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Spatial structure has been shown to promote altruistic behavior, however, it also increases the intensity of competition among

relatives. Our purpose here is to develop a model in which this competition is minimized, more precisely a local increase in fecundity

has a minimal competitive effect on the fitness of nearby individuals. We work with an island model in which sites are allowed to

be empty, choosing our demographic rules so that in patches with higher fecundity, empty sites are filled at a higher rate. We also

allow dispersal rates to evolve in response to the proportion of empty sites in the patch. Patches with different numbers of empty

sites differ in frequency, in within-patch consanguinity, and in reproductive value. Using an inclusive fitness argument, we show

that our model does promote altruism; indeed Hamilton’s Rule is shown to hold. The only negative effect on an actor of a gift of

fecundity to a patchmate turns out to be a slight decrease in reproductive value due to an increased probability of an empty site

being occupied. We show that altruists are most favored in islands with an intermediate number of empty sites.
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Indiscriminate altruism is a fascinating phenomenon from an evo-

lutionary point of view because it seems extraordinarily fragile. If

an altruist provides a benefit b to a neighbor at a cost c, it is diffi-

cult to see how such an individual could survive among cheaters

who accept the gift without cooperating. Hamilton (1964) pro-

vided an elegant solution to this dilemma by showing that when

two individuals are related, it can be in the interest of an altruist

to help its kin.

An easy way to introduce systematic variation in relatedness

is to work with spatially structured populations. The idea is that

if reproduction is mostly local, a focal individual is more likely to

be related to individuals that are next to him. Local interactions

and local reproduction increase the relatedness among interacting

individuals and thereby increase the chance for an altruist to inter-

act with another altruist (if the trait is heritable). Altruists can thus

survive in a population of cheaters by creating clusters in which

most interactions are between altruists, a fundamental idea that

arguably dates from Wilson (1975).

However, local interactions and reproduction can also inhibit

altruism because helping a neighbor can increase the strength of

local competition. Hamilton (1964) already noticed that the neg-

ative effect of increased competition could decrease, and even

cancel, the advantage of altruism. It is now well understood that

this is a standard feature of spatially structured models (Taylor

1992a; West et al. 2002).

Our objective in this article is to attempt to understand better

what aspects of population structure or demography can mini-

mize or even eliminate these local competitive effects and thereby

promote altruistic behavior. In a sense, we are interested in the

question of what needs hold so that the simple classic condition

Rb > c, where R is the relatedness between the two interacting

individuals, completely describes the selective effects of the al-

truistic act. As a first cut, this question is tackled as follows. We

need a tendency for offspring to stay localized (to keep local re-

latedness high) without creating increased local mortality. We can

imagine two ways this might be arranged. The first is to allow
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local expansion or elasticity (Hamilton 1971), and the second is

to impose regulation at the global level. In a population of con-

stant size these must in fact be two sides of the same coin, as a

local expansion in numbers must be paid for by increased mortal-

ity somewhere else. The only way around this might be to have

fluctuating resources or selection pressures so that periods of pop-

ulation increase and decrease might alternate. In this case altruism

might well be selected during periods of increase, although the op-

posite might hold during decrease (but the first might win over the

second: Uyenoyama 1979). In any event, in a population of con-

stant size, we would need reproduction to be local and population

regulation to be global, or more precisely, we need the first to be

more local than the second.

Ours is not the first study that introduces empty sites to re-

duce local competition and favor altruism. Grafen (2007) and

Killingback et al. (2006) work with a model that allows patch sizes

to increase according to average patch fecundity with global regu-

lation of patch size. Lehmann et al. (2006) developed an analytical

model with spatial structure to study the evolution of helping be-

havior. Finally, in ecology, several models have studied the effect

of the elasticity of the population on altruism (for a review, see

Lion and van Baalen 2007b). In the Model section, we highlight

the difference between this model and these previous models. We

also do a more general discussion in the last section.

We work here with a patch-structured model that allows

empty sites. The basic idea is that the empty sites should pro-

vide “free space” so that a breeder with increased fecundity will

have space for her offspring without disadvantaging a neighbor.

But care must be taken here; different assumptions on the effect

of empty sites on the fecundity of breeders will have different ef-

fects, and some of these will reduce local competition and some

will not. We look at this question more closely in the Discussion.

