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An inclusive fitness analysis of synergistic
interactions in structured populations

Peter Taylor* and Wes Maciejewski

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

We study the evolution of a pair of competing behavioural alleles in a structured population when there are

non-additive or ‘synergistic’ fitness effects. Under a form of weak selection and with a simple symmetry con-

dition between a pair of competing alleles, Tarnita et al. provide a surprisingly simple condition for one allele

to dominate the other. Their condition can be obtained from an analysis of a corresponding simpler model in

which fitness effects are additive. Their result uses an average measure of selective advantage where the aver-

age is taken over the long-term—that is, over all possible allele frequencies—and this precludes consideration

of any frequency dependence the allelic fitness might exhibit. However, in a considerable body of work with

non-additive fitness effects—for example, hawk–dove and prisoner’s dilemma games—frequency depen-

dence plays an essential role in the establishment of conditions for a stable allele-frequency equilibrium.

Here, we present a frequency-dependent generalization of their result that provides an expression for allelic

fitness at any given allele frequency p. We use an inclusive fitness approach and provide two examples for an

infinite structured population. We illustrate our results with an analysis of the hawk–dove game.

Keywords: evolutionary game theory; non-additive games; relatedness; allele frequency; Price equation;

frequency dependence
1. INTRODUCTION
An enormous body of significant work constructs analytical

models for the genetical evolution of social behaviour.

The key relationship here is the dependence of focal fitness

on the behaviour (phenotypic value) of a number of inter-

actants. These behaviours are typically correlated with

individual genotypic values, and the resulting connection

between fitness and genotype allows us to get hold of the

manner in which selection changes the frequency of alleles

coding for alternative behaviours. The central tool in this

analysis is the covariance formula of Price [1]. It requi-

res us to calculate the covariance between focal fitness

and focal genotype, and the dependence of the former on

the genotypic values of neighbouring individuals reduces

the problem to one of calculating covariances between

neighbouring genotypes (or between expressions involving

neighbouring genotypes) and the focal genotype.

In building models of genetic change, we make explicit

assumptions about how focal fitness depends on local gen-

otypic values. The simplest models we work with are linear;

that is, fitness effects among interactants are assumed to be

additive—if Yand Z both interact with X, the effect on the

fitness of X is the sum of the individual effects of Yand Z. If

X, Yand Z have genotypic values x, y and z, then the Price

equation requires calculation of the covariances cov(x, y)

and cov(x, z). Much of the work on cooperation and altru-

ism makes this assumption. Other models use nonlinear

functions and considerable attention has been paid to

quadratic expressions [2]. These arise naturally in haploid

models in which genotypic values are either 0 or 1. In this

case, there are four possibilities for the genotypic pair
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(y, z), and a quadratic function is sufficient to describe all

possible joint genotypic effects on the fitness of X of the

interactions of Y and Z with X. In this case, the Price

equation may involve covariances cov(x, xy) and cov(x,

yz), and these can be more difficult to calculate.

In fact, it has been pointed out many times that, at the end

of the day, all selection cares about is the multivariable linear

regression of fitness on genotypic values, as selection is only

able to act on additive genetic effects. This idea was perhaps

first given prominence in Falconer’s [3] classic book on

quantitative genetics in which the breeding value of an indi-

vidual was defined as ‘the sum of the average of the effects of

the two alleles present’. That is for two genes within individ-

uals, but the same conditions apply to genes between

individuals. More recently, this central idea has been ampli-

fied by Queller [4,5], Frank [6] and Gardner et al. [7]. To

rephrase the idea, suppose that the fitness W of X depends

in any manner we wish on the genotypic values of Y and

Z. Then, use the linear regression of Won y and z to replace

the function W(y, z) by the linear function W*(y, z). Then,

for calculating the genetic effects of selection (say on allele

frequency), we can replace W by the linear function W*.

Having said that, we still might be faced with a formidable

calculation in a particular population model, as the

regression coefficients can be difficult to calculate.

Recently, Tarnita et al. [8] have shown that in a structured

population with a simple symmetry condition between a

pair of competing alleles, quadratic (‘synergistic’) effects

can be handled with standard linear methods. This is an

interesting result, because it not only simplifies our

calculations, but also provides an interesting and unex-

pectedly simple mathematical form for allelic fitness.

However, their calculation of fitness uses a long-term aver-

age measure of allele frequency, preventing them from

analysing frequency-dependent behaviour, which is a criti-

cal component of the analysis in non-additive games such
This journal is q 2012 The Royal Society
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as hawk–dove and prisoner’s dilemma. Our purpose here is

to generalize their result to obtain a frequency-dependent

condition for allelic fitness. We use an inclusive fitness

approach in both a finite and an infinite structured popu-

lation model, and illustrate our results with an analysis of

the hawk–dove game played in Wright’s [9] island model

with structured demes.
2. THE INCLUSIVE FITNESS MODEL
(a) Demographics

We work with a structured population represented as a

graph, a set of nodes each occupied by a single asexual hap-

loid breeder, together with edges between certain pairs

of nodes. Nodes joined by an edge are called adjacent,

and the set of nodes adjacent to a given node is called its

neighbourhood. Each edge carries two different pieces of

information: first, the probability that the two breeders

will engage in a ‘primary’ interaction (e.g. play a game

[10]), and second, the probability that an offspring from

one node will displace the breeder at the other. For simpli-

city, we assume that offspring dispersal between nodes i and

j is symmetric. We work with two different population

update processes: a non-overlapping generations model

(Wright–Fisher) and a continuous-time process (Moran)

with either birth–death or death–birth updating [11,12].

