperCam, a novel HD image classifier that
deploys highly efficient novel data encodings to perform
inference on the sensor node. HyperCam is far more ac-
curate, lightweight, and fast than previous HDC methods
and DNN baselines.
• We develop a prototype of a low-power wireless camera
platform to evaluate HyperCam.
• We show that HyperCam can perform binary and mul-
ticlass classifications in real time using captured image
frames. HyperCam achieves an accuracy of 92.60% and
60.91% for face detection and identification, respectively,

using only about one hundred kilobytes of memory and
achieving a latency of 0.1-0.3 seconds.
• We open source the HyperCam code to help promote re-
producibility and advance onboard computing methods.

2 HYPERDIMENSIONAL COMPUTING
BACKGROUND

Hyperdimensional Computing (HDC), or Vector Symbolic
Architectures (VSA), is a brain-inspired computing paradigm
that represents information in a high-dimensional space.
Within this framework, data is encoded as hypervectors —
vectors typically consisting of thousands of dimensions. Ran-
domly generated hypervectors called the basis hypervec-
tors represent discrete data units such as symbols and num-
bers. Applying HDC operators such as binding, bundling,
and permutation on these basis hypervectors constructs hy-
pervector representations of more complex data structures
(e.g., sequences, trees, and images). Information can be re-
trieved from hypervectors by computing the distances be-
tween hypervectors. HDC models vary widely in terms of
their choices of hypervector representations, operators, and
distance metrics. HyperCam uses the Binary Spatter Code
(BSC) approach [20], where each element of a hypervector is
binary. Operations done on binary hypervectors are simple
and energy-efficient and, thus, the best choice for resource-
constrained hardware. In the following sections, along with
Fig. 3, BSC-HDC operations are explained in more detail.

2.1 Binary Spatter Code
2.1.1 Basis vector generation. In BSC, each unique symbol
is represented as a binary hypervector called the basis hy-
pervector. Each element of the vector is a bit, randomly
generated with a 𝑝 = 0.5 Bernoulli. The hyperdimensionality
of these vectors ensures that randomly generated vectors
are nearly orthogonal to each other. In other words, any two
basis hypervectors are far apart, usually with a Hamming
distance of about 0.5. These basis hypervectors, also called
codes, are stored in a dictionary data type called the codebook.

2.1.2 Binding. The binding operator (⊙) combines basis
hypervectors and creates a hypervector dissimilar to the
input. In BSC, binding is implemented as an exclusive OR
(XOR). Binding is used to construct larger data structures
such as composite symbols, key-value pairs, and positional
encoding from basis hypervectors. For example, binding the
two hypervectors that represent the words cold and water
results in a single hypervector for cold water. Similarly,
binding the hypervectors for the key and the value creates a
hypervector for the key-value pair.

2.1.3 Bundling. The bundling operator (⊕) aggregates mul-
tiple hypervectors and outputs a hypervector similar to the

2

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

3 Bundling

RNG …

Codebook

1 Basis vector generation 2 Binding

NY Brooklyn
⨀

<NY, Brooklyn>

=

4 Permutation

Codebook

{cold, sweet, happy}
=

cold sweet
⨁

happy
⨁

Figure 3: Key operations of BSC. (1) Basis vectors are generated for every letter. (2) Binding of data creates a record. (3)
Bundling of words creates a set. (4) Permutation is applied to create hypervectors on-the-fly.

input. In BSC, bundling is executed through an element-wise
majority vote. Given two or more input hypervectors, the
number of zeros and ones are counted at each index, and the
output hypervector chooses the majority value at that index.
Bundling is used to create sets of symbols or data instances.
For example, an image hypervector is created by bundling
the hypervectors of its pixels. Similarly, a hypervector for a
database record is created by bundling the hypervectors of
its key-value pairs.

2.1.4 Permutation. The permutation operator (𝑝) is imple-
mented as a circular shift, which creates a dissimilar hyper-
vector far apart from the input. Because of this characteristic,
permutation is used to create new basis hypervectors as an
alternative to random generation. Additionally, permutation
is used to encode the position data of sequences. For example,
a bigram can be encoded by binding the permuted hypervec-
tors of the characters. That is, binding occurs between the
hypervector of the first character and the permuted hyper-
vector of the second character. Similarly, the dimension of
an image array can be represented using permutation. For
2-dimensional images, binding occurs between the hyper-
vector of the row index and the permuted hypervector of the
column index.

2.1.5 Distance metric. While binding, bundling, and permu-
tation operators encode raw data into hypervectors, distance
metrics are used to retrieve information from the hyperdi-
mensional space. The lower the distance between two hyper-
vectors, the more similar they are. In BSC, distance measure-
ment is implemented using the Hamming distance, which
counts the number of differing bits and normalizes the count
by the length of the hypervector. The distance metric is often
used to identify the class of the query hypervector. Other
times, it is used to decode the hypervector to its raw data
form (e.g., sequences, images). For example, the identity of
the key in a hypervector for a key-value pair can be deter-
mined by computing the distance between the hypervector
and all possible key hypervectors.

3 HYPERCAM DESIGN
Using BSC-HDC operations, HyperCam processes computer
vision tasks at the endpoint device (e.g., wireless IoT cam-
era). When the camera captures an image, that image is
converted into a hypervector, and the classifier determines
its class based on the Hamming distances. In addition, Hyper-
Cam can send the classification result to an IoT gateway via
Bluetooth, allowing remote monitoring and interaction. This
approach of transmitting the classification data, as opposed
to entire raw images, significantly reduces communication
overhead and mitigates the risk of transmission errors. The
architecture of the HyperCam classifier, as shown in Fig.4,
has three major components: an image encoder, a training
algorithm, and an inference algorithm.
Image Encoder. Both inference and training require that
images be first encoded as hypervectors. This translation is
done by performing an HD computation over basis hyper-
vectors that capture pixel position and value information.
The MCU stores codebooks that contain these basis hyper-
vectors. A critical challenge in applying HD classifiers to
image classification tasks is managing the performance and
memory overhead associated with encoding image data as
hypervectors. HyperCam deploys a novel image encoding
algorithm (Section 4) that exploits the structure of HD com-
putations to drastically reduce thememory usage and latency
of the encoding procedure. This encoding algorithm uses a
novel sparse bundling algorithm (Section 4.3) to accelerate
the bundling of sets of elements.
Training. Training the HyperCam’s HD classifier occurs
offline on a commodity computer. In this phase, training
data are first encoded to hypervectors through the image en-
coder. Then, these encoded hypervectors are grouped based
on their class labels. The class hypervector is construed by
bundling together the hypervectors of all data instances that
belong to that class. The table of class hypervectors is called
the item memory. While HD classifiers are typically trained
using a one-shot algorithm, HyperCam uses the OnlineHD

3

Lee et al.

Query

Train Data

OnlineHD
Trainer

Min

Query Results

…

Model Memory

Wireless IoT Camera

𝛿n𝛿1 𝛿2

Training

Inference

Hypervector
Encoder

Codebook

Query HV

Figure 4: HyperCam overview. The HyperCam classifier runs onboard a low-power wireless camera platform and has three
key components: image encoder, training algorithm, and inference algorithm.

adaptive training algorithm [12]. OnlineHD provides an ef-
fective few-pass learning approachwhere classifier hypervec-
tors are refined based on the misclassifications observed on
each training iteration. OnlineHD targets MAP-HDC, which
works with real-valued vectors. HyperCam works with a
modified version of OnlineHD that works with binary hy-
pervectors. The adapted algorithm binarizes the real-valued
classifier vectors after each training iteration and uses the
binarized item memory to find misclassifications and update
the real-valued model.
Inference. During execution, the MCU encodes each input
frame to a hypervector. This hypervector, called the query
hypervector, is compared to all the class hypervectors in the
item memory using the Hamming distances. The class with
the smallest distance to this query is the predicted category
of the input. This inference computation is highly computa-
tionally efficient as it involves only simple Hamming distance
calculation.