Our model uses an inclusive fitness argument to study the

fitness of an altruist emerging in a population of cheaters. For the

sake of simplicity, individuals are assumed to reproduce asexually

and the population is assumed to be infinite. The originality of

our study lies in the combination of three points: (1) the strong

Figure 1. Transitions between types of patches. Each patch has the same number of sites (here n = 4) that can be full (in gray) or empty

(in white). Bottom arrows indicate that a site becomes vacant following the death of a breeder (which occurs with probability k). Middle

arrows indicate that a site gets filled through local reproduction of one of the individuals in the patch (the birth rate is density dependent).

Top arrows indicate that a site gets filled by an immigrant offspring, coming from another patch (at a rate that depends on the immigrant

pressure S defined in equation A.2). For further details, see the Appendix.

analytical basis that allows us to obtain a simple expression for

the inclusive fitness of an altruist, (2) the identification of the

underlying processes, particularly the fact that we keep track of

the number of empty sites, and (3) the fact that we allow dispersal

rates to depend on the patch type.

Model and Results
We develop an infinite island model similar to that of Cadet et al.

(2003) (Fig. 1). The population is structured into patches with n

sites, each site occupied by a single breeder or empty. A patch

of type i (0 ≤ i ≤ n) has i sites occupied and we let pi be the

proportion of type i patches in the population and denote by

xi = i/n the proportion of full sites in the patch (all the notations

used are summarized in Table 1).

We use a Moran model (Moran 1962) to provide a continuous-

time population dynamic. We suppose that each breeder in a type-i

patch produces offspring at rate 1, sending each offspring to a

random patch with probability mi and keeping it to compete at

home with probability hi = 1 − mi. We assume that at each patch,

native and immigrant offspring compete for the empty sites on an

equal basis and each empty site is filled at a rate proportional to the

total “pressure” exerted by both kinds of offspring. More precisely,

we assume that each offspring, native or immigrant, fills each

empty site in the patch (at which it is competing for a site) at rate

1/n. It is important to note the significance of this assumption—

it implies that the more offspring there are in competition at a

particular patch, the higher will be the patch growth rate, that is,

the rate at which any empty site is filled. In addition, each breeder

dies at rate k. Note that contrary to Cadet et al. (2003) we do not

follow explicitly the density variations in the pool of offspring

competing at each patch; those who do not obtain a breeding site

are simply assumed to die.

Recent Moran models have been classified into a number

of types, two of which are BD and DB (Lieberman et al. 2005;

Taylor et al. 2007). Both of these are fecundity-based models in

that relative fecundity determines competitive success in offspring
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Table 1. Symbols and notation used. The second column indicates

the default value of constant parameters.

Notation Value Description

R — Relatedness
b — Fecundity benefit conferred by an altruist
c — Cost of conferring benefit b
i — Number of full sites in a patch
n 10 Total number of sites per patch
xi — = i/n, Proportion of full sites in a type-i

patch
mi — Fraction of the offspring that disperse in a

type-i patch
hi — = 1 − mi, Fraction of the offspring that

stay in a type-i patch
S — Rate at which an empty site is filled by an

immigrant
k 0.5 Uniform death rate of breeders
pi — Equilibrium proportion of type-i patches

in the population
vi — Reproductive value of an individual in a

type-i patch
Gi — Consanguinity between patchmates in a

patch of type i

recruitment. In BD models, patch birth rates (effectively, offspring

occupancy rates) increase with average patch fecundity and also,

therefore, do death rates. In DB models, death rates, and there-

fore patch-wide birth rates, are constant, and individual birth rate

depends on relative fecundity within the patch. By this classifi-

cation, our model incorporates features of both kinds—our patch

birth rate increases with average patch fecundity, and our death

rate is constant.

DISPERSAL

One other notable feature of our model needs emphasis. Contrary

to previous patch-structured models (Lehman et al. 2006; Grafen

2007), we do not fix patch dispersal rate mi at an arbitrary value,

but assume that it is determined by evolutionary dynamics, that

is, we set the mi at their ESS values (see the Appendix for further

details). Our intuition predicts that patches with many empty sites

(small i) should have low dispersal rates, as there are good repro-

ductive opportunities at home, and patches with few empty sites

(large i) should have high dispersal rates. This turns out to be the

case (Fig. 2D); indeed we find a “bang-bang” strategy—there is

a transitional value i0 below which mi is 0 and above which mi is

1. In the cases we have made calculations for, i0 turns out to be

close to n/2. Note that this differs from the assumptions of Cadet

et al. (2003) where mn is taken to be 1 and all other mi are set at a

common smaller value that is allowed to evolve to a stable value.

We remark that in standard island models in which there

are no empty sites, all offspring will be selected to disperse un-

less there is a cost to dispersal (Hamilton and May 1977; Taylor

1988). In our model we assume no physiological, proximate cost

of dispersal (although other costs may emerge); nevertheless dis-

persal is favored for high-density patches precisely because of the

variation in patch density.

