Group Theory in Homogeneous Populations
(Rescuing Darwin from the mud)

Peter Taylor

Abstract. Considerable recent work on the evolution of behaviour has been
set in structured populations. An interesting “cancellation” result is known for
structures, such as lattices, cycles and island models, which are homogeneous
in the sense that the population “looks the same” from every site. In such
populations all proximate or immediate fitness effects on others (for example,
payoffs in a game or contest) play no role in the evolution of the behaviour.
The altered competitive effects of such behaviour exactly cancel the proximate
fitness effects. In mathematics, the internal symmetry which drives this result
is powerfully described by the theory of mathematical groups and recent work
has used this theory to clarify and extend a number of existing results. I review
this body of work here.
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1. Introduction

It is a pleasure and a privilege to have been asked to talk about the Mathematics of
Charles Darwin on this very day, the 150" birthday of the publication of the “Ori-
gin,” particularly among such distinguished colleagues. The invitation prompted
me to think about my early encounters with Darwin and I realized that one of
these occurred 50 years ago, no doubt very close to the 100*" birthday. I was in
late high school and was interested in science and had discovered The Origin of
Species [1] in my father’s collection of the Harvard Classics. I read bits of it, but
not very much. My father, on noticing the book in my possession, told me I must
talk to a biologist he knew at the museum, where he was working, and in spite of
my mild resistance, he set up a meeting a few days hence. When the time came he
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drove me into town, took me firmly up the curling flight of stone steps and knocked
at his colleague’s door. And there he left me saying he would meet me in the lobby.

Well there we were, both of us not quite sure what I was doing there. He
asked me uneasily what I wanted and I didn’t dare reply with the truth — that
there was nothing I wanted but my father had made me come. I told him I had
been reading The Origin of Species and had found it interesting. “That’s perhaps
not the best place to start,” he replied gently, and for the rest of the mercifully
short interview he gave me a list of books I might read “next” and told me a bit
about them in words that meant little to me. And here I am 50 years later. It
would be interesting now for me to have a copy of that list, but I am certain I
never consulted it again.

A couple of years later it was physics I chose at university and then, after
a year or two, I settled on mathematics, I believe, for its structure, its beauty,
its simplicity, and its independence from the world. Another 15 years would pass
before I encountered biology again, and that was in a remarkable series of lec-
tures delivered by John Maynard Smith at a special symposium organized by the
Canadian Mathematics Society. John talked about something called “evolution-
ary game theory” and I suddenly realized that the structure and beauty I had
sought in turning, many years ago, to mathematics, was what Charles Darwin had
given us in biology, that the theory of evolution opened up to us a whole new
way of asking questions about why organisms behave this way rather than that,
and thereby gave us powerful new tools for understanding this behaviour. It was
a striking revelation.

The impact on me was even greater as I had recently turned to a study of the
applications of game theory to economics and had been troubled by its unsettling
assumptions of rationality and purpose. But now I could see where game theory
might really belong, in biology where the actors were not us crazy humans, but
genes, where rationality was not needed, and where purpose was not a precondition
but appeared miraculously as a consequence of the unfolding of the evolutionary
game.

The 40 years since the work of Maynard Smith and Price have given us
an enormous spectrum of rich interactions between mathematics and biology. A
wonderful account of many of these is found in Joel Cohen’s remarkable 2004
essay called Mathematics Is Biology’s Next Microscope, Only Better; Biology Is
Mathematics’ Next Physics, Only Better [2]. Cohen discusses an impressive range
of areas in which mathematics and biology interact and in particular presents five
biological challenges that could stimulate and benefit from major innovations in
mathematics, and then five mathematical challenges that would contribute to the
progress of biology. When I heard about this symposium, I went back to this essay
looking for ideas and one sentence I read was this: ‘Charles Darwin was right
when he wrote that people with an understanding “of the great leading principles
of mathematics ... seem to have an extra sense”’ [2, page 2017].