(b) A two-allele model

We suppose that there are two alleles A and B assorting at a

fixed locus and let individual genotypic value be 1 for A and

0 for B. We let the genotypic value x of an individual X be

the frequency of A in its genotype. In order to counter the

effects of genetic drift towards homozygosity, we find it

convenient to make different assumptions in a finite and

infinite population. In the former, we assume that genetic

mutation acts from B to A at rate m and from A to B at

rate n, and in the latter, we use long-range migration and

send offspring to a ‘distant’ node at which it shares no

common ancestor with the local breeders. Ohtsuki [13]

formalizes this with ‘a node at infinity’. Thus, in our infinite

population model, we ignore genetic mutation, for which

the effects are typically orders of magnitude smaller than

those of migration. We let the allele frequency p be the aver-

age frequency of A, where in an infinite population, this

average is taken over space (over the whole population),

and in a finite population, it is taken over time (over all

states of the population as the frequency of A wanders

between 0 and 1). Then, in a neutral (no selection) finite

population, the allele frequency will be p ¼ m/(m þ n),

and in an infinite population model, it will be the allele

frequency of the long-range immigrants.

(c) Primary and secondary fitness effects

We assume that individuals engage in pairwise inter-

actions (for example, in the playing of a two-person

matrix game [10]) with behaviours or strategies deter-

mined by the alleles A and B. The primary fitness effect

w(x, y) on an individual X with genotype x whose partner

Y has genotype y, has four possible values (for x, y ¼

0, 1), which we denote as a, b, c and d so that

wðx; yÞ ¼ axyþ bxð1� yÞ þ cð1� xÞyþ dð1� xÞð1� yÞ
¼ d þ ðb� dÞxþ ðc� dÞyþ ðaþ d � b� cÞxy;

ð2:1Þ
Proc. R. Soc. B (2012)
where a, b, c and d are assumed to be small. This case has

been much studied in evolutionary game theory

[10,14,15] in which the interactants play a game with

pay-off matrix
a b

c d

� �
.

However, in a structured population, these primary

interactions will typically have ‘secondary’ fitness effects

[16,17]—we use the terminology of West & Gardner

[18], which must also be accounted for, and the overall

fitness effect on a focal individual X will combine the pri-

mary effects with the secondary effects from primary

interactions in the neighbourhood. All of these will have

the form of equation (2.1), with various genotypes in

the role of x and y, and coefficients a, b, c and d (or a

fixed multiple of these). For example, if Y interacts with

Z, obtaining a fecundity increase of w(y, z), and the

resulting increased competition for breeding spots

increases the mortality of X with probability r, the inter-

action has a secondary effect on X of –rw(y, z) and this

will be added to the fitness of X. In addition, in a hetero-

geneous population (with different types of nodes—for

example, graphs that are not regular, or nodes with differ-

ent offspring dispersal patterns), different terms will have

to be weighted by appropriate reproductive values (RVs).

When all such effects have been accounted for, the overall

fitness effect on X will be a linear combination of terms of

the form (2.1), and thus will have the form

WX ¼ f1aþ f2b� f3c� f4d; ð2:2Þ

where the fi are quadratic polynomials in breeder genoty-

pic values. Note that it is convenient for our purpose to

put a negative sign in front of the last two terms (which

represent pay-offs to players with allele B).

The primary fitness effect (2.1) is called ‘additive’

when a þ d ¼ b þ c and the synergistic xy term disap-

pears. In this case, the secondary fitness effects will

also be additive, and hence this will be the case for the

overall fitness effect WX in (2.2). The word ‘additive’

comes from the observation that when a þ d ¼ b þ c, it

is possible to assign a fitness effect to each of the two

alleles separately, so that the effect of the alleles acting

together will be the sum of the separate effects. This

relationship is more transparent with the use of the

matrix form found in equation (3.2).
(d) Allele frequency change

A general objective in evolutionary modelling is to get an

appropriate measure of the selective advantage of a particu-

lar allele. Here, we will take this to be the selective rate of

change in the frequency of A—that is, we ignore effects of

mutation, migration, random sampling, and so on. Our

basis for the calculation will be the classic formula of Price

[1], but we will work with that using an inclusive fitness

approach. Roughly speaking, the inclusive fitness effect

WIF of an allele A is (proportional to) the rate of increase

in the population-wide frequency of A. But it is important

to be precise about how the measurement is made.

First note that the rate of change of allele frequency

will depend on the configuration of the alleles A and B,

and we make an assumption that this is at long-term neu-

tral equilibrium. This refers to a steady probabilistic state

attained by the alleles at neutrality; that is, with allele

A having the same behaviour as B (a ¼ b ¼ c ¼ d).

http://rspb.royalsocietypublishing.org/
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We imagine that there is a switch governing the effect

of A. We begin with the switch off, and let the population

attain equilibrium, and then we turn it on, so that A has

an altered behaviour with a small fitness effect, and

measure the rate of allele frequency change. However,

we make this measurement in a different way in a finite

and infinite population. We will discuss both cases here,

but we provide only the infinite population equations,

leaving the rather more technical (but completely

analogous) finite population equations for the electronic

supplementary material, §D.