Figure 2A shows the distribution of patch type proportions

pi, when values of mi are at equilibrium (see below) for the case

in which there are n = 10 sites per patch. With the demographic

settings described above, we find that patches with high or low

local densities are rare and that most patches have intermediate

densities.

REPRODUCTIVE VALUE

In our model, breeders in patches with different density have dif-

ferent reproductive value and this must be taken into account both

in the calculation of the ESS dispersal rate and, more significantly,

in the calculation of the inclusive fitness effect of any interaction

between breeders (Taylor 1990). For example, an interaction that

changes the fecundity of one breeder will affect the rate at which

the patch moves to a higher i value and will therefore affect the

reproductive value of all breeders in the patch. We let vi be the

reproductive value of a patch i breeder. These values are shown

in Figure 2B for the case where n = 10. Note that reproductive

value decreases rapidly when within-patch density increases.

RELATEDNESS

Because we work with an infinite population, the relatedness be-

tween two breeders from different patches is zero. We let Gi denote

the coefficient of consanguinity between two (different) random

breeders in the same i-patch, and these are plotted against i in

Figure 2C for n = 10. These are seen to decrease with patch den-

sity, although it is interesting to note that if the dispersal rates mi

are set to be the same in all patches, independent of i, then the Gi

are also independent of i. An interesting feature of Figure 2C is the

relatively slow linear decline of relatedness until i = 6 followed

by a relatively large drop from i = 6 to i = 7. The reason is that

because patches of size i ≤ 5 keep all their offspring at home (and

also receive immigrants, they have a high growth rate and patches

of size i ≤ 6 are often formed from those with one less breeder.

Suddenly at i = 7 this ceases to be the case, as patches of size

i ≥ 6 disperse all their offspring. Another consequence of this

is the sudden drop in patch type frequency from i = 6 to i = 7

illustrated in Figure 2A, as a 6-patch can become a 7-patch only

when an immigrant offspring colonizes an empty site.

Equations and calculations for the pi, Gi, and vi are given in

the Appendix.

INCLUSIVE FITNESS

We suppose a rare altruist confers a benefit b on one of its patch-

mates at a cost c, and we use an inclusive fitness argument to find
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Figure 2. Equilibrium values of patch type frequency (A), reproductive rate (B), consanguinity (C), dispersal rate (D) and inclusive fitness

(E). Figures A, B and C are obtained following the calculations described in Appendix A. Figure D shows the evolutionary stable dispersal

rate for each patch type. Figure E shows the c/b ratio that allows an altruistic mutant to invade. The horizontal lines indicate the average

value in the whole population. Parameter values are: n = 10 and k = 0.5.

the condition for this behavior to invade the population. We expect

the condition to depend on the patch type i.

Note that we implicitly assume that the evolution of dispersal

strategies takes place on a faster time scale than the evolution of

cooperation, and we thereby set the mi at their evolutionary equi-

librium before studying the inclusive fitness. This makes sense

considering the fact that dispersal behavior is often a plastic re-

sponse to changes in local densities, as shown from unicellulars
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to Vertebrates (Bernstein 1984; Fonseca and Hart 1996; Lambin

et al. 2001; Matthysen 2005; Hauzy et al. 2007). In the case there

are n = 10 sites per patch, we find that mi = 0 for i ≤ 5 and

mi = 1 for i > 5.

An extra offspring produced in an i-patch translates into an

extra breeder at home at rate hi (1 − xi), and in a foreign patch

at rate mi
∑n−1

j=0 (1 − x j )p j . The total fitness effect through this

offspring is then:

hi (1 − xi )vi+1 + mi

n−1∑
j=0

(1 − x j )p jv j+1 (1)

Now suppose a focal individual in patch type i gives b to a

patchmate at cost c. The change Wi in her inclusive fitness is the

sum of two terms—the RV of the extra offspring resulting from

the interaction, and the change in RV of other breeders in the patch

due to the extra rate of increase in patch type from i to i + 1 (Taylor

1988; Rousset and Ronce 2004):

Wi = (bGi − c)

[
hi (1 − xi )vi+1 + mi

n−1∑
j=0

(1 − x j )p jv j+1

]

+ (b − c)(1 + (i − 1)Gi )hi (1 − xi )(vi+1 − vi ) (2)

Here, bGi − c is the sum of the extra offspring produced,

weighted by their relatedness to the focal, and these are multi-

plied by the rate at which they will obtain breeding sites (eq. 1).