4 HYPERCAM IMAGE ENCODING
HyperCam’s image encoding uses both HD expression opti-
mizations and a novel sparse bundling operator to dramat-
ically reduce the encoding overheads. Section 4.1 presents
the naïve image encoding HyperCam’s encoding is based on,
Section 4.2 presents the rewrites applied to reduce memory
and computation requirements, and Section 4.3 presents the
novel sparse bundling method HyperCam uses to expedite
image encoding.
Table 1 presents the computation and memory require-

ments of the unoptimized, naïve encoding compared to the
optimized encoding employed by HyperCam. The Hyper-
Cam encoding is obtained by applying four HD expression
rewrites (Rewrite 1-4) that progressively reduce the space
and computational requirements of the encoder. HyperCam

employs a novel sparse bundling algorithm that approxi-
mates HDC bundling while requiring 0.2% of the operations.
With these algorithmic encoding optimizations, HyperCam’s
encoding algorithm uses 52% less codebook memory, 50%
less binding operations, and 98% less bundling operations.
The 19200 sparse bundling operations in the final encoding
are computationally equivalent to 38 normal HD bundling
operations.

4.1 Naïve HD Image Encoding
This section describes a naïve pixel-based HD image encod-
ing algorithm for grayscale images. HyperCam works with
a heavily optimized encoding derived from this naïve encod-
ing. In the following encoding formulations, 𝑛,𝑤 , and ℎ refer
to hypervector size, image width, and height. HyperCam
supports encoding of 8-bit grayscale images, and each pixel
value 𝐼𝑚𝑔[𝑖, 𝑗] is represented as a value from 0 to 255.
Pixel Position Codebook. The naïve image encoding uses
pixel row, column, and value codebooks. The pixel row code-
book 𝑅(𝑖) maps the pixel rows 𝑖 ∈ 1 · · ·ℎ to hypervectors,
while the pixel column codebook𝐶 (𝑗)maps the pixel columns
𝑗 ∈ 1 · · ·𝑤 to hypervectors. These codebooks map each row
and column index to a randomly generated binary hypervec-
tor.
Pixel Value Codebook. The pixel value codebook𝑉 (𝑥) maps
an 8-bit grayscale value 𝑥 ∈ 0 · · · 255 to a hypervector. The
hypervectors in the pixel value codebook are generated us-
ing a variant of level-based encoding [32]. The level-based
encoding method ensures that hypervectors representing
similar grayscale values have small Hamming distances. In
this level-based codebook, 𝑉 (0) is instantiated to a zero vec-
tor of length 𝑛 representing a black pixel value. The basis

4

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

Naive Rewrite 1 Rewrite 2 Rewrite 3 HyperCam
sym act sym act sym act sym act sym act

Codebook 𝑤 + ℎ + 256 536 ⌈𝑤𝑛 ⌉ + ⌈
ℎ
𝑛 ⌉ + 256 258

⌈
𝑤ℎ
𝑛

⌉
+ 256 258

⌈
𝑤ℎ
𝑛

⌉
+ 256 258

⌈
𝑤ℎ
𝑛

⌉
+ 256 258

Bind 2𝑤ℎ 38400 2𝑤ℎ 38400 𝑤ℎ 19200 𝑤ℎ 19200 𝑤ℎ 19200
Bundle 𝑤ℎ 19200 𝑤ℎ 19200 𝑤ℎ 19200 𝑤ℎ + 256 19456 256 256

SparseBundle 0 0 0 0 0 0 0 0 𝑤ℎ 19200
Table 1: Comparison of different encoding methods. The table provides a row-wise comparison of the number of
hypervectors in the codebook and the number of binding, bundling, and sparse bundling operations for each encoding method
in both symbolic expressions (sym) and actual numbers (act).

hypervectors for values 1, · · · , 255 are constructed by se-
quentially setting random selections of zero-valued bits to
one.
Pixel Encoding.Given a 1D pixel array 𝐼𝑚𝑔, the naïve image
encoding converts the grayscale value 𝐼𝑚𝑔[𝑖 · 𝑤 + 𝑗] = 𝑥

of a pixel at location 𝑖 , 𝑗 to a pixel hypervector by binding
the three separate hypervectors representing the pixel’s row
and column index and the pixel’s grayscale value into one
hypervector:

ℎ𝑣𝑝𝑖𝑥,𝑖, 𝑗 = 𝑅(𝑖) ⊙ 𝐶 (𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖 ·𝑤 + 𝑗])
Image Encoding. An image hypervector ℎ𝑣𝑖𝑚𝑔 is then con-
structed from the pixel hypervectors by bundling the pixel
hypervectors together:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑅(𝑖) ⊙ 𝐶 (𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖 ·𝑤 + 𝑗])

With the above encoding, image hypervectors containing
similar pixels will have small hamming distances.
Space and Time Complexity. The above encoding method
needs to store𝑤 + ℎ + 256 codebook hypervectors, each of
which is 𝑛 = 10000 bits. The naïve encoding method requires
𝑤ℎ pixel bundling operations and 2𝑤ℎ binding operations
per image, each of which is a𝑛-bit hypervector operation. For
the 120 × 160 grayscale images used in this implementation,
naïve encoding would require 536 codebook hypervectors
totaling 670 kilobytes of memory, 38400 binding operations,
and 19200 bundling operations. Therefore, even for small
images, this encoding algorithm scales poorly.

4.2 HyperCam HD Image Encoding
Based on the naïve encoding method presented in Section 4.1,
the properties of HD computations are exploited to rewrite
the image encoding and optimize computation and memory
usage. Sections 4.2.1-4.2.4 present theHD expression rewrites
applied to reduce the image encoder’s memory footprint and
computational requirements. The rewrites presented in 4.2.1-
4.2.2 preserve the computational properties of the HD en-
coding and therefore do not affect classification accuracy.

The factoring and sparse bundling rewrites in 4.2.3-4.2.4 are
semantics-breaking and change the computational proper-
ties of the HD encoding, therefore affecting classification
accuracy. HyperCam’s sparse bundling optimization uses a
novel lossy filter-based sparse bundling operator, which is
presented in Section 4.3.

4.2.1 Rewrite 1: Permutation-based Codebooks. First, Hyper-
Cam uses the permutation operator described in Section 2.1.4
to encode row and column index information, eliminating
ℎ − 1 and𝑤 − 1 entries from row and column hypervector
codebooks, 𝑅 and 𝐶 , respectively:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑝𝑖 [𝑅(0)] ⊙ 𝑝 𝑗 [𝐶 (0)] ⊙ 𝑉 (𝐼𝑚𝑔[𝑖 ·𝑤 + 𝑗])

Since the hypervectors in the pixel position codebook
are generated independently and randomly, permuting one
code effectively produces another independent code. In other
words, any code and its permuted code have a high expected
distance similar to that of two independent codes. Therefore,
with the permutation operator, fewer hypervectors can be
used in place of a random codebook. The row and column
index determines how many times the zero-index row and
column hypervectors 𝑅(0) and𝐶 (0) are permuted. This opti-
mization reduces the number of codebook hypervectors from
𝑤 + ℎ + 256 to ⌈𝑤

𝑛
⌉ + ⌈ℎ

𝑛
⌉ + 256 hypervectors, thus reducing

codebook memory usage from 670 KB to 322 KB.