(e) An infinite population

Here, the long-range migration (and the infinite size) will

guarantee that at equilibrium every possible ‘local’ con-

figuration of alleles will be represented in the population

at the correct frequency. With the population at that equi-

librium, we turn the A switch on, and use Price’s [1]

formula to measure the selective rate of change of the

population-wide allele frequency:

d�x

dt
¼ covðx;WXÞ: ð2:3Þ

A more general version of Price’s equation has a

second term to account for non-selective forces of

change (such as mutation causing offspring genotype to

differ from parental genotype), but here we are measuring

only the changes due to selection. Equation (2.3) uses the

notation belonging to a continuous-time model such as a

Moran process. In discrete time models, in which the

derivative would be replaced by D�x, the change over a

single time step or generation, we must divide the right

side by average fitness, though we can avoid that by

normalizing so that mean fitness is one.

(f) A finite population

In this case, even at neutrality, random sampling will cause

the population allele frequency �x to drift and oscillate

between fixation and non-fixation states. Selection, of

course, can act only in the unfixed states and the covariance

in Price’s formula (2.3) will depend on the state. The con-

vention we adopt [19] is to let the overall allele frequency

change be the average of the state-dependent changes

given by equation (2.3), where different population states

are weighted by their long-term neutral frequency. The

resulting generalization of Price’s equation is formulated

in the electronic supplementary material.

(g) Inclusive fitness

The inclusive fitness effect of the allele A, as originally

defined by Hamilton [20], is formulated as follows. We

take a focal A individual in the population at neutral

equilibrium, and turn the A switch on. Then, we record

the changes in personal fitness experienced by all individ-

uals whose fitness is affected by the focal behaviour

(primarily or secondarily), and the inclusive fitness

effect of A is the sum of these, each such change weighted

by the relatedness of the focal individual to the

affected individual:

WIF ¼
X

i
RiDwi : ð2:4Þ

Typically, one of the summands is the focal individual

itself as its behaviour is expected to affect its own fitness,
Proc. R. Soc. B (2012)
and in this case, the relatedness to itself is, by definition,

R ¼ 1. We remark that in a heterogeneous population,

those fitnesses wi must incorporate RV. For example,

in the Moran model, fitness is the fecundity rate minus

the mortality rate, and while the mortality of X is always

weighted by the RV of X, in calculating the fecundity

of X, each offspring must be weighted by the RV belonging

to its destination node.

The Price equation appeared in 1970, though the

covariance form had already appeared in a paper by

Robertson [21], but it took some years after that for the

mathematical relationship between Hamilton’s inclusive

fitness and the Price equation to be properly formulated.

What the Price equation gives us is what Hamilton [22]

originally identified as ‘neighbour-modulated’ fitness,

and is usually now more simply referred to as personal fit-

ness. Unlike inclusive fitness, which takes a focal A actor

and tabulates the different effects of its behaviour on all

others, personal fitness takes a focal A recipient and tabu-

lates the different effects of the A behaviour in the

population on its fitness. A considerable body of work

[2,19,23–25,26] (and references in these) has established

that under quite general conditions, these ‘inverse’

approaches give us the same result and that the inclusive

fitness effect can be written as

WIF ¼
covðx;WXÞ
covðx; xÞ : ð2:5Þ

A comparison of (2.5) with (2.3) allows us to use WIF

as our measure of the selective advantage of A.

From equation (2.2), the inclusive fitness effect (2.5)

can be written as

WIF¼
covðx; f1Þ
covðx;xÞ aþ

covðx; f2Þ
covðx;xÞ b�covðx; f3Þ

covðx;xÞ c�covðx; f4Þ
covðx;xÞ d:

ð2:6Þ

Using the fact established earlier that the fi are quadra-

tic polynomials in breeder genotypic values, the quotients

of covariances will be linear expressions in terms such as

RX!Y ¼
covðx; yÞ
covðx; xÞ and RX!YZ ¼

covðx; yzÞ
covðx; xÞ : ð2:7Þ

The first of these is the standard coefficient of related-

ness of X to Y, and in a structured population, this can be

calculated by recursive techniques, which typically often

use the notions of genetic ‘identity by descent’ (IBD) or

‘identity in state’ (IIS). This coefficient is known to be

independent of p [2,19,23,26]. The second of these is a

‘generalized’ relatedness coefficient, which can also be

calculated by recursive techniques using the notions of

IBD or IIS, but the calculations are more complex (see

[27] and [13]) and the coefficients generally depend on

the population allele frequency p. However, we will use

the fact that RX!YZ is linear in p. The argument for this is

somewhat technical and is presented in the electronic sup-

plementary material, §A. The finite population analogues

of equations (2.5)–(2.7) are presented in the electronic

supplementary material, §D.