Reading that, I started to wonder what else Darwin might have thought of
mathematics, so I looked on the web and I found this: “A mathematician is a blind
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man in a dark room looking for a black cat which isn’t there”. I had heard this
famous remark before but had never known that it was credited to Darwin. And
another: “I suppose you are two fathoms deep in mathematics, and if you are,
then God help you, for so am I, only with this difference, I stick fast in the mud at
the bottom and there I shall remain”. This second quote quite challenged me and
prompted me to choose for this talk a slice of mathematical biology that I found
simple and beautiful, and that might just have had the power to rescue Darwin
from the mud, if only he could have seen it.

2. Homogeneous population structures

For the past twenty years I have been interested in the effects of population struc-
ture on the direction of evolution, more specifically on allele frequency change. To
illustrate the impact of structure, imagine an interaction between two individuals
¢ and j which changes the fitness of each of them. Does the size of these fitness
changes tell us all we need to know to work out the evolutionary effects? In general,
no. The point is that each of the two fitness effects will in general have an impact
on the fitness of other individuals k. For example if the offspring of i have some
tendency to compete with the offspring of an individual k, then a change in i’s
fitness might affect the fitness of k. Thus, a full accounting of evolutionary change
requires knowledge of the fitness effects on all individuals in the population.

To have some terminology, let’s call the first set of effects proximate, and
classify the second set under the general label of ecological feedback. The proximate
effects are typically those that are observed in the field or specified in a behavioural
model. For example in a two-party altruistic interaction, these are the cost incurred
by the actor and the benefit gained by the recipient. The feedback effects are
those that derive from the resulting altered competitive pressures and depend on
the population structure and the nature of population regulation. For example if
the proximate effects are on fecundity, the feedback effects might be a change in
mortality among the offspring; if the proximate effects are on adult survival, the
feedback effects might be altered offspring recruitment.

To have a specific scenario to work with, I will suppose here that the prox-
imate effects are on breeder fecundity and the feedback effects are on offspring
survival deriving from altered competitive pressures.

The proximate effects are typically known (measured or assumed) but the
feedback effects are much harder to get hold of and typically require detailed
knowledge of offspring dispersal and recruitment patterns. That’s the story told
by the population structure.

One of my interests has been to identify simple classes of population struc-
tures for which the feedback effects can be very simply described. Here I will look
at what would appear to be the very simplest such structures, those for which the
population “looks the same” to every individual. The term “homogeneous” has
been used in the literature with many different meanings, but I will use it here
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to capture this notion and I will define it more precisely below. This notion of
homogeneity might seem rather special or restricted, but some approximate ver-
sion of it is often assumed. Theoretical models which are “open” in the sense that
no population structure is actually given, typically work with a randomly chosen
“focal” individual, and for this to make sense, the environment of this individual
must be, in some sense, generic. This is effectively an assumption of homogeneity.

To keep things simple, I suppose that the population consists of a fixed collec-
tion of breeding sites, each occupied by a single asexual haploid individual. Instead
of using the index i to keep track of individuals (who are being born and dying), I
will use it to index the sites. Indeed I will assume that the set of sites is permanent
and there is no change in population size.

One can depict these breeding sites as a set of nodes with arcs or edges be-
tween nodes to represent the relationship among them. For us, these relationships
will be of two types, the rate at which offspring disperse from one node to another
and the effect of the behaviour of the breeder at one node on the fitness of the
breeder at another. I define the dispersal probability d(i,j) to be the probability
that an offspring born at site i competes to breed at site j and, counting only
those offspring who attain a breeding site, I assume that »_, d(i,j) = 1. I let F;
denote the fecundity of the breeder at site i. In general, F; will depend on the
behaviour z; (defined as the level of a behavioural trait) at many different sites j
and I define the fecundity effect of j on i to be the partial derivative 0F;/0z;.

The notion of homogeneity can be specified in terms of these relationships.
To say that the population looks the same from node 7 as from node j is to say that
an individual who could perceive only the dispersal probabilities and the fitness
effects could not tell whether it was situated on node ¢ or on node j. In [2] the
notion of isomorphism is used to describe this. An isomorphism 7' (iso ~ same;
morph ~ structure) is a bijection of the node set which preserves the dispersal
probabilities and the fecundity effects, i.e., for any 7 and j,

d(T (@), T(5)) = d(i j) ,
OFr;) _OF; (2.1)
aZT(j) aZj '

The population structure is called transitive if, for every pair of nodes ¢ and j, there
is an isomorphism T for which T'(¢) = j. The transitive structures are precisely
those that I am calling homogeneous.