4.2.2 Rewrite 2: Row and Column Index Coalescing. In naïve
encoding, the row and column hypervectors are bound to-
gether to produce a positional hypervector that encodes the
pixel coordinate. This binding operation between row and
column hypervectors can be eliminated and replaced with a
new random hypervector codebook 𝑋 that captures 1D pixel
position:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑋 (𝑖 ·𝑤 + 𝑗) ⊙ 𝑉 (𝐼𝑚𝑔[𝑖 ·𝑤 + 𝑗])

5

Lee et al.

This rewrite can be applied because the binding operator
produces a hypervector that is dissimilar to its input hyper-
vectors, and the input hypervectors are independent of one
another. Therefore, the 2D (𝑖, 𝑗) image coordinates can be
encoded with a single 1D pixel position 𝑘 = 𝑖 ·𝑤 + 𝑗 while still
preserving the behavior of the HD image encoding. The per-
mutation rewrite can then be applied to reduce the codebook
from𝑤 + ℎ entries to ⌈𝑤ℎ

𝑛
⌉ entries:

ℎ𝑣𝑖𝑚𝑔 =

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

𝑝𝑖 ·𝑤+𝑗 [𝑋 (0)] ⊙ 𝑉 (𝐼𝑚𝑔[𝑖 ·𝑤 + 𝑗])

This optimization reduces the number of binding opera-
tions per pixel from 2 to 1. With the permutation rewrite
applied, the 𝑋 codebook requires ⌈𝑤ℎ

𝑛
⌉ hypervectors.

4.2.3 Rewrite 3: Value Hypervector Factoring. Critically, the
number of bundling operations must be reduced to encode
the image efficiently. The sparse bundling operator efficiently
approximates bundling operations over permutations of a
single hypervector. To use sparse bundling, the value hyper-
vector binding operations are factored from the bundling
operation:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0

𝑉 (𝑧) ⊙

∑︁
𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)

𝑝𝑖 ·𝑤+𝑗 [𝑋 (0)]

𝑃𝑖𝑥 (𝑧) returns all pixel positions 𝑖, 𝑗 where each pixel
𝐼𝑚𝑔[𝑖 · 𝑤 + 𝑗] has the value 𝑧. Note that the HD ⊕ opera-
tion is not associative since some information is lost during
quantization step of bundling. Thus, this rewrite changes the
distance properties of the encoded hypervectors. Specifically,
this rewrite loses information about the relative prevalence
of different pixel values in the image. For example, if an
image contains one gray pixel and many white pixels, the
white and gray pixels would be equally important in this
factored encoding. This information is re-introduced into the
encoding using a weighted bundling: more prevalent pixel
values are bundled multiple times.

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0
|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙

∑︁

𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)
𝑝𝑖 ·𝑤+𝑗 [𝑋 (0)]

Here, values that occur more frequently in the image are

heavily weighted in the encoding, recouping some informa-
tion lost in the factored operation. This weighted bundling
operation is equivalent to an HD bundling operation, where
each hypervector is bundled multiple times:

255∑︁
𝑧=0
|𝑃𝑖𝑥 (𝑧) | · [𝑉 (𝑧) · · ·] =

255∑︁
𝑧=0

|𝑃𝑖𝑥 (𝑧) |∑︁
𝑘

[𝑉 (𝑧) · · ·]

Therefore, the weighted bundling operation can easily be
fused with a normal bundling operation by scaling the binary
hypervector during the sum-threshold computation.

4.2.4 Rewrite 4: Sparse Bundling. After applying the factor-
ing rewrite, each pixel bundling sub-computation (blue text)
can then be efficiently approximated using a novel sparse
bundling operator introduced in Section 4.3:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0
|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙

∑︁

𝑖, 𝑗∈𝑃𝑖𝑥 (𝑧)
𝑝𝑖 ·𝑤+𝑗 [𝑋 (0)]

The sparse bundling operation approximates the standard

HD bundling and replaces bundling operations over per-
muted hypervectors. It is designed to preserve the property
of bundling that similar sets of pixels are embedded into
hypervectors that are close to each other. It also processes
a set of elements (in this case, pixel positions) and returns
a hypervector that approximates the distance properties of
the standard bundled set of elements:

ℎ𝑣𝑖𝑚𝑔 =

255∑︁
𝑧=0
|𝑃𝑖𝑥 (𝑧) | ·𝑉 (𝑧) ⊙ 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒 (𝑃𝑖𝑥 (𝑧)) (1)

The sparse bundling operator works with a density pa-
rameter 𝑑 , where 𝑑 ≪ 𝑛, and performs 𝑂 (𝑑) operations to
bundle two hypervectors. Using a sparse bundling operation
reduces the number of operations required to bundle each
vector from 𝑂 (𝑛) to 𝑂 (𝑑). HyperCam uses 𝑑 = 100, thus
reducing the number of operations per bundling operator
from 10000 to 20 operations. Once sparse bundling is applied
to construct each pixel set hypervector, HyperCam applies
256 weighted HD bundling operations to construct the final
hypervector representation of the image.

4.3 Sparse Bundling
HyperCam deploys a novel sparse bundling algorithm that
uses Bloom Filter [6] and Count Sketch [8] to approximately
bundle large numbers of hypervectors together at low la-
tency. Bloom Filters and Count Sketches are probabilistic
data structures adept at representing sets of elements. Both
data structures work with numeric vectors and are updated
by randomly sampling and updating bits. They can be viewed
as a sub-class of HDC/VSA as they also compute in superpo-
sition [9, 21, 23].

Given a set of integers 𝑠 ∈ 𝑆 , the sparse bundling algorithm
returns a binary hypervector that approximates bundling
together the basis hypervectors that represent each element:

𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒 (𝑆) ≈
∑︁
𝑠∈𝑆

𝑝𝑠 [ℎ𝑣]

6

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

Algorithm 1 Sparse Bundling Algorithm
1: bool 𝑏𝑙𝑜𝑜𝑚 = 𝑓 𝑎𝑙𝑠𝑒 ; //use a bloom filter or count-sketch
2: uint 𝑛 = 10000; // hypervector size
3: uint 𝑑 = 20; // density - the number of hashes per bundle
4: // random set of size 𝑑 from values {0, 1, · · · , 𝑛 − 1}
5: uint8[d] 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 ← rand(0,n,size=d,replace=False);
6: // random vector with values {−1, 1}
7: int8[d] 𝐶𝑆 ← rand([-1,1],size=d);
8: function SparseBundleElem(hv,𝑠)
9: for 𝑗 in 0...𝑑 − 1 do
10: k = (indices[j]+𝑠) % n
11: if bloom then
12: hv[k] = 1
13: else
14: hv[k] = hv[k] + CS[j]
15: function NewSparseHV
16: int8[n] hv = zeroes(n);
17: return hv;
18: function FinalizeHV(hv)
19: if ¬ bloom then
20: for 𝑖 in 0..𝑛 do
21: hv[i] = 1 ? hv[i] >= 0 : 0
22: procedure SparseBundle(S)
23: hv = NewSparseHV()
24: for 𝑠 ∈ 𝑆 do
25: SparseBundleElem(hv,s)
26: FinalizeHV(hv);
27: return hv;

The sparse bundling operation approximates anHDbundling
operation over permutations (𝑝𝑠) of some hypervector ℎ𝑣 .
The algorithm is parametrized with a hypervector size 𝑛

and density parameter 𝑑 and offers both Bloom Filter and
Count Sketch backends. The Bloom Filter backend is more
computationally efficient but less accurate than the Count
Sketch backend. Each sparse bundling operation requires 𝑑
operations, significantly reducing the number of operations
per bundling task when 𝑑 << 𝑛.