http://rspb.royalsocietypublishing.org/
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3. A FREQUENCY-DEPENDENT VERSION OF THE
RESULT OF TARNITA ET AL.
Our purpose here is to provide a frequency-dependent

version of a result of Tarnita et al. [8] for the selective

advantage of an allele A. Consider a haploid structured

population with two alleles A and B playing the matrix

game
a b

c d

� �
. Tarnita et al. [8] show that in a finite popu-

lation with a symmetric mutation rate and weak selection

(a, b, c and d small), there exists a parameter s dependent

on the population structure but independent of the pay-

offs a, b, c and d for which the condition that allele A

be selectively favoured over B can be written as

saþ b . cþ sd: ð3:1Þ

For our generalization of this result, we work with a

standard model for altruism [2] in which an ‘altruist’ X

gives benefit B to its partner Yat cost C, and gets a syner-

gistic bonus D if Y is also an altruist. The pay-off matrix

in this case is

a b

c d

� �
¼ B� C þD �C

B 0

� �
ð3:2Þ

and for the remainder of the paper this is the notation

we use. We note that our version of the matrix is actually

general, as we can subtract any constant from all entries of

the matrix
a b

c d

� �
without affecting the analysis (as this

gives the same fitness bonus to all players). With this

terminology, equation (3.1) can be written as

ðs� 1ÞB� ðsþ 1ÞC þ sD . 0: ð3:3Þ

Writing this in the abstract form bB 2 gC þ dD . 0, this

tells us that d ¼ (b þ g)/2, and hence equation (3.1) can

be written in the form

bB� gC þ bþ g

2

� �
D . 0: ð3:4Þ

This is a striking result, as it tells us that synergistic

interactions can be handled with additive models.

Indeed, the coefficients are independent of the pay-offs,

and hence b and g can be determined from an analysis

of the additive game
B� C �C

B 0

� �
and will therefore

only involve the standard relatedness coefficients RX!Y.

The result is also at first surprising, as it is known that

with synergistic interactions, the conditions for allele fre-

quency increase generally depend on allele frequency p

[2], but there is no frequency dependence in b or g and

hence there is none in equation (3.4). This confusion is

resolved with the realization that Tarnita et al. [8] work

with the standard finite population measure, described

earlier, which takes p to be the long-term average allele

frequency, and hence their assumption of a symmetric

mutation rate will set p to equal 1
2
, and their condition

cannot possibly be p-dependent.

Our main result is the following. Suppose that an infi-

nite or a finite structured haploid asexual population has

average allele frequency p, and has two alleles A and

B at a single locus playing the evolutionary game

B� C þD �C

B 0

� �
with weak selective effects (small
Proc. R. Soc. B (2012)
pay-offs). Then the inclusive fitness effect of A can be

written in the form

WIF ¼ bB� gC þ bþ g

2
þ p� 1

2

� �
a

� �
D; ð3:5Þ

where a, b and g are independent of both the matrix

pay-offs and the allele frequency p. As mentioned earlier,

if D ¼ 0, there are no synergistic effects and WIF involves

only the linear relatedness coefficients RX!Y, and the

coefficients b and g are linear combinations of these

coefficients. The coefficient a typically requires the calcu-

lation of the more complex higher-order coefficients

RX!YZ. The analysis leading to equation (3.5) is found

in the electronic supplementary material, §B.

There are a number of special cases of equation (3.5)

that are worth highlighting.

(a) Symmetric allele frequency

If the allele frequency p equals 1
2
, the a term in equation (3.5)

vanishes and we obtain equation (3.4). In an infinite popu-

lation, this occurs when long-range immigrants have allele

frequency 1
2
, and in a finite population, it occurs with sym-

metric mutation as assumed in [8]. In this case, even with

synergistic pay-offs (D = 0), the inclusive fitness effect

involves only the standard relatedness coefficients RX!Y.

(b) Small rates of long-range migration

or mutation

It turns out thatahas the same order as the rate of long-range

migration (infinite population) or the mutation rate (finite

population), so that if these are negligible, the a term can

be neglected, and equation (3.4) provides a good approxi-

mation to equation (3.5). The argument for this is found

in the electronic supplementary material, §C. The signifi-

cance of this for finite populations needs to be emphasized.

When mutation is rare, the simpler equation (3.4) can be

used, even without the assumption of symmetric mutation.

(c) Transitive population structures

The population is called transitive [28] if, given two nodes i

and j, there is a bijection of the node set that preserves the

edges and maps i to j. Roughly speaking, the population

‘looks the same’ from every node. Note that in preserving

the edges, the information they carry (interaction and dis-

persal probabilities) must also be preserved. Transitivity

allows us to get a good hold on the relationship between

the primary and the secondary fitness effects, giving us

special forms for the inclusive fitness effect in the additive

(D ¼ 0) case [12,16,17,28,29].

Consider a transitive population with either a Wright–

Fisher demography (non-overlapping generations) or a

Moran process with B–D updating (continuous reproduc-

tion). If the population is infinite, it turns out that the

inclusive fitness benefits of a primary fecundity gift to a

relative are exactly counterbalanced by the resulting com-

petitive effects of the offspring produced, and, as a result,

WIF is independent of B, and from equation (3.5), the

inclusive fitness effect will have the general form

WIF � �C þ 1

2
þ p� 1

2

� �
a

� �
D; ð3:6Þ

where we use ‘�’ to denote ‘up to a multiplicative

constant’.

http://rspb.royalsocietypublishing.org/
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If the population is finite of size n, the inclusive fitness

effect of an additive (D ¼ 0) primary interaction has

the form

WIF � �
B

n� 1
� C; ð3:7Þ

[12,17,28,29]. Combining this with equation (3.5) gives us

the general form

WIF � �
B

n� 1
� C þ n� 2

2ðn� 1Þ þ p� 1

2

� �
a

� �
D; ð3:8Þ

and, again, the a-term can be ignored if mutation is rare.