3. The main result

There is a surprising, even extraordinary result which obtains in this homogeneous
case. Suppose an actor at site j carries an allele A which causes her to give a
fecundity benefit b to the breeder at site 4 different from j (that’s the proximate
effect). We want to measure the selective effect of this behaviour and by this
we mean the effect on the population frequency of the allele A. Now as we have
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discussed, the altered fecundity of ¢ will change the competitive environment in
a neighbourhood of 7 and as a result the fitness of a number of other individuals
will also be affected. Some of these others may carry the allele A, so to calculate
the change in frequency of A, we will need to work out the effects of the action on
all those whose fitness is affected as well as the probability that they will carry A.
This can be a big job but it can, after some work, be obtained from knowledge of
the population structure.

Now here’s the remarkable result — if the structure is homogeneous, this
substantial calculation doesn’t have to be done [3, 4, 5, 6, 7, 8]. In this case, all
these effects on the frequency of A, the proximate effect, b, on 7 and the resulting
competitive effects on any number of others, will all cancel out so that the net
effect on the frequency of A will be zero. Some who carry A will have increased
fitness and others who carry A will have decreased fitness, and the net result is
that on average, the decreases will exactly balance the increases. If you like, the
ecological feedback effects of the fecundity change of i will exactly neutralize the
proximate effect.

Assumptions. Right away I have to declare that there are a number of signifi-
cant assumptions that are needed for this result to hold. A first class of assumptions
is standard for inclusive fitness methods to be valid [9, 10] — fitness effects have
to be additive and small. Thus, if the behaviour of several of my neighbours af-
fects my fitness, the net effect must be the sum of the individual effects. Also the
analysis is done to first order in the fitness deviations and this will give accurate
results only if these deviations are small compared to baseline fitness. A second
class of assumptions are more technical and have to do with the way in which
generations succeed one another (overlapping or not), whether proximate effects
are on fecundity, as we have assumed here, or survival, and whether offspring dis-
persal is symmetric, i.e., d(i,j) = d(j,¢) [8]. Finally, the population needs to be
large or a small correction is required. In a finite population, the average effect on
the non-focal individuals must be subtracted (equation (7.2)).

I emphasize that this “cancellation result” holds for the effects of the in-
teraction on all other breeders, but not for the actor herself. As a result of this,
the direction of change in frequency of the allele A is determined by the sign of
the proximate effect of the actor on her own fecundity. If the act is costly to the
actor (say it incurs a survival cost ¢) the allele frequency decreases, and if benefi-
cial, the allele frequency increases. This simple result is indeed surprising, almost
unbelievable, and I now discuss its interesting history.

4. History of the result

In 1992 I had a call from David Wilson. He had constructed a simulation to
test Hamilton’s Rule [9] on a two-dimensional lattice (Fig. 5.2¢) and what he
was finding quite surprised (and intrigued) him. No matter how large he made
the benefit b bestowed by an altruistic allele, he could not get altruism to be
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selected. In his simulations, it always eventually died out and that appeared to
flatly contract Hamilton’s Rule [3].

Let’s go back to Hamilton. Consider an allele A which causes the bearer (the
actor) to bestow a fitness benefit b on a “neighbour” at a personal fitness cost c.
Then if we want to calculate the resultant direction of frequency change of A, we
will need to know the probability that the neighbour is an A-individual and (in
this simple haploid case) that is a measure of what is called the relatedness of the
actor to the neighbour [10, 11]. This idea, that some notion of relatedness ought to
have something to do with allele-frequency change was recognized long ago, most
famously by Haldane [12] who while walking beside a flooded river, considered
the question of whether to jump in to save a drowning child and decided that
the closer was his relatedness to the child, the more likely he ought to jump in.
Haldane, of course, was able to think in genetic terms, but even Darwin [1], before
he knew of Mendel’s work, knew that what counted was the “blood” [13] rather
than the individual. But it was Hamilton’s genius that put forward the simple
quantification of this idea. Hamilton’s Rule states that the allele will be selectively
favoured when bR > ¢ where R is the relatedness of the actor to the recipient.