4.3.1 Algorithm Description. This section describes Alg. 1.
Given a set of integer values 𝑆 to bundle, the 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒
operator instantiates a new sum hypervector (Line 23), uses
the sparse bundling operator to add each value to the sum
hypervector (Lines 24-25), and then finalizes the sum hyper-
vector (Line 26) to obtain a binary hypervector that approx-
imates the bundled result. The 𝑆𝑝𝑎𝑟𝑠𝑒𝐵𝑢𝑛𝑑𝑙𝑒𝐸𝑙𝑒𝑚 routine
updates the sum hypervector to bundle an integer element.
Instantiation and Finalization. The sum hypervector
is instantiated to an 𝑛-dimensional signed integer vector

comprised of zeroes. On finalization, each element is bina-
rized by thresholding the value with zero to produce an n-
dimensional binary vector. Finalization is only required for
sum hypervectors in the Count Sketch backend; the Bloom
Filter backend directly produces binary vectors.
Bundling[Lines 8-14] The algorithm updates the sum hy-
pervector ℎ𝑣 to include the integer 𝑠 by computing 𝑑 random
indices from the integer value and then updating the values
in these indices. For the Bloom Filter backend, each update
sets the hypervector value to one. For the Count Sketch back-
end, the bundle hypervector value is randomly incremented
or decremented. HyperCam precomputes the random indices,
along with the random increment and decrement operations,
and stores the values in the Count Sketch (CS) array.

5 HYPERCAM IMPLEMENTATION
In this section, the implementation of HyperCam is described.
Section 5.1 presents the implementation of the image encod-
ing algorithm and further engineering efforts to port the
model onboard. Section 5.2 describes the collection of the
image dataset used to evaluate HyperCam. Lastly, Section 5.3
describes HyperCam’s low-power hardware platform.

5.1 Image Encoding Algorithm

Algorithm 2 Image Encoding with Sparse Bundling
function encodeImage(Img: image)
int[256][n] hvs;
uint[256] cnts;
uint8[n] imgHV;
for 𝑣 in 0..256 do
sumHVs[v] = NewSparseHV()
cnts[v] = 0

for 𝑘 in 0..𝑤 · ℎ do
v = Img[k]
SparseBundleElem(sumHVs[v], k)
cnts[v] += 1

for 𝑣 in 0..255 do
for 𝑖 in 0 · · ·𝑛 − 1 do
imgHV[i] += cnts[v] · (sumHVs[v][i] 𝑥𝑜𝑟 getVal-

ueCB(v,i))
for 𝑖 in 0 · · ·𝑛 − 1 do
imgHV[i] = 1 ? imgHV[i] > |wh|/2 : 0;

return imgHV;

Alg. 2 presents the algorithm for computing the optimized
image encoding presented in Equation 1.
First, a single pass is taken over the input image, during

which the position hypervectors are bundled using either
7

Lee et al.

Figure 5: Sample images in collected dataset.

a Count-Sketch-based or Bloom-Filter-based bundling op-
eration. The binary hypervectors produced by the sparse
bundling operation are then bound with the value hyper-
vectors and bundled to form the final image hypervector, as
described in Equation 1. Each bundled vector is bound with
the corresponding value hypervector from the codebook,
resulting in 256 hypervectors. These hypervectors are then
bundled together, using weights equivalent to the number
of pixels in each bin. Moreover, since each hypervector con-
tains only 𝑑 non-zero elements, the vector summation in the
binning process computes 𝑑 integer elements instead of 𝑛.

To further reduce image encoding time and eliminate value
codebook, value hypervectors are generated on-the-fly in-
stead of pre-storing them. As described in Section 4.1, the
value codebook uses level-based encoding, where random
selections of bits in 𝑉 (0) are flipped. For a value 𝑣 , 𝑉 (𝑣) is
generated by flipping 𝑣 · ⌊𝑛/256⌋ bits. The order in which
bits are flipped must be the same at every generation for en-
coding consistency. Thus, this ordering of bit flips (which are
indices of the 𝑛-length array) is stored in the microcontroller.
Additionally, the generation of value hypervectors does not
create overhead in computation because it integrates into
the binding operation, which already iterates over the vector.
Complexity. These implementation-level optimizations re-
duce the codebook size from 256 + 2 to 2 hypervectors. The
above algorithm requires 256 bundling operations, 256 bind-
ing operations, and 19200 fast bundling operations. Each fast
bundling operation uses approximately 500x fewer opera-
tions than standard HDC bundling.

5.2 Data Collection
There are existing datasets for both face detection and iden-
tification, such as the DigiFace-1M or the VGGFace2 dataset
[2, 7]. However, these open-source images are either syn-
thetic or captured by cameras and settings far different from
our deployment environment. Thus, a dataset was created for
the task of interest. Specifically, we took over 1000 images of
size 160x120 using the Himax HM01B0 camera mounted on
the Arducam HM01B0 Monochrome SPI Module. An assort-
ment of backgrounds and people was imaged to diversify the
input dataset. Images of people were taken such that their
faces were captured at different angles and positions within

Himax HM01B0

nrf52840

STM32U585

B-U585I-IOT02A

Figure 6: Low-power wireless camera platform.
the image frame. Approximately 500 images per person were
collected from different background scenes such as a hallway,
office space, whiteboard, etc. Objects and backgrounds not
involving people were also collected as negative samples for
face detection. There are a total of 4,215 images across 7 per-
son classes and 1 non-person class. Fig. 5 shows an example
of six images that were collected as part of the data set.

5.3 Hardware
To evaluate the performance of HyperCam on resource-
constrained hardware, a low-power camera hardware plat-
formwas designed. An evaluation board for the STM32UF855AI
microcontroller (MCU) was used as the central computing
device [34, 35]. The MCU has an Arm Cortex-M33 processor,
2MB of flash memory, and 736KB of SRAM. The evaluation
board contains several sensors, extra memory, and peripheral
interfaces that are redundant for the evaluation of Hyper-
Cam. Thus, all non-critical components operating on the
same power supply rails as the MCU were removed from the
board to reduce power consumption. The Himax HM01B0
image sensor in QQVGA mode is used to capture 160x120
resolution grayscale images [13]. A custom printed circuit
board (PCB) is implemented to interface the MCU with the
image sensor, which connects the 2.8V supply from the eval-
uation board to the camera. Moreover, it connects I2C and
8-bit parallel QQVGA communications between the MCU
and image sensor. A 24MHz crystal oscillator drives the im-
age sensor’s internal clock. Lastly, the MCU’s Digital Camera
Interface (DCMI) and Direct Memory Access (DMA) periph-
erals are used to transfer image data from the camera into
the MCU’s memory.
A nRF52840 BLE module is integrated into the camera

hardware and is used to wirelessly transmit data packets
to a nearby base station [33]. A 3.7V 4400mAh Lithium Ion
battery powers the entire hardware platform. Two linear reg-
ulators on the evaluation board provide 3.3V and 2.8V to the
MCU and camera, respectively. A 3.3V linear regulator also
supplies the BLE module. Some power losses were incurred

8

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

Table 2: Comparison of Image Classifiers. HyperCam is compared with different image classifiers in terms of accuracy (%),
flash memory usage (KB), peak RAM memory usage (KB), and latency (s) on 4 benchmark tasks.