The second term is the product of the total number of offspring

b − c, the relatedness of the focal individual to the patch as a

whole, the rate at which each of these extra offspring obtains a

local breeding site, and the resulting change in RV. Note that this

second term is the only effect on others in the patch (other than

donor and recipient) and this shows that the model has effec-

tively removed the local competitive effects of benefits given to

patchmates.

For small b and c, the invasion condition for the altruistic

behavior is Wi > 0, that the inclusive fitness be positive (Taylor

1988). Note that when hi = 0 (all offspring disperse), as is the case

for i ≥ 6, the second term of equation (2) is zero, and the invasion

condition is simply bGi − c > 0. Note how this is reflected in a

comparison of Figure 2C and 2E—the last five points in the two

graphs coincide.

Figure 2E shows that the highest critical c/b ratio is ob-

tained in a patch of type i = 6, the first patch in which mi shifts

from 0 to 1. A couple of factors contribute to this. First there

is the sharp drop in relatedness from i = 6 to i = 7 (Fig. 2C)

discussed above, and second because any new offspring in a

6-patch will disperse, the altruist does not pay the cost of a de-

creased RV due to an increase in the rate of growth from i = 6 to

i = 7.

Discussion
William Hamilton’s groundbreaking (1964) paper gave the world

the classic formula

Rb > c (3)

for the selective advantage of altruism in a population. Here, b

is the benefit given to a neighbor with relatedness R at cost c

to the altruist. Hamilton was clear that for this formula to apply,

both b and c must measure ultimate fitness effects, for example,

the number of adult offspring of an individual. Of course this is

rarely the case—it has been understood for a long time that such

an exchange of fitness, from donor to recipient, will generally

have fitness effects on others in the population, for example, those

provided by the competitive effects created or removed by changes

in local density. For example, in an island model such as the one

studied here, an extra unit of fecundity given to a patchmate will

compete with the donor’s offspring and indeed with the recipient’s

offspring, whenever there are constraints on the total reproductive

output of the patch. In such cases, Hamilton’s Rule requires a more

general “inclusive fitness” formulation∑
i

Ri Bi > C0, (4)

where C0 is the ultimate fitness cost to the focal individual, Bi is the

ultimate fitness benefit to individual i, and Ri is the relatedness of

the focal to individual i. These ultimate fitness effects can often be

hard to measure and require precise knowledge of the population

structure and the interaction of its components. Since the time

of Hamilton’s original paper, a large literature has established

that, under simple general conditions, mainly weak selection and

additive gene action, condition (4) is the precise condition for the

altruistic allele to increase in frequency.

However it is of interest to ask under what circumstances the

more direct formulation (3) might provide the correct condition.

Suppose that b and c are measured in immediate terms such as

fecundity or survival—when will (3) give us an accurate measure

of the ultimate effects? If you like, when is condition (3) equivalent

to condition (4)? For example, this can be the case in a panmictic

population, with interactions between “neighbors” when b and c

measure immediate fecundity effects and population regulation

(mortality) is global. But what other general demographies will

provide this equivalence? This is one of the questions we are

interested in here.

In terms of the selective effects of an altruistic act, Hamilton

realized already in 1964 that the negative effects of competition

can work against the positive effects of genetic similarity. For pop-

ulations that are subdivided into “standard-sized batches,” each of

which is allotted a “standard-sized pool of reproductive potential,”

the progress of an altruistic gene will be slowed. He credited the
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original observation of this phenomenon to an earlier study of

Haldane (1922) on sib competition. Hamilton returns to this idea

in 1971 with the observation that “the most ‘system-like’ version

of an ‘isolation-by-distance’ model, which is supposed to pre-

clude long-range migration and elastic expansion from vigorous

areas, is rather hostile to altruism.” Here Hamilton is describing

island-like models of various kinds and he identifies two factors

that ought to reduce the competitive effects of a gift of fitness: the

first is that the resulting extra offspring will disperse so that they

have little chance of meeting a relative, and the second is that there

is some opportunity for the patch to “expand” thus moderating the

competitive effects. These two factors can be distinguished by de-

scribing one as global, sending extra offspring away, and the other

as local, an “elasticity” of the island itself.

With respect to Hamilton’s rule, these two factors work in

very different ways. Analyses of Wilson et al. (1992) and Taylor

(1992a,b) show that in the simplest cases the global effect plays

no role in promoting altruism and the dispersal rate does not even

appear in the condition for altruism to be favored. Increased dis-

persal, which exports the benefits of altruism, also reduces within-

patch relatedness that makes altruism less profitable, and in simple

models with nonoverlapping generations, these two effects exactly

cancel.