Now back to Wilson’s population. It had the structure of a lattice and each
generation offspring dispersed to neighbouring sites, so there was certainly a sig-
nificant probability that a neighbour would be an offspring or grandchild or niece
etc. and we ought to have a positive R. Thus if b is big enough, we should have
bR > ¢ and Hamilton’s Rule [9] ought to give a selective advantage to the altruistic
trait. Hence Wilson’s (and my!) dismay.

The discussion above clarifies the dilemma. Wilson’s b and ¢ were in fact
changes in fecundity — they represented a small increase (to the recipient) and
decrease (to the actor) in offspring number. As we have seen, that’s only the first
part of the story. To translate these changes in fecundity into changes in fitness,
we need to know the effect of these extra offspring on the fitness of others who
might live nearby and who might also share genes with the actor. And when this
is done all the effects of the b-gift cancel, leaving only the effects of the actor’s
fecundity decrement c. This certainly reduces the fitness of the actor and any
positive effects on others (from reduced competition) cannot be strong enough to
turn that negative effect around. Wilson’s lattice population is an example of a
homogeneous population structure and the main result applies.

What becomes of Hamilton’s Rule bR > ¢? It has a number of versions which
are valid. It holds when b and c represent the total fitness effect on recipient and
actor and the fitness of no other individual is affected. There is one special case in
which it holds with b and c¢ representing only the proximate effects on fecundity,
and that is when the resulting competitive effects (of the fecundity changes) are
randomly distributed in the population as a whole. This might typically be the
case in a randomly mixed population.

But in the usual situation the fitness effects of a proximate fitness transaction
will be felt by a number of individuals, in this case a generalization of Hamilton’s
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Rule would have the form ZZ w; R; > 0 where w; is the overall fitness effect on
individual 7 and R; is the relatedness of 7 to the actor.

5. Mathematical groups

Different treatments of the main result, at various levels of generality, have ap-
peared [3, 4, 5, 6, 7, 8, 14, 15] but the most recent of these [8] presents the result
in a particularly elegant mathematical framework, and to celebrate Darwin’s an-
niversary, I discuss that here.

It turns out that a powerful description of structural homogeneity can be
obtained using the language and notation of the theory of mathematical groups.
That’s hardly surprising — group theory arose as a need for a formal structure to
study the geometry of objects, such as regular polyhedra, that have a significant
amount of internal symmetry.

First of all, instead of working with the individuals in the population (who
are ephemeral — they die and are replaced by others) we work with the collection
of breeding sites, each occupied by a single adult breeder. To have a picture we
represent them as the nodes of a graph and use the arcs between nodes to represent
the relationship between them, capturing both the dispersal probabilities and the
fitness interactions (Fig. 5.1).

F1GUrRE 5.1. A directed graph. The different arcs represent different
dispersal probabilities and/or different fitness interactions between the
nodes.

So far we have described what is simply called a directed graph. What we
don’t yet have is the condition that the population “look the same” from every
node. An elegant way to obtain that is to suppose that the set of nodes can be
given the structure of a group.
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We begin with a formal definition. A group G is a set of elements i with a
closed binary operation (which we represent multiplicatively) which satisfies the
following three axioms:

1. There is an identity element e with the property ei = ie = ¢ for all .
2. Every element i has an inverse (denoted i~!) such that ii—1 =i~!
3. The operation is associative: i(jk) = (ij)k for all ¢, j and k.

i =e.

Now the wonderful thing about groups is that we have a natural transitive
set of bijections which can serve as our isomorphisms, and these are the group
multiplications. Indeed, given two elements j and k of the group, multiplication
on the left by i = kj~! is a bijection T of the group which maps j into k. Indeed,
T(j) =ij = (kj~1)j = k(j7'j) = ke = k. Thus if our breeding sites are the
elements of a group, we can use these left multiplications as a natural transitive set
of maps preserving our two critical relationships — offspring dispersal and fecundity
effects. That is, for any 7, j and k, we specify:

d(j, k) = d(ij,ik) ,
or;  OF; (5.1)
8Zk B azik ’

It turns out that the homogeneous population structures that have appeared
in the theoretical literature can all be given a group structure in a natural way so
that the group multiplication provides the isomorphisms satisfying equation (2.1).