Type
MNIST Fashion MNIST Face Detection Face Identification

Acc Flash RAM Latency Acc Flash RAM Latency Acc Flash RAM Latency Acc Flash RAM Latency

HDC

Vanilla HDC 80.03 - - - 69.39 - - - 72.54 - - - 40.60 - - -

OnlineHD 91.34 - - - 81.83 - - - 84.62 - - - 84.62 - - -

Rewrite 2 94.60 365.02 22.09 0.21 84.99 365.02 22.09 0.21 94.09 356.5 22.09 11.56 78.63 362.60 22.09 11.56

HyperCam∗ 93.60 63.00 22.25 0.26 84.06 63.00 22.25 0.26 92.98 53.83 22.25 0.27 72.79 59.52 22.25 0.27

HyperCam∗∗ 90.36 52.62 22.25 0.08 83.10 52.62 22.25 0.08 92.73 42.91 22.25 0.12 61.40 49.00 22.25 0.12

Lightweight
ML

SVM 78.24 - - - 72.06 - - - 86.45 - - - 27.07 - - -

xgBoost 76.86 365.55 77.09 0.01 71.76 352.76 77.09 0.01 94.46 134.92 77.09 0.01 38.88 193.24 77.09 0.01

Neural
Networks

MicroNets 97.82 582.16 302.87 1.05 86.84 582.16 302.87 1.05 92.86 581.12 502.87 6.64 51.71 581.76 502.87 6.64

MobileNet V3 98.69 1640.00 302.87 3.29 86.48 1640.00 302.87 3.29 88.18 1640.00 502.87 18.53 51.28 1640.00 502.87 18.55

MCUNet V3∗ 99.34 1190.00 302.91 6.70 93.3 1190.00 302.91 6.70 99.88 1190.00 302.91 6.70 99.15 1190.00 302.91 6.70

MCUNet V3∗∗ 98.97 1340.00 502.91 46.71 94.20 1340.00 302.91 46.71 99.88 1340.00 502.91 46.71 99.01 1340.00 502.91 46.71

in these linear regulators during the active state, which can
be reduced by custom power management design.

The camera platform is designed so that components are
set to standby in their minimum-sleep modes and are acti-
vated by an event trigger (e.g., motion detection or manual
button press). When triggered, the MCU wakes up the cam-
era module to capture and store an image, performs image
classification, and transmits the classification outcome to
a smartphone application. After completing each task, the
camera platform returns to sleep mode. Figure 6 shows the
prototype implementation of the hardware platform.

6 EVALUATION
HyperCam is compared with baseline machine learning clas-
sifiers in an identical embedded hardware environment.

6.1 Experimental Setup
6.1.1 Classifier Tasks. HyperCam is evaluated on four im-
age classification tasks: MNIST, Fashion MNIST, Face De-
tection, and Face Identification. MNIST and Fashion MNIST
are widely used benchmark datasets for evaluating machine
learning classifiers, each containing 60,000 grayscale images
of size 28x28 [25, 38]. In contrast, the Face Detection and
Identification tasks utilize the collected dataset described in
Section 5.2, which consists of 8 classes: 1 non-person class
(objects and places) and 7 person classes. The Face Detec-
tion task is a binary classification distinguishing between
the non-person class and the person class, while the Face
Identification task involves a 7-class classification among the
7 person classes. To ensure fair training and testing, all class
sizes were balanced, with each class having a similar num-
ber of images. Here, the benchmark datasets (MNIST and
Fashion MNIST) are used to compare general approaches,

whereas the custom tasks demonstrate an IoT deployment
scenario where models handle lower quality and smaller
datasets.

6.1.2 Classifiers. Several machine learning algorithms are
selected as baseline to compare against HyperCam. Both
HyperCam and the baseline models are trained offline on
a standard laptop, where their test accuracies are assessed.
The trained models are then exported as C header files and
loaded onto STM32U585AI for performance evaluation. All
models use integer representations to fit the hardware and
ensure compatibility with other MCU families. Except for
the HDC models, which are inherently integer models, all
other ML models were trained using floating-point numbers
and then quantized post-training to integer values.
HDC. Three baseline HDC models are assessed against two
versions of HyperCam. For baseline, VanillaHDC is the most
basic form of aHD classifier explained in Section 4.1. OnlineHD
uses theOnlineHD [12] trainingmethod on top of VanillaHDC.
Rewrite2 uses the encodingmethod described in Section 4.2.2
and uses the OnlineHD training method. On the other hand,
HyperCam is assessed in two versions: HyperCam∗ that uses
the count-sketch backend and HyperCam∗∗ that uses the
bloom-filter backend. All HyperCam models use the On-
lineHD training method as well.
Lightweight ML. SVM and XGBoost are chosen to represent
lightweight ML models. They are trained using Python’s
sklearn and xgboost libraries and are ported to a C header
file using the micromlgen library.
Neural Networks. MicroNets, MobileNetV3, and two sizes
of MCUNetV3 are chosen for this category.MCUNet V3* (mcunet-
in1) is the smallest and the MCUNet V3** (mcunet-in3) is
the largest one that fits the MCU. They are trained from

9

Lee et al.

pre-trained weights and are quantized to 8-bit integer num-
bers after training. Once converted to C header files, the
TensorFlow Lite Micro and the CMSIS-NN libraries are
used to run them on the ARM Cortex M-33 environment.
6.1.3 Evaluation Metrics. These metrics were used:
Accuracy. Data is split in an 8:2 ratio between the training
and testing datasets. The model is trained with the training
dataset and accuracy is measured with the test dataset.
Flash Memory. The flash memory footprint of the model
is measured in kilobytes. For ML models, this includes the
model weights, parameters, and the library code required
for execution. For HDC models, this includes the model’s
codebook and the item memory required for encoding and
prediction.
RAM. The peak RAM footprint of the model is measured
in kilobytes. For ML models, this includes the model activa-
tions, input, and output tensors, and library code. For HDC
models, this includes hypervectors allocated for encoding.
When encoding is done, HDC uses only one hypervector to
represent a data instance for inference.
Latency. The latency of the classifier is the time it takes to
process one frame of image. This involves the time it takes to
encode an image and predict its class using the item memory.
All latency is measured on STM32U585AI and is in seconds.

6.2 Classifier Evaluation
Table 2 compares HyperCam’s HD classifier to the baseline
in terms of accuracy, flash memory size, peak RAM size,
and latency during one pass of inference. The VanillaHDC
and OnlineHD classifiers, while demonstrating reasonable
accuracy (80.03% and 91.34% on MNIST, respectively), are un-
suitable for deployment on resource-constrained devices due
to their large flash memory requirements. HyperCam, how-
ever, uses the Rewrite2 encoding method to significantly
reduce the flash memory consumption to 365.02 KB for the
largest task while maintaining a competitive accuracy of
94.60% on MNIST and 84.06% on Fashion MNIST.
The final version of HyperCam further improves this by

achieving the lowest flash memory footprint of all ML classi-
fiers: 63.00 KB (HyperCam∗) and 52.62 KB (HyperCam∗∗) for
the largest task. For a more competitive memory footprint
and latency, HyperCam sacrifices accuracy from Rewrite2
but only with a small margin (1.00% reduction in MNIST
and 0.93% in Fashion MNIST). HyperCam∗∗ also achieves the
lowest latency across all HDC and neural network models,
with 0.08 seconds on MNIST and 0.12 seconds on both Face
Detection and Identification tasks.
When compared to lightweight machine learning mod-

els like SVM and xgBoost, HyperCam demonstrates superior
performance in both accuracy and memory efficiency. For
example, both versions of HyperCam achieve higher accu-
racy than SVM across all classification tasks, while xgBoost

only outperforms HyperCam in the Face Detection task by a
small margin of 1.48%. In the Face Identification task, SVM and
xgBoost experience a significant drop in accuracy (27.07%
and 38.88%, respectively). By contrast, all HD classifiers, in-
cluding HyperCam, as well as MCUNetV3, exhibit a more
graceful decline in performance, maintaining much higher
accuracy levels (72.79% for HyperCam∗ and up to 99.15% for
MCUNetV3). Additionally, in terms of memory consumption,
both SVM and xgBoost require significantly more memory
than HyperCam. Even after being quantized to integer val-
ues, SVM was still too large to fit within the MCU’s flash
memory.