(d) No local secondary effects

Suppose that all secondary effects of a primary interaction

are experienced by individuals chosen at random from the

population. Such individuals, by definition, have zero

relatedness with the primary interactants, and in this

case w(x, y) in equation (2.1) provides the entire local fit-

ness effect of the interaction, and the inclusive fitness

effect can be written as

WIF ¼
covðx;wÞ
covðx; xÞ ¼ �C þ RX!YBþ RX!XYD: ð3:9Þ

A standard result is that RX!XY ¼ pþ ð1� pÞRX!Y. Its

derivation has appeared in a number of places [2,7,30]

and is provided at the end of the electronic supplementary

material, §A. With this, we have

WIF¼�CþRX!YBþðpþqRX!YÞD

¼�CþRX!YBþ 1þRX!Y

2
þ p�1

2

� �
(1�RX!Y)

� �
D:

ð3:10Þ

Equation (3.10) still displays frequency dependence,

but involves only the standard coefficients of relatedness.

It is also found in eqn (3.3) of a paper by Gardner

et al. [7].
4. TWO EXAMPLES OF AN INFINITE ISLAND MODEL
Our main focus here has been on the infinite population

case, and, without providing the calculations (which are

found elsewhere), we provide two examples of equation

(3.5) in an infinite structured population. The two

examples have a number of common features. Both are

set in an infinite island model with identical demes [9].

In both examples, individuals are haploid and asexual,

and we use a Moran process with a ‘birth–death’ protocol

[11]; thus, generations are overlapping and continuous,

and the time between successive offspring births for

each individual is exponentially distributed. Offspring

always replace an existing breeder in their native deme

with probability h, and in a distant deme with probability

1 – h. Primary interactants play the game with matrix

B� C þD �C

B 0

� �
and pay-offs provide a small fecund-

ity increment; that is, they affect the reproductive rate.

In each example, we will specify (i) the primary partners

for each player and (ii) the offspring dispersal

probabilities. Finally, both examples have a transitive

structure, and therefore we expect to obtain the form of

equation (3.6).
Proc. R. Soc. B (2012)
(a) Example 1. Infinite island model with random

mixing demes of size n

Breeders choose partners for the matrix game at random

from among their n 2 1 deme-mates. Offspring remain

on their home deme with probability h, and in that

case, they replace a random breeder on the deme includ-

ing the parent. Under these assumptions, we have:

WIF � �C þ 1

2
þ p� 1

2

� �
nð1� hÞ

nþ 2h� nh

� �� �
D: ð4:1Þ

This example has been studied by Ohtsuki [13], but with

a Wright–Fisher process (non-overlapping generations).

Note the factor of (1 2 h) in the (p 2 1
2
) term. This is

expected from our discussion above of small long-range

migration. If we let h approach 1, this rate approaches

zero and equation (4.1) is approximated by

WIF � �C þ 1

2
D: ð4:2Þ

Of course, in the limit, as h approaches 1, we might

expect each deme to behave as a randomly mixed finite

population of size n, and thus we might expect equation

(4.2) to hold approximately for such a population with a

small mutation rate; but it turns out that this is not the

case, a result that emphasizes a significant difference

between migration and mutation. In a transitive finite popu-

lation of size n, under a Moran process with birth–death

updating and small mutation rate, the inclusive fitness

effect is given by equation (3.8), and because the a term

is negligible, this is

WIF � �
B

n� 1
� C þ n� 2

2ðn� 1ÞD; ð4:3Þ

and is different from equation (4.2)—though, as we might

expect, they converge as n gets large.
(b) Example 2. Island model with structured demes

of size 4

The population consists of an infinite number of demes of

size 4, each consisting of two dyadic patches. Primary

interactions are between patchmates, and thus each bree-

der has only one partner. Offspring who stay on their

home deme (probability h) displace the parent’s patch-

mate (but not the parent itself) with probability 1
2

and

displace each breeder in the opposite patch with prob-

ability 1
4

(figure 1). Under these assumptions, we have

WIF �� 2ð2þ hÞCþ
�
ð2þ hÞ

þ p� 1

2

� �
ð1� hÞð12þ 2hþ h2Þ

3� h

�
D: ð4:4Þ

Again, there are three things to note. First, equation

(4.4) has the form of equation (3.5); second, the popu-

lation structure is homogeneous, and thus it even has

the form of equation (3.6); and third, the (p 2 1
2
) term

is of order 1 2 h and can be ignored when the migration

rate is small. We do not include here the calculations

behind equation (4.4); it is provided for illustrative

purposes only.
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Figure 1. Structured deme with n ¼ 4 breeders.
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Figure 2. The hawk–dove game in Wright’s island model
with unstructured demes of size n. The diagram depicts the
nature of the stable equilibrium for three values of n in

terms of the prize/penalty ratio v/k and the probability h
that offspring stay on their native deme.
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5. APPLICATION TO THE HAWK–DOVE GAME
In evolutionary game theory, the hawk–dove game is one

of the earliest examples [10,31,32]. It is a good choice for

this paper, as it is familiar and, for a range of parameters,

has a stable polymorphic equilibrium.

The matrix for the hawk–dove game (note that dove is

row 1, and hawk is row 2) is

v

2
0

v
v� k

2

2
64

3
75 � k k� v

kþ v 0

� �
: ð5:1Þ

The matrix on the left is the standard one in use. Here, v

is the prize and k is the amount by which a fight over the

prize reduces its value. Doves will not fight, and when two

doves encounter the prize, they split it. Two hawks will

fight over it and then split the remains. In a hawk–dove

encounter, the hawk simply takes the prize at no cost.