For example how do we put a group structure on the examples depicted
in Fig. 5.27 The answer is that in every case this comes from the geometry of
our representation. In each case we choose an arbitrary node to be the identity
element e. Then for (a) and (b) we can simply use the rotations about the centre
identifying each node with the angle required to rotate the identity to that node.
Group multiplication, of course, is composition. For (¢) we use the horizontal and
vertical translations if the population is infinite, but in the case of a finite lattice,
we fold the array into a torus by identifying boundaries (right with left and top
with bottom) and use a 2-parameter family of rotations. In (d) we again have a
2-parameter family of rotations, first the four rotations through 90° that rotate
each island within itself, and secondly the three rotations through 120° which cycle
the islands. All possible products of these give us the twelve elements of the group.

6. Can every homogeneous population be given a group structure?

That’s all fine for these standard examples which we can easily draw, but the
question arises as to whether any homogeneous population structure can be rep-
resented as a group. Note first that the converse of this holds and was mentioned
above — any group-structured population for which the invariance equations (5.1)
hold is homogeneous and the left multiplications give us a transitive set of isomor-
phisms (equation (2.1)). But suppose that we have a population structure with a
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a) b)

FIGURE 5.2. Some examples of standard homogeneous populations
structures. (a) A random-mixing population with 7 breeding sites. (b)
A cycle. Interactions with neighbours. Dispersal to neighbours or at
random. (c) A lattice. Interactions with neighbours. Dispersal to neigh-
bours or at random. (d) An island structure with 3 demes of size 4.
Interactions at random within deme. Dispersal at random within deme
or at random in population.

transitive set of isomorphisms (equation (2.1)). Can we put a group structure on
the set of nodes so that the left multiplications are isomorphisms (equation (5.1))7

Well here is an idea. Take a random node and label it e. Now take any other
node 7. The homogeneity property tells us that the population should “look the
same” from 7 as it does from e. Thus, for any node j, there should be a node which
“looks the same” from i as j looks from e. We could call that node ij and this in
fact would define the group multiplication operation on the node set. That seems
at first to work nicely, at least the three group axioms (above) seem to hold.
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ij

FIGURE 6.1. ij is the node that looks the same from 7 as j looks from e.

(ij)ka (ij) k1

FI1GURE 6.2. Possible difficulties with associativity. The nodes k; and
ko bear the same relationship to e and there is no consistent way to
distinguish them. Of course any diagram gives us a temporary right-left
distinction. In the realization here we have used one ordering attached
to j and another attached to 5. In this case, the verification that (ij)k =
i(jk) for either of the k’s, will fail.

Except they don’t. If you argue carefully, you run across a problem with the
associative axiom 3.

The problem arises when there are several candidates bearing the same rela-
tion to a fixed node. This would not be the case in the structures of Figures 5.2
(b) and (c), but it could be an issue in (a) and (d) (Figure 6.2).

Typically, of course, we can use other aspects of the population structure
(such as geometry) to pick out a consistent set of nodes playing the role of k,
but the question we started with is whether this can always be done. Are there
homogeneous populations which cannot be given a group structure?

It turns out that this is unknown, indeed it is closely related to an open
problem in the theory of mathematical groups [8]. Certainly any homogeneous
population I have ever seen (or imagined) can be given a group structure, but that
is the best I can do. For sure this question is of much more mathematical than
biological interest, but it is intriguing none the less.
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7. Finite and infinite populations

Our main result takes a slightly different mathematical form in a finite and an
infinite population and I look at that now. Recall that the result says that the
effects of allele action on the fecundity of others do not “at the end of the day”
cause a change in the average frequency of the allele. We conclude that the selective
change in the average frequency will only be determined by, and must have the
same sign as, the effect of the behaviour on the actor’s own fecundity — if the actor
suffers a cost, the overall frequency of the allele must decrease; if she gives herself
a net benefit, the overall frequency of the allele will increase.

