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Joint evolution of multiple social traits:
a kin selection analysis
Sam P. Brown1,* and Peter D. Taylor2

1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
2Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

General models of the evolution of cooperation, altruism and other social behaviours have focused almost

entirely on single traits, whereas it is clear that social traits commonly interact. We develop a general kin-

selection framework for the evolution of social behaviours in multiple dimensions. We show that whenever

there are interactions among social traits new behaviours can emerge that are not predicted by one-

dimensional analyses. For example, a prohibitively costly cooperative trait can ultimately be favoured

owing to initial evolution in other (cheaper) social traits that in turn change the cost–benefit ratio of

the original trait. To understand these behaviours, we use a two-dimensional stability criterion that can

be viewed as an extension of Hamilton’s rule. Our principal example is the social dilemma posed by,

first, the construction and, second, the exploitation of a shared public good. We find that, contrary to

the separate one-dimensional analyses, evolutionary feedback between the two traits can cause an increase

in the equilibrium level of selfish exploitation with increasing relatedness, while both social (production

plus exploitation) and asocial (neither) strategies can be locally stable. Our results demonstrate the impor-

tance of emergent stability properties of multidimensional social dilemmas, as one-dimensional stability

in all component dimensions can conceal multidimensional instability.

Keywords: inclusive fitness; public goods; exploitation; altruism; cooperation; selfishness
1. INTRODUCTION
From humans to microbes, social dilemmas (Sachs et al.

2004; Lehmann & Keller 2006; West et al. 2007) interact

and intertwine, with individuals simultaneously con-

structing, defending and exploiting a diverse array of

shared public goods. The most well-known areas of inter-

acting social traits concern investments in cooperation

and in the enforcement of cooperation (via various mech-

anisms, termed punishment, policing or sanctions; Frank

2003; Gardner & West 2004; Fehr & Gächter 2002). For

example, in many species of eusocial hymenoptera,

worker insects must navigate interacting investment

decisions over whether to forgo direct reproduction

(a potentially altruistic act, yielding reproductive costs

to the actor and benefits to the hive) and whether to

eat the ‘illegal’ eggs of other workers (a policing act, redu-

cing the cost/benefits of worker egg-laying). A number of

theoretical studies predict that policing is favoured under

conditions of low relatedness, acting to maintain

cooperation via enforcement; apparently altruistic traits

become favoured in the presence of policing, as the

alternative selfish actions are associated with punitive

sanctions. As a result, cooperation can even increase

with decreasing relatedness (Frank 1995, 2003;

Wenseleers et al. 2004). Comparative studies of worker

laying and policing in ants, bees and wasps support

these conclusions (Wenseleers & Ratnieks 2006).

Another established field of study of multiple social

trait evolution concerns altruism and dispersal. A large
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body of theory highlights the dependence of altruism on

levels of dispersal, mediated both by relatedness and

local competition (Hamilton 1970; Taylor 1992; West

et al. 2002; Gardner & West 2006; Platt & Bever 2009).

In return, dispersal can be shaped by levels of altruism,

mediated in particular by habitat saturation (Hamilton &

May 1977; Le Galliard et al. 2003). Theoretical models

allowing for the joint evolution of both altruism and dis-

persal have predicted a range of outcomes, spanning both

positive and negative correlations among the two traits

(Perrin & Lehmann 2001; Le Galliard et al. 2005) and

even the emergence of multicellularity (Pfeiffer &

Bonhoeffer 2003; Hochberg et al. 2008). Finally, the

evolution of discriminatory altruism has also been

approached in a multi-trait context, with conditional

helping behaviours co-evolving with potentially discrimi-

natory markers or ‘tags’ (Axelrod et al. 2004; Jansen &

van Baalen 2006; Rousset & Roze 2007).

Whereas cooperation/enforcement, altruism/dispersal

and altruism/discrimination have received significant

attention and generated intriguing results (and further

specific examples of social trait pairings have been

studied, e.g. cooperation and signalling, Brown &

Johnstone 2001; belligerence and bravery, Lehmann &

Feldman 2008), there has been to our knowledge no

general study of social evolution in multiple dimensions.