The matrix on the right puts the original matrix in the

form
B� C þD �C

B 0

� �
by subtracting (v 2 k)/2 and,

for convenience, multiplying by 2. We have C ¼ v 2 k,

B ¼ v þ k and D ¼ 2k.

Note that if all offspring were to migrate a long dis-

tance, we would essentially have a random mixing

population and the game pay-offs would provide total fit-

ness (no secondary effects). In this case, it is clear from

the matrix in (5.1) that hawk behaviour would invade a

pure dove population and, for k . v, dove behaviour

would invade a pure hawk population. As a result, for

k . v, we expect a stable intermediate equilibrium.

To calculate this equilibrium, we let A play dove and B

play hawk, and then WA will exceed WB when pk þ
(1 2 p)(k 2 v) . p(k þ v), and this simplifies to give

p , 1� v

k
: ð5:2Þ

As predicted, if there are no secondary effects, a stable

intermediate equilibrium requires k . v and is given by

p* ¼ 1 2 v/k [10,32].

Now we set the game into the structured populations

of examples 1 and 2. In example 1, we set WIF . 0 in

equation (4.1) with C ¼ v 2 k and D ¼ 2k. When this

is rearranged, we get the condition that WI be positive

and that the dove frequency p increase to be

p ,
1

2
� v

k

� �
nþ 2h� nh

nð1� hÞ

� �
þ 1

2
: ð5:3Þ
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In condition (5.3), when the r.h.s. is greater than 1,

p ¼ 1 is a stable equilibrium, and when the r.h.s. is less

than 0, p ¼0 is a stable equilibrium. These conditions

are illustrated in figure 2. When the r.h.s. of condition

(5.3) is between 0 and 1, it will give us p*, the allele

frequency at a stable polymorphism.

Now look at the two-patch island model of

example 2. We set WIF . 0 in condition (4.4) with C ¼

v 2 k and D ¼ 2k, and rearrange to get that A increases

in frequency when

p ,
1

2
� v

k

� �
2ð2þ hÞð3� hÞ

ð1� hÞð12þ 2hþ h2Þ

� �
þ 1

2
: ð5:4Þ

Again, when the r.h.s. of condition (5.4) exceeds 1, p

increases to 1, and when it is less than 0, p decreases

to 0, as illustrated in figure 3. When the r.h.s. of condition

(5.4) is between 0 and 1, it will give us p*, the allele fre-

quency at a stable polymorphism. Note that this

expression for p* is linear in v/k and this allows us to

obtain the value of p* at any point in figure 3 with

a linear interpolation between the p* ¼ 0 and p* ¼ 1

boundaries. The same remark applies, by the way, in

example 1 (condition (5.3)).
6. DISCUSSION
A genetical model of behaviour is additive when the

fitness of a focal individual depends linearly on the geno-

typic values of a number of neighbouring individuals.

Linear models were typically used in the theoretical devel-

opment of kin selection, partly because the linearity of the

equations allows for simple calculations.

It is worth mentioning the special case in which the

dependence of focal fitness on genotype is mediated by

behaviour (phenotype) and genetic effects on behaviour

are small. In that case, even if the dependence of focal fit-

ness on phenotype is complex, fitness will still depend

additively on genotype to first order in the behavioural

http://rspb.royalsocietypublishing.org/
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Figure 3. The hawk–dove game in an infinite island model

with demes of size 4 structured as two dyadic patches. The dia-
gram depicts the nature of the stable equilibrium in terms of the
prize/penalty ratio v/k and the probability h that offspring stay
on their native deme. The vertical line illustrates that when
there is a stable mixed equilibrium p*, its value in terms of

the ratio v/k can be obtained with a linear interpolation between
the p* ¼ 0 and the p* ¼ 1 boundaries.
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effects. Indeed, if breeder X with genotype x and pheno-

type hX ¼ h0 þ 1x interacts with breeder Y, the fitness

effect will have the form

w ¼ 1
@w

@hX

xþ @w

@hY

y

� �
þ oð12Þ

and to first order in1 this is linear in the genotypic values [33].

However, there are good reasons for extending our

analytical reach to interactions with nonlinear fitness

effects and the most active such area is found in the

study of non-additive evolutionary games. This theory

had its start in the early days of hawk–dove and prisoner’s

dilemma. More recently, in the field of ‘evolutionary

game theory’, games are typically played on graphs, and

the results emerge from the interplay between the struc-

ture of the game matrix and the structure of the graph.

A significant feature of non-additive fitness effects is

the frequency dependence of the results [2,30]. When

focal fitness depends linearly on genotypic value, then,

even though individual fitness depends on the allele fre-

quency among interactants, the population-wide success

of an allele (i.e. its rate of frequency change) will be inde-

pendent of population-wide allele frequency. To get a

dependence on allele frequency, we need non-additive

genotypic fitness effects, and this is well illustrated by

the dependence of the a term on p in equation (3.5).

The early work on these games [2,32] was set in

unstructured (‘open’) population models and took

account only of primary interactions, and as we have

seen, the analysis in that case involves only linear methods

even though the conditions we obtain (equation (3.10))

are frequency-dependent.

We have suggested that the calculations involved in the

analysis of non-additive fitness effects are more complex

than those for additive effects. It might be better to say
Proc. R. Soc. B (2012)
that they are more difficult to execute. For example,

non-additive games belong to the former case and require

the calculation of covariances of the form cov(x, yz),

whereas additive games only feature cov(x, y). In fact,

the same basic recursive approach is used in both cases.