Thus, if we want to construct a structured population that can

promote altruistic interactions in the sense that condition (3) will

track allele frequency change, we need to find a mechanism for

local expansion. If empty sites come available to be filled at a

fixed rate and all occupants of the patch compete for these sites

according to their fecundity, then extra fecundity of one breeder

will in fact decrease the chances of all others. To eliminate this

competitive effect, we must arrange for a patch with increased

average fecundity to have an increased average reproductive rate,

or more precisely, a patch with increased average fecundity must

have an increased average reproductive rate at home. In a nonover-

lapping generation model, this is awkward to do, but in a contin-

uous time Moran model, such as we use here, this is easily done

by making the rate at which empty sites are filled increase with

average patch fecundity. This is what we assume here. To empha-

size this point, we remark that it is a common idea (West et al.

2002) that inserting a dispersal stage between the phases of in-

teraction and competition will alleviate the competitive effects

of the altruism, reducing condition (4) to condition (3). (An ex-

ception is found when dispersal is in groups (buds)—[Gardner

and West 2006].) There is much truth in this, but it is a pyrrhic

victory for condition (3) as it is restored with a small or a zero

relatedness coefficient. For example, in Taylor’s simple (1992a)

model, dispersal separates interaction and competition, but the

conditions for altruism to be selected are independent of the dis-

persal rate and are the same as if the population were randomly

mixed.

The effect of our model on within-patch competition can be

clearly seen in our calculation of the fitness effects of incremental

fecundity to a focal individual. There is, of course, the direct effect

of more offspring for the focal individual, both local and global,

but there is no direct “competitive” effect on others. Indeed the

only effect on patchmates is found in the second term of equation

(2) and depends on the fact that individuals in patches of different

types have different reproductive value. That is, if all individuals

had the same RV, equation (2) would be zero.

Indeed, the variation in individual reproductive value among

patch types is an interesting feature of our model. As Figure 2B

shows, the expected contribution of a breeder to the future of

the population depends on and decreases with patch density, the

reproductive value of an individual in a full patch being 75% of

that of an individual who finds itself alone in the patch.

A number of previous works have studied patch elasticity. A

two-dimensional lattice model of Mitteldorf and Wilson (2000)

allows empty sites and gives them a “fitness” as if they were a

special third type of occupant (the others being altruist and self-

ish). To get a stable internal equilibrium they also need a small

fitness-independent death rate, but given this, they find selection

for altruism for large benefit:cost ratios. Killingback et al. (2006)

discuss a public-goods game in an island model in which regu-

lation is global and keeps the average island size constant, while

allowing islands to fluctuate in size. If we convert the interaction

to a direct fecundity benefit and cost, the game can be regarded

as a model of altruism, and in this case, for an average group

size of five and a dispersal rate of 0.1, they find that altruism is

selected for a c/b ratio of close to 0.4 (taking the parameter val-

ues of their Fig. 2A as a critical set for the selection of altruism,

where b is the fecundity benefit given to others in the group).

Grafen (2007) shows that their model lies squarely within the

domain of inclusive fitness and shows how the relatedness can

be calculated (which for fluctuating group size is nontrivial). His

calculations give an average relatedness (to other members of the

group) of R close to 0.4, so that the classic condition (3) appears

to hold. Lehmann et al. (2006) develop a rich spatial model to test

both the effects of demographic stochasticity and environmental

stochasticity on helping behaviors. As Killingback et al. (2006)

and Grafen (2007) they assume a constant dispersal rate, which

means they only have access to an average inclusive fitness value.

They study several processes by which the altruist may confer a

benefit to his patchmates. The process they use which is the clos-

est to ours (‘density-dependent survival of juveniles’ and ‘helping

increases the fitness of all individuals in the deme excluding the

actor’) leads to threshold values ranging from 0.25 to 0 depending

on the fecundity value (which in our model is set to 1).