Neural network models, particularly those using 8-bit in-
teger quantization, such as MicroNets and MobileNetV3,
offer the highest accuracy levels (e.g., 98.69% on MNIST for
MobileNetV3) but at the cost of substantially higher memory
usage and latency. For example, in terms of flash memory
consumption, MicroNets requires over 500 KB of flash mem-
ory while MobileNetV3 and MCUNetV3 all use more than 1
MB of flash memory. On the other hand, HyperCam’s most
memory-efficient version (count-sketch) requires only 63
KB of flash memory and 22.25 KB of RAM. MCUNetV3 exhibits
the highest accuracy among all models, with near-perfect
performance (e.g., 99.34% on MNIST and 99.88% on Face
Detection). However, the trade-off comes in the form of sub-
stantially higher latency. The smallest MCUNetV3 model has
a latency of 6.7 seconds, while the larger version takes up
to 46.71 seconds. In contrast, HyperCam maintains latencies
under 0.3 seconds across all datasets.
Memory Analysis. A breakdown of the flash memory is
shown in Fig. 7. In both MobileDNN and EdgeDNN, memory
is consumed by the TF Micro library and the model’s graph
data on top of the model weights and parameters. Using
an external library indicates that the hardware choices are
restricted to those the library supports. On the other hand,

Free
810 KB

Weights
807 KB

TF Micro
102 KB

Other
198 KB

Graph
83 KB

Free
1634 KB

Free
1937 KB

Free
1947 KB

Weights
366 KB Weights

63 KB
Weights
53 KB

MCUNetV3 XGBoost Count Sketch Bloom Filter

STM32U585AI Flash Memory (2MB)

Figure 7: Breakdown of flash memory.10

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

0 40 80 120 160 200 240
Time (ms)

Count Sketch

Bloom Filter

Bind & Sum
Binning
Initialization
Majority Vote
Prediction

Encoder
Count
Sketch

Bloom
Filter

Figure 8: Latency Profiling.
Component Active Current Sleep Current Voltage
STM32U585I 10.9 mA 74.9 𝜇A 3.3V
Himax HM01B0 2.5 mA 1.3 mA 2.8V
nRF52840 Express 7.2 mA 1.4 mA 3.8V

Table 3: HyperCam Component Power Consumption.
in HyperCam, no library code is needed as it exclusively
uses hardware-native operations such as addition, exclusive
or, and comparison. Rather, HyperCam’s HD classifier only
requires hypervectors stored as byte arrays. This aspect not
only minimizes memory requirements but also eases the
process of adding new classifiers; each addition of class con-
sumes 𝑛 bytes. In contrast, a new model in DNN means its
model graph (100 KB) and the weights that can be anywhere
from hundreds of bytes to megabytes.
Latency Analysis. Fig. 8 shows the latency profiling of Hy-
perCam when using Count Sketch and Bloom Filter. Observe
that Bloom Filter outperforms Count Sketch for bind & sum,
leading to an overall latency improvement. For the count-
sketch method, the major processing time of bind & sum is
not binding and summing themselves but quantizing integer
values to binary for binding. This process is omitted from the
Bloom Filter backend, greatly reducing latency. Additionally,
in both cases, bundling does not appear in Fig. 8 because it
occurs in two stages: summation as part of bind & sum and
majority vote. That is, the result of binding is summed to
the output element-wise and later evaluated for the majority.

6.3 Power Analysis
The power consumption of the wireless camera platform was
evaluated using a Joulescope JS220 with 0.5 nA resolution,
equivalent to 34 bits of dynamic range [19]. The average
quiescent currents of the remaining components, the 3.3V
STM32U585I and 2.8V Himax HM01B0 camera regulator, are
outlined in Table 3. Next, the total power consumption of the
system was evaluated during image capture, processing, and
data transmission as shown in Fig. 9. The system was divided
into its key constituent components during the power con-
sumption measurement (MCU, camera, BLE module). The
remaining B-U585I-IOT02A power can be derived by sub-
tracting the power from the system’s primary devices. When
an event trigger occurs, the image sensor is activated, and
the power consumption jumps to an average of 128 mW for

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

80

90

100

110

120

130

Po
w

er
 (m

W
)

Figure 9: System Power Consumption. (1) camera plat-
form in sleep mode (2) camera initialization, image capture,
and inference, (3) data transmission, and (4) system returns
to sleep mode.

image processing for 250 ms. Lastly, a data packet is transmit-
ted to a base station over BLE for 200 ms. This equates to an
average power consumption of 102 mW during active mode
for a total duration of 450 ms. Note that further power opti-
mization could be done by replacing the evaluation board’s
regulators with more efficient switching or LDO regulators.

7 RELATEDWORK
There has been recent work in energy-efficient cameras and
machine learning to exploit the resource-constrained envi-
ronments presented by IoT devices. Several paradigms gov-
ern the current space, including work to ease the load of
transmitting image data and onboard computing.

Onboard Computing. There have been two lines of efforts
to enable IoT device onboard computing. The first is the
TinyML paradigm, where lightweight DNNs are developed
for resource-constrained platforms. It uses frameworks such
as TensorFlow Lite for Microcontrollers (TFLM) to quantize
and prune weights to alleviate performance overhead, en-
abling various levels of hardware acceleration and model
deployment [10, 29]. Works such as [3, 26] use extensive net-
work architecture search (NAS) to find an optimized neural
network architecture for available memory resources. In [28],
convolutional neural networks enable tiny on-device train-
ing with considerable memory limitations. Here, inference
is performed, and over time, classifier weights are updated
to improve performance with new input sensor data. All of
these models provide concrete baselines for HyperCam’s
performance, as compared in Section 6.2.
On the other hand, there have been works exploring the

use of hyperdimensional computing for onboard machine
learning. However, the space of hyperdimensional comput-
ing primarily focuses on time-series data, which does not
have the same overhead as image processing [22]. An excep-
tion to this is [15], where HDC is used to enable emotion
and face detection. This work uses histograms of gradients
(HoGs) to extract the features of the image, which involve

11

Lee et al.