For example, if we use a standard pedigree analysis to cal-

culate cov(x, y), we use a recursive argument to obtain

the probability that breeders X and Y are ‘IBD’ (i.e. are

derived from a common ancestor). If they are, they

are both A with probability p and are otherwise both B;

if they are not, they are independent and therefore have

covariance zero. In the parallel calculation of cov(x, yz),

we have three interacting individuals, and there are several

cases (all three IBD, X and Y IBD but not Z, Y and Z

IBD but not X, etc.). A recursive argument is still used,

but it requires the solution of a system of equations.

Thinking in terms of the hawk–dove game, the results of

Tarnita et al. [8] come at first as a surprise in that they tell us

that the success of either strategy is frequency-independent.

Of course when we look carefully at what they have shown,

we see that the measure they adopt of the selective advan-

tage of an allele is its long-term average rate of increase in

frequency, and it thus represents an average over all frequen-

cies. What is in fact interesting and unexpected in these

results is that the average rate of increase of either allele

has a particularly simple and elegant mathematical form

(seen in equation (3.4)), which, in an inclusive fitness

analysis, can be calculated in terms of standard linear relat-

edness coefficients. It is also interesting that the finite

population result of Tarnita et al. [8] extends readily to

asymmetric mutation rates provided these rates are small.

Our work here uses an inclusive fitness approach to

extend this analysis to population models with a fixed but

arbitrary equilibrium allele frequency p. The interesting

conclusion we obtain is that our result (equation (3.5))

continues to display the Tarnita et al. [8] form (their

eqn (2.7), our equation (3.4)), but includes a frequency-

dependent term, and of course obtains exactly their form

for the symmetric allele frequency p ¼ 1
2
.
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ESM-A  The linearity of YZXR  7 

We begin in an infinite population and show that the relatedness coefficient 
),cov(

),cov(
YZX

xx

yzx
R   8 

is linear in the overall population allele frequency p.  There are a number of ways to do this but 9 

here we make use of the concept of identity by descent (IBD).  We say that two genes are IBD if 10 

they have a common ancestor where we make the assumption that a gene that migrates a long 11 

distance will never meet a common ancestor.  We begin with the numerator of YZXR .  Write   12 

cov(x, yz)  =  E(xyz) – E(x)E(yz).         (A1) 13 

The first term E(xyz) is simply the probability that X, Y and Z are all A and this will be  14 

 p if all three individuals are IBD at the locus in question,  15 

 p
2
 if only two of the three are IBD, and  16 

 p
3
 if none of the three are IBD 17 

Thus E(xyz) is a linear combination of p, p
2
 and p

3
 so is a polynomial of degree at most 3 (and at 18 

least 1).  By a similar argument, E(xy) is a polynomial of degree 1 or 2, and since E(x) = p, cov(x, 19 

yz) is a polynomial of degree 2 or 3.  Note now that if p = 0 or 1, cov(x, yz) will equal zero, and 20 

thus cov(x, yz) must be divisible by p(1–p).  It follows that cov(x, yz) has the form p(1–p)(s+rp) 21 

for parameters s and r that are independent of p.  Finally, cov(x, x) = var(x) = p(1–p) in a haploid 22 

population, so that the quotient YZXR  must have the form s+rp.   23 

An interesting simple example of this is found in an infinite population, when one of Y and Z is 24 

actually X.  We have: 25 

)(E)(E)(E)cov( 2 xyxyxx,xy   )(E)(E)(E xyxxy   26 

)(E)1( xyp  )],cov()(E)(E)[(1 yxyxp   27 

])1()[(1 YX
2

 Rpppp  ])1()[(1 YX Rpppp  28 

Hence:  YXXYX )1(
),cov(

),cov(
  Rpp

xx

xyx
R . 29 

 30 

The argument in a finite population is parallel but technically more complex and a comment on 31 

this is found at the end of ESM-D.32 



 2 

ESM-B.  A variant of the argument of Tarnita et al (2009). 1 

Here we use an inclusive-fitness framework to import the elegant argument of Tarnita et al (2009) 2 

into an infinite population with long-range migration at a particular allele frequency p. 3 

 4 

Tarnita et al (2009) begin by showing that the condition for allele A to be favoured over B has the 5 

form 6 

k1a + k2b  >  k3c + k4d         (B1) 7 

where the ki are independent of the payoffs but do depend on the population structure, the update 8 

rule (how old breeders are replaced by new), the mutation rate and the population size.  Our 9 

analogue of eq. (B1) comes by writing eq. (6) for the inclusive-fitness effect of A in the form: 10 

WIF-A  =  k1(p)a + k2(p)b – k3(p)c – k4(p)d      (B2) 11 

Unlike Tarnita et al (2009), we need to explicitly display the dependence of the ki on the 12 

equilibrium allele frequency p, but we emphasize that they are independent of the payoffs, as the 13 

covariances in eq. (6) are calculated in the neutral population (Taylor et. al 2007a).  The same is 14 

true of other aspects of the Tarnita et al (2009) argument that depend on the A-B symmetry, and 15 

essentially for the same reason, that the components of the inclusive fitness effect are covariances 16 

and they are calculated in the neutral population in which A and B have the same effect.   17 

 18 

Following the Tarnita et al (2009) argument, we observe that the inclusive-fitness effect of B 19 

must be the analogue of (B2) with the payoffs suitably permuted and p replaced by q = 1–p: 20 