Our model has similarities and differences from those de-

scribed above. It has a fixed island size in the sense of a fixed

number of sites, but allows empty sites, so that the effective group
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size fluctuates. A stable average group size is maintained by hav-

ing a constant death rate but making group productivity density

dependent in a natural way. The most original feature of the model

is perhaps that the dispersal rate d is also determined by the con-

dition that dispersal behavior be at evolutionary equilibrium, and

we find (as expected) extreme dispersal rates of d = 0 in low den-

sity patches and d = 1 at high density (Fig. 2D). Because of this

feature, our model is perhaps more related to models on the evolu-

tion of dispersal. It corroborates classical results, that is, optimal

dispersal decreases when density increases (Frank 1986; Taylor

1988). Interestingly, our solution also fits with the approxima-

tion Cadet et al. (2003) derive from their simulations: they show

the same “bang-bang” distribution when they plot dispersal as a

function of mortality, or fecundity, or carrying capacity. They also

argue in the discussion that kin selection is likely to operate but

that its consequences are difficult to assess. Here, we manage to

estimate inclusive fitness values that depend on the type of patch

the altruist is in. If we take patch size to be n = 10, we get an aver-

age patch relatedness of 0.15 and that is very close to our average

c/b ratio (Fig. 2E). So again condition (3) appears equivalent to

condition (4).

Let us emphasize the significance of condition (3). We sup-

pose that a focal individual gives a fecundity benefit b to a neigh-

bor with relatedness R at fecundity cost c. It is not hard to argue

(from a Taylor expansion) that for small b and c, the fitness effects

C0 and Bi in condition (4) will be linear expressions in b and c

and therefore condition (4) depends only on the ratio c/b. Let the

threshold value of this ratio be RH. Think of this as the value that

relatedness would have to take for condition (3) to completely de-

scribe the action of selection. Then condition (4) that the altruistic

act be selected can be written in the form

RH b > c. (5)

The difference between this condition and condition (3) is that

condition (5) accounts for all the competitive effects on the focal

individual of the extra offspring. Thus we generally expect that

RH < R. That is, because of competitive effects, for the behavior

to be selected, a fixed benefit b would have to come at a smaller

cost than condition (3) would predict. Our interest here is to find

conditions under which RH = R as these represent models in which

there are no local competitive effects of the altruistic behavior; in

a sense, the set of such examples provide a natural boundary for

models of altruism. We have pointed above to two examples for

which RAH appears to be close to R—Grafen’s (2007) model of

variable-size patches and our own model of empty sites. This

emphasis on the validity of equation (3) was already made by

Lehmann and Keller (2006) in a review that led to an interesting

discussion.

It is also interesting to compare our model with certain eco-

logical models with spatial self-structuring (van Baalen and Rand

1998; Le Galliard et al. 2003a, 2005; Lion and van Baalen 2007a).

In these models, space is usually defined as a network of sites. In

their review, Lion and van Baalen (2007b) show that the inva-

sibility condition of a rare altruistic mutant in these populations

when the physiological benefit of altruism affects survival, and

the physiological cost affects fecundity can be summarized by the

condition

�B qM/M > −�(bM qo/M ), (6)

where �B is the marginal benefit obtained by a recipient and

bMqo/M is the fecundity of an altruist in the group of altruists

that is invading. The term qo/M is the average density of empty

sites seen by a mutant (it decreases when neighbors reproduce): it

comes from the fact that these models are analyzed using spatial

correlation equations. As Lion and van Baalen note, this equation

is very similar to condition (4) (i.e., RH is close to R) because the

mean number of mutants seen by a mutant (qM/M) can be seen as

a measure of relatedness.

There are three specificities of our model that make it inter-

esting to test experimentally. The first one is that we work with

measurable quantities (number of empty sites). The second speci-

ficity is that dispersal rates are not constant but vary across patch

types. Finally, we make testable predictions regarding the effect

of the number of empty sites on the fitness of an altruist. Our

study could provide an analytical framework for laboratory and

field studies that follow both the relatedness and the dispersal. For

instance, it has been showed that both local female density and

kinship affect dispersal in the lizard Lacerta vivipera (Lena et al.

1998; Le Galliard et al. 2003b). Recently, Moore et al. (2006)

also showed that kin competition avoidance favors dispersal in

fig wasps. However, as stressed by Lambin et al. (2001), the evi-

dence for links between dispersal and kinship is very scarce. The

few existing studies are done with Vertebrates and focus on the

importance of sexual disparities in dispersal rates. A possibility

to test these ideas experimentally could be to work with microor-

ganisms that have specialized dispersal forms. It might also be

interesting to use a simple bacterial system in which cooperative

behavior occurs (see West et al. 2006 for a review) to recreate

the spatial structure and the dispersal behaviors of this model. In

this setup, a patch would be a set of tubes (the ‘sites’) that can

be empty or filled with bacteria. The main limitation is that our

model rests upon the assumption of infinite population, or more

precisely here an infinite number of patches. This assumption is

important because it allows us to assume that relatedness between

individuals from different patches is zero. Precise application of

our model to biological systems might require lifting the infinite

patch assumption, which would require a numerical approach.