Here we treat multidimensional dilemmas as a general

social phenomenon, and ask in the most general terms,

what happens if social evolution occurs in a multi-

dimensional trait space? We present a flexible model

framework for the study of any multidimensional social

dilemma, among relatives or non-relatives.

Our approach is to construct an adaptive dynamics

system (Dieckmann & Law 1996) based on the inclusive
This journal is q 2009 The Royal Society
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fitness effects of the different traits. With the simplest

possible assumptions (for example, traits determined at

a single locus, linkage equilibrium, weak selection, addi-

tive gene action and small mutation rate) the inclusive

fitness effect provides a measure of allele frequency

change (Rousset & Billiard 2000; Taylor et al. 2007),

and the system can reasonably provide the evolutionary

trajectories of the set of traits under the action of selec-

tion. When these assumptions fail (as is almost always

the case), the dynamical equations become complex and

intractable (see Roze & Rousset 2008; for a multilocus

model of social behaviour that incorporates recombina-

tion) so that our system is put forward as a simple

approximation to actual evolutionary trajectories.

We illustrate our framework with a number of specific

examples (the production and exploitation of a public

good; the production of multiple public goods; invest-

ment in multiple selfish traits), revealing a number of

surprising results owing to multi-trait feedbacks

(e.g. more selfishness at higher relatedness; positive run-

away public goods production at low relatedness;

‘either-or’ bistable interactions among selfish traits at

low relatedness). A general result is that in two-

dimensional models, Hamilton’s classic rule (Hamilton

1964) for selection on each trait separately (appendix A,

equation A 4) requires a further ‘interaction’ condition

(appendix A, equation A 6) to adequately describe the

two-dimensional system dynamics.
2. RESULTS
(a) Production and exploitation

We first illustrate our approach using a generic model of

the joint evolution of the production and exploitation of

a public good. For example, humans can share pastures,

simultaneously enhancing them with the addition of ferti-

lizer and exploiting them with the addition of livestock

(the exploitation trait being the focus of the classic

‘tragedy of the commons’ of Hardin 1968). Analogously,

microbes can enhance supplies of accessible extracellular

iron through the secretion of scavenging siderophore

molecules to bind insoluble ferric Fe(III), and then

exploit this newly accessible iron with the expression of

appropriate surface receptors to uptake iron bound to

siderophores (Crosa et al. 2004; Griffin et al. 2004).

Consider two social traits: a cooperative, constructive

trait x that builds a shared public good G at a direct

cost to the actor (e.g. investment in fertilizer or sidero-

phores), and a selfish, exploitative trait y that diminishes

the public good and provides a direct benefit to the reci-

pient (e.g. investment in livestock or siderophore-binding

receptors). By looking at the joint evolution of x and y, we

consider the simultaneous navigation of a tragedy of the

commons (driven by exploitation, y) and a public goods

or collective action dilemma (driven by contributions, x).

A fitness function of the form W(x0, y0, X, Y) ¼

y0 G(X, Y) 2 C(x0, y0) captures these relationships,

where x0 and y0 are the focal individual’s level of pro-

duction and exploitation of the public good, and X and

Yare the same traits averaged across the focal individual’s

group or neighbourhood. The direct benefits of exploita-

tion are proportional to the density G of the public

good, which in turn depends on the prevailing local

levels of production and exploitation, while C captures
Proc. R. Soc. B (2010)
the direct costs of investment in x and y (the assumption

that exploitation is an active, costly process is necessary to

generate intermediate levels of investment in exploitation).