WIF-B  =  k1(q)d + k2(q)c – k3(q)b – k4(q)a 21 

 =  –k4(q)a – k3(q)b + k2(q)c  + k1(q)d      (B3) 22 

Since the inclusive-fitness effect of an allele is proportional to its initial (when the switch is 23 

turned on) rate of increase in frequency (Taylor et. al 2007a, eq. 3.6): 24 

WIF-B  = –λ WIF-A  25 

for some λ > 0, and hence, from (B2) and (B3): 26 

k4(q) = λk1(p),  k3(q) = λk2(p),  k2(q) = λk3(p)  and  k1(q) = λk4(p). 27 

Thus 28 

k4(q) = λk1(p) = λ
2
k4(q). 29 

It follows that λ
2
 = 1, and since λ > 0, λ = 1.  Thus 30 

k4(q) = k1(p)   and   k3(q) = k2(p) 31 

and eq. (B2) can be written: 32 

WIF-A  =  k1(p)a + k2(p)b – k2(q)c – k1(q)d.      (B4) 33 
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 1 

Now using the payoff matrix: 






 










0B

CDCB

dc

ba
 (B4) becomes: 2 

WIF-A  =  [k1(p) – k2(q)]B – [k1(p) + k2(p)]C + k1(p)D      (B5) 3 

Using the fact that in the absence of synergy (D=0), WIF involves only the standard relatedness 4 

coefficients YXR  (Queller 1985), we write eq. (B5) as 5 

WIF-A  =  βB – γC + k1(p)D        (B6) 6 

where β and γ are independent of p.  A comparison of eqs. (B5) and (B6) allows us to write:  7 

2

)()(

2
)( 22

1

pkqk
pk








.        (B7) 8 

The last term on the right is linear in p (ESM-A) and is zero when p = ½, and so it must have the 9 

form (p – ½)α where α is independent of p and this gives us the form of eq. (12).   10 

 11 

 12 

ESM-C.  The p – ½ term in eq. (12) is first order in the long-term migration rate.  13 

To make this argument, we refer to a couple of equations in ESM-B.  Note that the off-diagonal 14 

entries b and c in the payoff matrix 








dc

ba
 can contribute to an individual’s fitness only when 15 

both alleles are present in the focal neighbourhood.  When long-range migration is rare, local 16 

neighbourhoods will tend towards homozygosity, and must await a migration event for 17 

heterozygosity to be restored.  It follows from eq. (B2) that the coefficients k2(p) and k3(p) of b 18 

and c will be (at least) first order in the long-range migration rate.  It then follows from eq. (B7) 19 

that this will be the case for the difference between k1(p) and (β+γ)/2, and hence from eq. (B5) it 20 

will also hold for α.    21 

 22 

We remark that this argument can be just as easily made for a finite population.  In this case, for 23 

the entries b and c to appear in the calculation both alleles must be present in the population and 24 

as a mutation is necessary to free the population from fixation, the relative amount of time the 25 

population will be unfixed, and hence the coefficients b and c, will be first order in the mutation 26 

rate.   27 

28 
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ESM-D.  Allele-frequency change in a finite population.   1 

By the state of the population, we will mean the specification of the A-B configuration among the 2 

nodes, with isomorphic configurations generally identified.  A finite population does not have an 3 

equilibrium state in the same way as an infinite population and, certainly when the population is 4 

small, random sampling of genes will cause the population allele frequency x  to drift and 5 

fixation will inevitably occur.  At this point we need mutation to unfix the population and restart 6 

what becomes a continual drift-fixation-mutation cycle.  Selection, of course, can only act in the 7 

unfixed states and Price’s (1970) equation (3) will then give the selective component of allele-8 

frequency change.  But of course what it gives us will depend very much on the state of the 9 

population.   10 

 11 

Our measure of overall allele-frequency change will be an average of the change given by eq. (3) 12 

where each population state is weighted by its long-term average neutral frequency of occurrence.  13 

(Rousset and Billiard 2000, Taylor et. al. 2007a).  We write this as: 14 

 ),cov(E
d

)dE(
E XWx

t

x









        (D1) 15 

Here we use round brackets to signal a within-state calculation, and square brackets for a 16 

calculation over all states with their long-term frequencies (Taylor et al (2007a).  Thus the 17 

covariance on the right is calculated in each population state and the expectation is taken over all 18 

states with their long-term frequency.  The inclusive fitness effect is still given as 19 

 
i ii wRIFW (eq. 4) but the relatedness and the fitness effects become long-term averages 20 

over all states.  This leads to the following formula: 21 

 
 ),cov(E

),cov(E
W X

IF
xx

Wx
          (D2) 22 

which is the finite-population analogue of eq. (5) and the corresponding coefficients of 23 

relatedness are the analogue of eq. (7): 24 

 
 ),cov(E

),cov(E
YX

xx

yx
R  ,  

 
 ),cov(E

),cov(E
YZX

xx

yzx
R  .     (D3) 25 

To work with  ),cov(E x  we use the covariance decomposition theorem over all states (Ross 26 

1998):   )]E(),E(cov[),cov(E],cov[  xxx , as it is ],cov[   to which the IBD argument 27 

of ESM-A can be applied.  See Taylor et al (2007a) for technical details. 28 

 29 

Ross, S.M. 1998. A First Course in Probability, Fifth ed. Prentice-Hall Inc, Englewood Cliffs, NJ. 30 
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