Actually there is one clarification or adjustment needed. The factor to pay
attention to is not the effect of the behaviour on the actor’s own fecundity, but
rather the effect relative to the average population-wide effect. In an infinite pop-
ulation (or even a very large one), this correction is negligible, as a single actor
could have only a negligible average effect. But in a small finite population, this
normalization factor has to be included. Formally, the conditions for the sign of
the selective change in the average allele frequency are written [8]:

Fe

Infinite population: AL = Z , (7.1)
Ze
F, F;

Finite population: Az = gz: —Eize (g—z:) , (7.2)

“—m

where means “has the same sign as”. In a finite population we normalize
by subtracting the average effect of the behaviour on the fecundity of all other
breeders in the population.

8. Examples
To illustrate the result, I present three brief examples of altruistic behaviour.

Example. Suppose we have a finite population with a deviant trait which provides
a cost-free public good which increases the fecundity of everyone by the same
amount. Such a trait should have no effect on the frequency of the allele causing
it. Since focal behaviour has the same effect on everyone, OF;/0z. = OF,/0z. for
all i, and equation (7.2) gives us AT = 0 as expected.

Example. Suppose we have an infinite island population with demes of size n, and
a cost-free deviant trait which provides a fecundity benefit to all deme-mates, but
not to self. Then there is no fecundity effect on the actor and equation (7.1) gives
us AZ = 0. Do we in fact expect no change in allele frequency? In this population,
an individual’s fitness depends on the number of its deme-mates which are deviant.
If we suppose the demes are randomly formed, then the average number of deviant
deme-mates should be the same for a deviant and a normal individual and there
should indeed be no change in allele frequency, confirming the result. Now suppose
that the demes are not randomly formed, but some offspring stay at home. Then
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we expect that a deviant individual will have more deviant deme-mates on average
than a normal individual and will have higher average fitness. But this will also be
the case for the deviant individual’s deme-mates so that the competitive pressures
at home will be higher than average. Equation (7.1) implies that these two opposing
factors must exactly cancel.

Example. Altruism. Consider an altruistic trait in which individuals give fecundity
benefits to various other individuals at total cost c¢. Then focal fecundity might
have the form F, = —cz, + ZZ b;z; where b; is the focal benefit received from site
7 when there is an altruist at that site. To move from there to a calculation of Az
we need the offspring dispersal patterns, both to calculate the competitive effects
(which are needed for focal fitness w.) and to get the focal relatedness coefficients.
However, in a homogeneous population, equations (7.1) and (7.2) tell us that none
of that is needed:

OF,
Infinite population: A = 5.~ ¢ (8.1)
Ze
F, F, -
Finite population: AT = gze —Eize (%) =—c—b, (8.2)

where b is the average value of the b; over all non-focal individuals. The finite
population equation was obtained in [6] under the assumption that the actor gives
b to a single other individual so that b = b/(N — 1) where N is population size.
These equations make it clear that altruism can never be selected. In an infinite
population, spite [16, 17] can also never be selected, but it can be selected in a
finite population if the average harm done by a focal actor to other individuals in
the population exceeds the focal cost.

What does the group-formalism do for us that the old notion of transitivity
did not? First of all it does allow us to strengthen a number of the results previ-
ously obtained working with the notion of transitivity. But secondly, and of more
mathematical significance, it provides simpler more elegant proofs of a number of
previous results. In many ways it provides the right “natural” setting for the type
of homogeneity we are looking for.

9. Limitations

I end with a warning that these results apply only to a restricted class of be-
haviours. They do not generally apply in a class- or age-structured population,
nor to ploidies other than 1, though the results do extend to a sexual diploid
population if males and females are treated the same. In particular, they do not
apply to sex ratio traits, or to sex-specific behaviour. Secondly, while the trait is
supposed to affect the fecundities F;, it cannot affect the offspring dispersal prob-
abilities d(i, 7). In particular, it does not apply in models of optimal dispersal. Tt
seems to apply most readily in models of cooperation and competition.
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