System Active Power Resolution Frame Rate Communication Onboard Inference
BackCam [18] 9.7 mW 160×120 1 fps backscatter ×
WISPCam [31] 6 mW 176×144 0.001 fps backscatter ×
NeuriCam [37] 85 mW 640×480/740p 15 fps BLE ×
MCUNet [27] N/A 224×224 N/A N/A ✓
HyperCam 128 mW 160×120 8 fps BLE ✓

Table 4: IoT Camera Platforms. A comparison of HyperCam to existing camera platforms.

calculating the gradients of the pixels and binning them by
angles. This front-end feature extractor not only introduces
more computation load but also fails to resolve the inherent
encoding complexity in HD image processing.
Energy-efficient Wireless Cameras. The advancements
in low-power processors and image sensors have led to
several recent works that focus on developing low-power
wireless camera platforms for computer vision applications.
In [30, 31], a battery-free RFID camera is presented and eval-
uated for machine vision applications such as face detection.
Here, subsampled images are transmitted to a base station
that runs a face detection algorithm. If a face is detected,
coordinates of windows within the image frame are transmit-
ted back to WISPCam to retrieve higher-resolution images.
In [18], a low-power wireless camera platform is presented to
support real-time vision applications where images are sent
to a base station to perform image processing and face classi-
fication. Here, image compression is performed to help mini-
mize overall latency and, in turn, reduce power consumption.
More recently, [37] presents a deep-learning-based system
for video capture from a low-power wireless camera plat-
form. Similar to the aforementioned related work, the neural
network processing runs at an edge server or in the cloud.
Compared to prior work, HyperCam focuses on enabling
onboard computer vision for energy-constrained wireless
camera platforms rather than offloading image processing
and classification to the edge or cloud. More closely related
to HyperCam is [26], which deploys a lightweight inference
engine on an MCU system for onboard image processing.
Table 4 compares HyperCam to similar IoT camera platforms.
Other work includes [1, 16], which present ultra-low-power
implementations of wireless camera platforms for extremely
challenging environments such as underwater imaging and
placing wireless cameras on insects.

8 CONCLUSION AND DISCUSSION
We introduce HyperCam, an onboard image classification
pipeline that leverages hyperdimensional computing (HDC).
To meet the stringent resource constraints of off-the-shelf
MCUs, we propose original image encoding methods involv-
ing sparse binary vectors and on-the-fly codebook genera-
tions, which significantly reduce the number of operations

and memory footprint. As a result, our system requires only
about 60 KB of flash memory and 20 KB of RAM, achieving
a latency of approximately 0.1 s, while maintaining compa-
rable accuracy across multiple classification tasks.

A key advantages of HyperCam is its scalability and com-
patibility across a wide range of hardware platforms. Unlike
most ML models that rely heavily on floating-point oper-
ations and require specialized hardware support, such as
Neural Processing Units (NPUs) and Floating Point Units
(FPUs), HyperCam only uses bits and bit operations. More-
over, HyperCam does not require any additional libraries,
machine learning engines, Neural Architecture Search (NAS),
or hardware-specific optimizations to reproduce results. That
is, HyperCam can be easily ported to other families of MCUs.

We highlight several future research directions:
Online Learning. Data-driven models deployed in the real
world must be able to reuse new data to refine themselves.
This is crucial because the deployment data can vary greatly
from the training data distributions and unseen categories
of data can appear. The system can adapt to these changes
through online learning or incremental learning, which in-
volves integrating new data streams during deployment.
HDC offers an easy transition to online learning due to the
ease of updating class hypervectors. New image hypervec-
tors can be bundled to individual class hypervectors.
Cloud Connection. Currently, HyperCam connects to a
gateway where the prediction result is transmitted and dis-
played. If the gateway establishes a connection to the cloud
and pushes the data, remote users can access the data and
monitor the results. The cloud can potentially store the
bundling of thousands of image hypervectors as a model
summary. This can be used to refine the model and provide
future updates.
Multi-modal Sensors. Modern IoT devices are equipped
with a wide array of sensors. Providing multiple sensor data
inputs to one intelligent model can lead to more accurate
and quick decisions without the need to fuse this data with
arbitrary algorithms. HD classifiers can easily fuse multiple
types of sensor data because different domains of data are
all encoded to hypervectors. Examples of modalities include
images and audio for speech recognition, EEG and heart rate
data for anomaly detection.

12

HyperCam: Low-power Onboard Computer Vision for IoT Cameras

Diverse Applications. HyperCam can be applied to many
different computer vision tasks. Many IoT camera systems
target remote environments where power and connectivity
are limited, such as large-scale farms and underwater ocean
profiling [1, 36]. An energy-efficient onboard classifier can
run in these environments and perform tasks such as pest
detection, crop yield prediction, and wildlife monitoring. A
large-scale deployment of HyperCam is yet to be tested.

REFERENCES
[1] Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Mario Doumet,

Unsoo Ha, Reza Ghaffarivardavagh, and Fadel Adib. 2022. Battery-free
wireless imaging of underwater environments. Nature Communica-
tions 13 (2022), 5546. https://doi.org/10.1038/s41467-022-33223-x

[2] Gwangbin Bae, Martin de La Gorce, Tadas Baltrušaitis, Charlie He-
witt, Dong Chen, Julien Valentin, Roberto Cipolla, and Jingjing Shen.
2023. DigiFace-1M: 1 Million Digital Face Images for Face Recognition.
In 2023 IEEE Winter Conference on Applications of Computer Vision
(WACV). IEEE.

[3] Colby R. Banbury, Chuteng Zhou, Igor Fedorov, RamonMatas Navarro,
Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mat-
tina, and Paul N. Whatmough. 2020. MicroNets: Neural Network
Architectures for Deploying TinyML Applications on Commodity
Microcontrollers. CoRR abs/2010.11267 (2020). arXiv:2010.11267
https://arxiv.org/abs/2010.11267

[4] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. 2018. Scal-
able methods for 8-bit training of neural networks. In Proceedings of
the 32nd International Conference on Neural Information Processing
Systems (Montréal, Canada) (NIPS’18). Curran Associates Inc., Red
Hook, NY, USA, 5151–5159.

[5] G. Benelli, G. Meoni, and L. Fanucci. 2018. A low power keyword
spotting algorithm for memory constrained embedded systems. In
2018 IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). 267–272. https://doi.org/10.1109/VLSI-SoC.2018.8644728

[6] Burton H Bloom. 1970. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[7] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zis-
serman. 2018. Vggface2: A dataset for recognising faces across pose
and age. In 2018 13th IEEE international conference on automatic face
& gesture recognition (FG 2018). IEEE, 67–74.

[8] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Find-
ing frequent items in data streams. In International Colloquium on
Automata, Languages, and Programming. Springer, 693–703.

[9] Kenneth L Clarkson, Shashanka Ubaru, and Elizabeth Yang. 2023.
Capacity analysis of vector symbolic architectures. arXiv preprint
arXiv:2301.10352 (2023).

[10] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries,
Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang,
et al. 2021. Tensorflow lite micro: Embedded machine learning for
tinyml systems. Proceedings of Machine Learning and Systems 3 (2021),
800–811.