Hamilton’s rule (appendix A, equation A 4) offers a

simple heuristic for understanding when selection would

favour an increase in either trait, based on the inclusive

fitness effects H and K of increases in x and y, respect-

ively. Specifically, given within-group relatedness R and

no genetic correlation between x and y, the inclusive

fitness effects of an increase in x and in y can be

calculated as:

Hðx; yÞ ¼ @W

@x0

þ R
@W

@X
; ð2:1aÞ

and

Kðx; yÞ ¼ @W

@y0

þ R
@W

@Y
; ð2:1bÞ

with all derivatives evaluated at x0 ¼ X ¼ x and y0 ¼ Y ¼ y

(inclusive of fitness effects calculated via the neighbour-

modulated fitness technique; see Taylor & Frank

1996; Wenseleers et al. in press; appendix A, equations

A 1–A 2). Hamilton’s rule predicts that, considered as

independent traits (holding other traits invariant), high

relatedness should favour both cooperative production

(high x) and restraint (low y); conversely, low relatedness

should favour both free-riding (low x) and rapaciousness

(high y), reflecting two distinct ways to be a social cheat

(Brown et al. 2002). However, this independence

assumption fails under many realistic scenarios.

Figure 1 illustrates the joint dynamics of public goods

investment x and exploitation y for an explicit form of the

above model, chosen to demonstrate the qualitative

features that can emerge owing to simple ecologically

mediated fitness interactions among social traits.

Figure 1a illustrates two joint equilibria (where the null-

clines intersect), one stable and the other unstable

owing to the strong trait interdependence at this point

(changes in x have too large an impact on the equilibrium

value of y, and vice versa). Condition A 6 in appendix A

formalizes and generalizes this distinction into a threshold

condition for the stability of a social equilibrium in two

dimensions. This condition has the form Hx Ky . Hy Kx

(subscripts denote partial derivatives: Hx ¼ @H/@x, etc.).

Here, Hx and Ky measure the strength of selection on

each trait at equilibrium. In a sense they measure the

restoring force for departures from equilibrium in x and y.

On the other hand the cross-terms Hy and Kx measure the

‘disturbing’ effect of each variable on the equilibrium of

the other. More precisely, the quotient 2Hy /Hx measures

the effect of changes in y on the equilibrium value of x

(x*). For example, if 2Hy /Hx ¼ 2, a small increase in y

will cause an increase in x* of twice the amount. Similarly,

the quotient 2Kx /Ky measures the effect of changes in x

on y*. Condition A6 in appendix A can be interpreted as

requiring that the joint restoring force exceed the joint

disturbing effect. Worked examples are provided in the

supporting online materials.

The existence of the unstable equilibrium in figure 1a

introduces bistability into the system dynamics. Depending

on the initial conditions of x and y, evolution proceeds

towards either a stable intermediate level of both

production and exploitation, or towards no social

http://rspb.royalsocietypublishing.org/
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Figure 1. Joint evolution of production (x) and exploitation (y) of a shared public good, G. The generic fitness function W(x0,
y0, X, Y) ¼ y0 G(X, Y) 2 C(x0, y0) is specified with the public goods function G(X, Y) ¼ (b þ X )/(kY þ a) and the cost func-

tion Cðx0; y0Þ ¼ kxx
2
0 � kyy0: We assume that the ecological dynamic of the public good G can be approximated by dG/dt ¼ b þ

X 2 (kY þ a)G, where b and a are the rates of independent public goods production and degradation, respectively, and
k weighs the deleterious impact on G of exploitation. The equilibrium value of G is the formula we have used above. Grey
curves are exploitation nullclines (K ¼ 0, appendix A), revealing y-equilibria as a function of fixed production x. Black
curves are production nullclines (H ¼ 0), x-equilibria as a function of fixed y. All nullclines are convergence stable with the

other variable fixed. Nullcline intersections mark points of joint evolutionary equilibria; filled circles are convergence stable,
open circles unstable. Parameters: a ¼ 0.6, k ¼ kx ¼ ky ¼ 0.5. (a,c) Low independent public goods production, b ¼ 0.1,
(b,d) high independent production b ¼ 1. (a,b) Relatedness R ¼ 0.9, (c,d) R ¼ 0.7.
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interaction with both x and y driven to zero (a similar result

is implicit in Gardner & West 2004, where the condition for

maintenance of punishment and cooperation is less strict

than the condition for invasion of punishment and

cooperation). This ‘asocial’ boundary outcome is locally

stable, since when a public good is not exploited (y ¼ 0),

there is no benefit to its production, and when there is

no production of the public good (and it is not sufficiently

generated by any independent process), there is no reward

for investment in the mechanisms of exploitation.