In many evolutionary studies of behavior, the equilibrium

attained represents a balance between reproduction and local
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competition. Our empty sites model is of potential interest in ex-

ploring the effect of population “elasticity” on such behavior. An

interesting development of our model could be to study diploid

individuals because dispersal often involves asymmetric behavior

between the sexes. For example, a number of studies have in-

vestigated the coevolution of sex-ratio and sex-specific dispersal

(e.g., Leturque and Rousset 2003; Wild and Taylor 2004) and sex-

ratio bias can be interpreted as an altruistic trait (Colwell 1981). It

would be of interest to understand the effect of variation in patch

density found in our model on these traits.
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Appendix
Because pi is the proportion of type i patches in the population,

the overall proportion of full sites is given by

x̄ =
∑

pi xi (A1)

Each breeder reproduces at rate 1, the offspring staying to

compete home with probability hi and arriving to compete at a

random patch with probability mi = 1 − hi. Thus an i-patch pro-

duces native offspring at rate i hi and exports migrants at rate

i mi. Immigrant offspring arrive to compete at a random patch at

rate
∑n

j=1 j m j p j so that the total rate at which offspring arrive

to compete at an i-patch is ihi + ∑n
j=1 j m j p j . However, for the

parameter set we use here, not all of these offspring find a breed-

ing site, and those who do not are presumed to die. Indeed, under

our assumption that each competing offspring fills each empty

breeding site at rate 1/n, each empty site in an i-patch is filled by

a native at rate ihi/n = xihi and by an immigrant at rate

S =
∑n

j=1
x j m j p j (A2)

so that an i-patch is occupied by an offspring at rate

(n − i)(xihi + S). This is the rate at which an i-patch becomes

an i + 1 patch. In addition, because each breeder dies at rate k,

the i-patch becomes i − 1 at rate i k = n xi k.

Note that each i-individual places a native offspring at rate

hi (n − i)/n = (1 − xi) hi and places a migrant offspring in a j

patch at rate mi pj (n − j)/n = mi pj (1 − xj).

With these elementary birth and death processes, we first

derive the stable distribution of type frequencies (pi). Then, we

derive the relatedness (Gi) and the reproductive value (vi) of each

type of patch. This allows us to find the evolutionary equilibrium

value of the dispersal rate (mi). Finally, we derive the inclusive

fitness (Wi) for each type of patch.

Calculation of patch type frequencies. The rate at which the

frequency of type i patches changes has four components:

i-patch birth: − (n − i) (S + xi hi) pi (i < n)

i-patch death: −i k pi (i > 0)

(i − 1)-patch birth: (n − i +1) (S + xi−1 hi−1) pi−1 (i > 0)

(i + 1)-patch death: (i + 1) k pi+1 (i < n)

Thus, for 0 < i < n:

�pi = −[(n − i)(S + xi hi ) + ik]pi

+ (n − i + 1)(S + xi −1hi −1)pi−1 + (i + 1)kpi+1

�p0 = −nSp0 + kp1

�pn = −nkpn + (S + xn−1hn−1)pn−1 (A3)

Solving this n + 1 equation system allows us to find the

values of the pi when the stable distribution is reached. However,

the solution is intractable and we use a numerical approach.

Reproductive value calculations. Let vi be the RV of an indi-

vidual in a type-i patch. Look at the probabilities of the different

events in time dt that could affect the RV of a focal class i indi-

vidual.

Table A1. Changes in reproductive value.

Event rate New Change
RV in RV

Focal dies k 0 −vi

Another in patch dies (i−1) k vi−1 vi−1−vi

Focal offspring hi (1−xi) 2vi+1 2vi+1−vi

occupies native site
An offspring of a (i−1) hi vi+1 vi+1−vi

patchmate occupies (1−xi)
native site

Focal offspring occupies mi (1−xj) pj vj+1+vi vj+1

site in foreign j-patch
(0≤ j ≤ n−1)

Empty site in focal (n−i) S vi+1 vi+1−vi

patch is occupied
by foreign offspring

The expected change in RV for type i is the average of the

rows in Table A1:

�vi = vi−1(i − 1)k − vi [ik + (1 − xi )(ihi + nS)]

+ vi+1(1 − xi )(ihi + hi + nS) + mi

n−1∑
j=0

(1 − x j )p jv j+1

(A4)

If we set all these to zero, for 1 ≤ i ≤ n, we get a set of n

equations in v1, v2, . . ., vn, which can be solved to give the vi.