[11] M. Giordano, P. Mayer, and M. Magno. 2020. A Battery-Free Long-
Range Wireless Smart Camera for Face Detection. In Proceedings of the
8th International Workshop on Energy Harvesting and Energy-Neutral
Sensing Systems (Virtual Event, Japan) (ENSsys ’20). Association for
Computing Machinery, New York, NY, USA, 29–35. https://doi.org/
10.1145/3417308.3430273

[12] Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and
Mohsen Imani. 2021. OnlineHD: Robust, Efficient, and Single-Pass
Online Learning Using Hyperdimensional System. In 2021 Design,

Automation & Test in Europe Conference & Exhibition (DATE). 56–61.
https://doi.org/10.23919/DATE51398.2021.9474107

[13] Himax. 2024. HM01B0 Ultralow Power CIS. https:
//www.himax.com.tw/products/cmos-image-sensor/always-on-
vision-sensors/hm01b0/

[14] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M
Rabaey. 2017. Exploring hyperdimensional associative memory. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 445–456. https://doi.org/10.1109/HPCA.
2017.28

[15] Mohsen Imani, Ali Zakeri, Hanning Chen, TaeHyun Kim, Prathyush
Poduval, Hyunsei Lee, Yeseong Kim, Elaheh Sadredini, and Farhad
Imani. 2022. Neural computation for robust and holographic face
detection. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (San Francisco, California) (DAC ’22). Association for Com-
puting Machinery, New York, NY, USA, 31–36. https://doi.org/10.
1145/3489517.3530653

[16] Vikram Iyer, Ali Najafi, Johannes James, Sawyer Fuller, and Shyamnath
Gollakota. 2020. Wireless steerable vision for live insects and insect-
scale robots. Science robotics 5, 44 (2020), eabb0839.

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
2017. Quantizing deep convolutional networks for efficient inference:
A whitepaper. arXiv preprint arXiv:1712.05877 (2017).

[18] Colleen Josephson, Lei Yang, Pengyu Zhang, and Sachin Katti. 2019.
Wireless computer vision using commodity radios. In Proceedings of
the 18th International Conference on Information Processing in Sensor
Networks. 229–240.

[19] Joulescope. 2024. Joulescope JS220: Precision Energy Ana-
lyzer. https://www.joulescope.com/products/js220-joulescope-
precision-energy-analyzer

[20] Pentti Kanerva. 1997. Fully distributed representation. PAT 1, 5 (1997),
10000.

[21] Denis Kleyko, Mike Davies, Edward Paxon Frady, Pentti Kanerva,
Spencer J Kent, Bruno A Olshausen, Evgeny Osipov, Jan M Rabaey,
Dmitri A Rachkovskij, Abbas Rahimi, et al. 2022. Vector symbolic
architectures as a computing framework for emerging hardware. Proc.
IEEE 110, 10 (2022), 1538–1571.

[22] D. Kleyko, D. A. Rachkovskij, E. Osipov, and A. Rahimi. 2022. A Survey
on Hyperdimensional Computing Aka Vector Symbolic Architectures,
Part I: Models and Data Transformations. ACM Comput. Surv. 55, 6,
Article 130 (dec 2022), 40 pages. https://doi.org/10.1145/3538531

[23] Denis Kleyko, Abbas Rahimi, Ross W Gayler, and Evgeny Osipov. 2020.
Autoscaling bloom filter: controlling trade-off between true and false
positives. Neural Computing and Applications 32 (2020), 3675–3684.

[24] Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca
Benini, Abu Sebastian, and Abbas Rahimi. 2023. In-memory factoriza-
tion of holographic perceptual representations. Nature Nanotechnology
18, 5 (2023), 479–485.

[25] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 1998. The
MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/
mnist/.

[26] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song
Han. 2020. MCUNet: tiny deep learning on IoT devices. In Proceedings
of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc.,
Red Hook, NY, USA, Article 982, 12 pages.

[27] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020.
Mcunet: Tiny deep learning on iot devices. Advances in Neural Infor-
mation Processing Systems 33 (2020), 11711–11722.

[28] Ji Lin, Ligeng Zhu,Wei-Ming Chen,Wei-ChenWang, Chuang Gan, and
Song Han. 2022. On-device training under 256kb memory. Advances

13

https://doi.org/10.1038/s41467-022-33223-x
https://arxiv.org/abs/2010.11267
https://arxiv.org/abs/2010.11267
https://doi.org/10.1109/VLSI-SoC.2018.8644728
https://doi.org/10.1145/3417308.3430273
https://doi.org/10.1145/3417308.3430273
https://doi.org/10.23919/DATE51398.2021.9474107
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://doi.org/10.1109/HPCA.2017.28
https://doi.org/10.1109/HPCA.2017.28
https://doi.org/10.1145/3489517.3530653
https://doi.org/10.1145/3489517.3530653
https://www.joulescope.com/products/js220-joulescope-precision-energy-analyzer
https://www.joulescope.com/products/js220-joulescope-precision-energy-analyzer
https://doi.org/10.1145/3538531
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Lee et al.

in Neural Information Processing Systems 35 (2022), 22941–22954.
[29] Erez Manor and Shlomo Greenberg. 2022. Custom hardware inference

accelerator for tensorflow lite for microcontrollers. IEEE Access 10
(2022), 73484–73493.

[30] Saman Naderiparizi, Zerina Kapetanovic, and Joshua R Smith. 2016.
Wispcam: An rf-powered smart camera for machine vision appli-
cations. In Proceedings of the 4th International Workshop on Energy
Harvesting and Energy-Neutral Sensing Systems. 19–22.

[31] Saman Naderiparizi, Aaron N Parks, Zerina Kapetanovic, Benjamin
Ransford, and Joshua R Smith. 2015. WISPCam: A battery-free RFID
camera. In 2015 IEEE International Conference on RFID (RFID). IEEE,
166–173.

[32] Dmitriy A Rachkovskiy, Sergey V Slipchenko, Ernst M Kussul, and
Tatyana N Baidyk. 2005. Sparse binary distributed encoding of scalars.
Journal of Automation and Information Sciences 37, 6 (2005).

[33] Nordic Semiconductor. 2024. nRF52840. https://www.nordicsemi.
com/products/nrf52840

[34] STMicroelectronics. 2024. Discovery Kit for IoT Node with STM32U5
Series. https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

[35] STMicroelectronics. 2024. STM32U585AI. https://www.st.com/
en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=

DB4410
[36] Deepak Vasisht, Zerina Kapetanovic, JonghoWon, Xinxin Jin, Ranveer

Chandra, Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan,
and Sean Stratman. 2017. {FarmBeats}: an {IoT} platform for {Data-
Driven} agriculture. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 515–529.

[37] B. Veluri, C. Pernu, A. Saffari, J. Smith, M. Taylor, and S. Gollakota.
2023. NeuriCam: Key-Frame Video Super-Resolution and Colorization
for IoT Cameras. 1–17.

[38] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A
Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv preprint arXiv:1708.07747 (2017). https://arxiv.org/abs/1708.
07747

[39] Yuchen Zhao, Sayed Saad Afzal, Waleed Akbar, Osvy Rodriguez, Fan
Mo, David Boyle, Fadel Adib, and Hamed Haddadi. 2022. Towards
battery-free machine learning and inference in underwater environ-
ments. In Proceedings of the 23rd Annual International Workshop on
Mobile Computing Systems and Applications (Tempe, Arizona) (HotMo-
bile ’22). Association for Computing Machinery, New York, NY, USA,
29–34. https://doi.org/10.1145/3508396.3512877

14

https://www.nordicsemi.com/products/nrf52840
https://www.nordicsemi.com/products/nrf52840
https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html?rt=db&id=DB4410
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
https://doi.org/10.1145/3508396.3512877

	Abstract
	1 Introduction
	2 Hyperdimensional Computing Background
	2.1 Binary Spatter Code

	3 HyperCam Design
	4 HyperCam Image Encoding
	4.1 Naïve HD Image Encoding
	4.2 HyperCam HD Image Encoding
	4.3 Sparse Bundling

	5 HyperCam Implementation
	5.1 Image Encoding Algorithm
	5.2 Data Collection
	5.3 Hardware

	6 Evaluation
	6.1 Experimental Setup
	6.2 Classifier Evaluation
	6.3 Power Analysis

	7 Related Work
	8 Conclusion and Discussion
	References