The more ‘social’ outcome of intermediate x and y is

also locally stable because of the same synergistic

interactions—when x is large, there are significant rewards

to positive y, and vice versa. As a consequence of the bi-

stability in figure 1a (and more generally, whenever any

social equilibrium fails the stability test in condition A6),

there will be regions of parameter space in which a small

change in initial conditions (for example in either sidero-

phore production or reception) can lead to a large

change in the final evolutionary outcome—a highly social

endpoint on the one hand, and an asocial one on the other.

Siderophore-mediated social interactions can have

a particularly strong synergy owing to the obligate
Proc. R. Soc. B (2010)
co-dependence of siderophore molecules and siderophore

receptors (each are liabilities in the absence of the other—

receptors are a particular liability in the absence of

siderophores, as they then serve only to uptake toxic bac-

teriocins; Crosa et al. 2004). If, however, the public good

is also generated in significant quantities by other inde-

pendent forces, then the basin of attraction for the

asocial endpoint can disappear (figure 1b)—for instance

it may pay to place sheep on a pasture (positive exploita-

tion), even if it has never been fertilized (zero

production).

The stable and unstable evolutionary equilibria given

high relatedness (R ¼ 0.9) are illustrated in figure 1a by

filled and open circles, respectively. In figure 2a we

track these equilibria (x*, y*) as a function of relatedness

R, varied from 0 to 1. As expected from an analysis of the

x trait in isolation, increasing R leads to an increase in the

stable equilibrium x*. However, contrary to the analysis

of y in isolation, increasing R also leads to an increase

in the stable equilibrium level y* of selfish exploitation;

that is, we see maximal selfishness at high relatedness.

The reason for this effect is again the synergistic coupling

between x and y—less production at low R means less

http://rspb.royalsocietypublishing.org/
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Figure 2. Equilibrium production (x*, black) and exploitation ( y*, grey) of a shared public good, G, as a function of
relatedness Rx ¼ Ry ¼ R. Solid lines are attractors (equivalent to filled circles in figure 1), dotted lines are repellors

(equivalent to open circle in figure 1). Focal fitness is defined in figure 1. Except for R, figure 2a has the parameter
set of figure 1a,c and figure 2b has the parameter set of figure 1b,d. (a) Low independent production and (b) high
independent production.
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public goods G and therefore less benefit from investments

in exploitation. As R decreases from 1, the stable inter-

mediate equilibrium declines, the threshold separating

asocial and social outcomes (dotted lines in figure 2a)

rises, and the zone of attraction for the asocial outcome

increases. At a critical value of R (near R ¼ 0.75 in

figure 2a), a catastrophic transition occurs as the attracting

and repelling equilibria merge, and for lower R only the

asocial outcome remains (e.g. figure 1c). Thus, under con-

ditions of low relatedness we see no selfish behaviour

( y* ¼ 0), as there is no constructive behaviour (x* ¼ 0)

to socially parasitize. If independent sources of public

goods provision are sufficiently high (figure 1b, e.g. the

pasture can grow by itself), then the joint-stable selfish

exploitation y* can peak at intermediate or low relatedness

(thus approaching the classical one-dimensional predic-

tion), reflecting the weakening of the evolutionary

feedback between x and y (figures 1d and 2b).

(b) Synergistic and antagonistic interactions

among social traits

In general, one-dimensional social analyses fail whenever

there are fitness interactions among social traits. For

social traits x and y, this is the case whenever the inclusive

fitness effect of one trait is a function of the other (i.e.