However, note that the system has rank n−1. Indeed we expect

the average change in RV to be zero. Because a type i breeder has

frequency xi pi/x̄ , the average change in RV is
∑n

i=1
xi pi

x̄ �vi and

it can be shown that this is zero. We solve the system by setting

v1 = 1 (for example), and solving any n − 1 of the equations.

Calculation of the coefficients of consanguinity. Because we

work with an infinite population, the average relatedness between

two breeders on different patches is zero. If the dispersal rates

vary among sites, then the relatedness between two individuals on

the same patch depends on the type of patch they are in. Let Gi be

the coefficient of consanguinity between two random individuals

on an i-patch.

Consider the set of all i-patches. This gets new members in

a number of ways.

(1) an (i − 1)-patch becomes an i-patch through internal birth

at rate

�i = (n − i + 1) hi−1 xi−1 pi−1

(2) an (i − 1)-patch becomes an i-patch through migrant birth

at rate

� i = (n − i + 1) S pi−1

EVOLUTION 2008 9



S. ALIZON AND P. TAYLOR

(3) an (i + 1)-patch becomes an i-patch through death at rate

� i = (i + 1) k pi+1

where S is given by equation (A2).

Now we take two (different) focal individuals in an i-patch

(i ≥ 2) and ask where they came from. What was the most recent

event?

In Table A2, for i = n, the second-last row is missing and the

total is �i + � i. For i = 2, the Gi−1 rows are absent but they have

zero weight so the total is still �i + � i + � i.

Table A2. Changes in consanguinity.

Event that created rate Former
i-patch (2 < i < n) G

Internal birth in i − 1 2�i /i(i−1) 1
patch — one focal
gives birth to the other

Internal birth in i − 1 �i(i2−i−2)/(i(i–1)) Gi−1

patch — otherwise
External birth in i − 1 2� i/i 0

patch (focal born)
External birth in i − 1 (i−2)� i/i Gi−1

patch (nonfocal born)
Death in i + 1 � i Gj+1

patch (i ≤ n −1)
Total �i + � i +� i

This gives us the following recursive formula for Gi

Gi = 1

�i + �i + �i[
�i

2 + (i2 − i − 2)Gi−1

i(i − 1)
+ �i

(i − 2)Gi − 1

i
+ �i Gi+1

]
(2 ≤ i <n)

(A5)

Gn = 1

�n + �n

[
�n

2 + (n2 − n − 2)Gn−1

n(n − 1)
+ �n

(n − 2)Gn−1

n

]

If we set all these to zero, for 2 ≤ i ≤ n, we get a set of n − 1

equations in G2, G3, ..., Gn, which can be solved to give the Gi.

Optimal dispersal rates. The previous calculations all involve

the dispersal strategies (the mi). As stated earlier, we assume that

there is a constraint on the dispersal strategy such that we can

replace all hi by 1− mi. To find the optimal value of mi, we

evaluate the consequences of a slight variation of mi on the fitness

of an individual in an i-type patch. If a focal increases its mi by

�mi, there are three consequences on the fitness of the focal (see

Table A2):

1. the focal gets more births in distant patches: � mi

(
∑n−1

j=0 p j (1 − x j )v j+1)

2. there are less local births, which affects the focal: −�mi (1 −
xi) (2vi+1 −vi)

3. and its patch mates: −�mi (i −1) (1 −xi) (vi+1 −vi) Gi

Thus, we can evaluate the value dmi by which mi should

be modified to maximize the fitness of breeders in patches of

type i:

dmi = �mi

[(
n−1∑
j=0

p j (1 − x j ) v j+1

)

−(1 − xi ) (2vi+1 − vi + (i − 1)(vi+1 − vi )Gi )] (A6)

If we choose initial values for the mi and update them by

dmi, after several iterations the system converges toward a sta-

ble state (note that at each iteration we need to update the val-

ues of pi, Gi, and vi). We find that, with an even number of

sites per patch, mi = 0 if i < n/2 and mi = 1 if i ≥ n/2. With

an odd number of sites per patch, mi = 0 if i < (n + 1)/2 and

mi = 1 if i ≥ (n + 1)/2. An easy way to check this result is to

use these optimal values as initial values and check that the value

of the dmi is positive for patches where mi = 1 and negative for

patches where mi = 0. Such a ‘bang-bang’ distribution is not sur-

prising because the choice of where to send the offspring is made

instantaneously on one offspring, which precludes any type of bet-

hedging. Note that Cadet et al. (2003) find a similar pattern in their

model in which full sites have a different dispersal rate from other

sites.
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