Hy = 0 or Kx = 0; see appendix A). In this case,

Hamilton’s cost and benefit terms (appendix A, equation

A 3) become co-evolving dynamical variables, and thus

neither of the one-trait Hamilton’s rules (appendix A,

equation A 4) can be properly assessed except in the con-

text of the other. When an increase in one variable leads

to an increase in the inclusive fitness effect of the other,

we say we have evolutionary synergy (Hy and Kx are posi-

tive), and this is seen to be the case in figure 1. In contrast,

when an increase in one variable leads to a decrease in the

inclusive fitness effect of the other, we say we have

evolutionary interference (Hy and Kx are negative).

Figure 3 provides an illustration of neutral, synergistic

and interference forms of interaction among social traits,

with the example of investment in two separate public

goods. When the two public goods are entirely indepen-

dent in both their costs and benefits (Hy and Kx ¼ 0;

figure 3a,d), we see that the two-dimensional evolutionary

equilibrium remains stable, and behaves entirely as
Proc. R. Soc. B (2010)
expected from separate, one-dimensional treatments (the

ESS level of public goods investment increases with

relatedness). In contrast, when Hy and Kx are non-zero,

more interesting dynamics occur. For instance, consider

a scenario where the benefits of the public goods only

accrue through their synergistic interaction (Hy and Kx .

0); when produced in isolation they confer only further

costs. This scenario is consistent with the extracellular pro-

duction of co-enzymes and is illustrated in figure 3b,e. As

for figure 1, we see that synergistic interactions among

social traits can produce bistability between an asocial

boundary condition (investment in neither trait) and the

mutual production of both traits (in this example, an

unbounded runaway), illustrated in figure 3b for R ¼ 0.8.

In figure 3e we then show how this unstable equilibrium

(separating runaway processes to joint-zero or join-maxi-

mal public goods provision) varies with relatedness. At

low relatedness, the positive runaway remains attainable,

but the threshold to entering this runaway becomes

increasingly high as relatedness decreases. Finally, we illus-

trate a case of interference (Hy and Kx , 0; figure 3c,f ),

where each public good is separately useful yet costly in

combination. The resulting dynamics mirror the following

treatment of interfering selfish traits (figure 4); however,

here we see that for interfering altruistic traits, the effects

of interference are increasing with relatedness, so that the

bistability (convergence to investment only in x, or only

in y, with the outcome dependent on initial conditions)

emerges at high relatedness.

Our illustrative models so far have been ‘open’ in that

we have chosen the value of relatedness independent of

underlying demographic processes. Models in which

relatedness emerges from demographic parameters such

as deme size or dispersal rates (Taylor 1992; Rousset

2004; Lion & van Baalen 2008) are ‘closed’, and our

final example is of this type. The open approach has

allowed us a measure of flexibility in observing model

behaviour with, for example, variable relatedness, but it

is important to see the analysis at work in a particular

population structure, and our final example provides a

discussion of this. While the ‘open model’ approach

sacrifices some ecological realism, it gains in terms of

generality—allowing comparisons across diverse demogra-

phies—and in terms of tractability (Taylor & Frank 1996;

http://rspb.royalsocietypublishing.org/
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Social evolution in multiple dimensions S. P. Brown & P. D. Taylor 419

 on July 9, 2010rspb.royalsocietypublishing.orgDownloaded from 
Frank 1998; Gardner & West 2006). Clearly, the two

approaches are highly complementary, and it remains to

be seen what further insights can be generated via closed

models of multiple social trait evolution under specific

demographic regimes.

Our final worked example presents a two-dimensional

generalization of Frank’s (1994) model of the evolution

of selfishness in an infinite island model with demes of

size n and non-overlapping generations (Wright-Fisher

demography). This well-known model traditionally

works directly with fitness, assumed to have the form

W ðx0; XÞ ¼ ðx0=XÞð1�XÞ, where x0 is focal selfishness

and X is average selfishness in the focal deme. In our

structured version of this model it is more appropriate

to suppose that behaviour affects only fecundity and let

the population structure determine mortality through off-

spring recruitment. Thus, in a one-trait model, we would

take fecundity F to have the classic form

Fðx0; XÞ ¼ ðx0=XÞð1�XÞ, with other components of

fitness W determined by the population structure. In

fact, because of the internal symmetry of the island

model, a simple general result (Taylor 1992; P. D.

Taylor, D. Cownden & T. Lillicrap 2009, personal

communication) shows that the inclusive fitness effect

H(x) of the behaviour x is independent of offspring dis-

persal patterns and relatedness, and has the same sign

as the direct effect of focal behaviour on focal fecundity:

HðxÞ � dF

dx0

¼ @F

@x0

þ @F

@X

1

n
; ð2:2Þ

the second term providing the focal individual’s share of

the effect of average deme behaviour on focal fecundity.

Although relatedness in this model is not equal to 1/n,
Proc. R. Soc. B (2010)
but depends both on deme size n and offspring dispersal

rate d, we see that 1/n, in formula (2.2), plays a role

analogous to relatedness.

In our two-dimensional generalization of this model

(figure 4), a common resource (e.g. space) is exploited in

different ways for two distinct selfish purposes (e.g. acqui-

sition of food and shelter). The most interesting behaviour

occurs when cross-inhibition is more severe than self-

inhibition (i.e. the social cost of x is more inhibiting to

direct benefits of y than is the cost of y itself, and vice

versa; figure 4a,c). Under these conditions of maximal

trait interaction (here, interference) we again see the desta-

bilization of equilibria (appendix A, equation A 6) that are

independently stable in each constituent dimension.

However, now the destabilization occurs under

conditions of low relatedness, which in this explicit demo-

graphy can correspond to larger deme sizes. Specifically,

we find that in very small demes both traits can coexist

at low levels (figure 4c), but in larger demes one trait dom-

inates (excluding the rival trait), with the possibility of

bistability (e.g. n ¼ 5; figure 4a). As the importance of

cross-inhibition is reduced (figure 4b,d), we see greater

equilibrium stability (e.g. n ¼ 5; figure 4b), yet interference

is still manifested in the maximization of selfish trait y at

intermediate deme sizes (figure 4d) and intermediate

relatedness (electronic supplementary material, fig. S2).
3. DISCUSSION
Our analysis presents a simple and general framework for

the study of the joint evolution of multiple social traits.

We demonstrate the importance of analysing a complete

set of stability conditions for multidimensional social

dilemmas, as separate stability in each component

http://rspb.royalsocietypublishing.org/
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dimension can conceal multidimensional instability.

For the case of two interacting traits, we derive a two-

dimensional stability criterion dependent on relatedness

(appendix A, conditions A 6–A 7) that can be viewed as

a multidimensional extension of Hamilton’s rule. We

offer a number of examples to illustrate the general stab-

ility condition. Our general theoretical framework now

raises the vital empirical challenge of understanding the

nature of interactions among multiple social traits.

The synergistic interaction between matching pro-

duction and exploitation traits (figures 1 and 2) is likely

to be mirrored across many interacting social traits. In

the case of two synergistic productive traits, we can see

an analogous threshold between mutual restraint and

mutual production, illustrating again the potential for

bistable dynamics given multiple social dimensions

(figure 3b). The bistability between the presence of mul-

tiple social traits and the presence of none is consistent

with the co-inheritance of multiple virulence (exopro-

duct) genes in pathogenicity islands (Hacker & Kaper

2000; Nogueira et al. in press) and the co-regulation of

multiple public goods traits in quorum-sensing bacteria

(Miller & Bassler 2001), highlighting the potential
Proc. R. Soc. B (2010)
biomedical relevance of understanding multiple social

trait evolution in bacteria (Brown et al. in press).

Our focal example of the joint evolution of a pro-

duction and exploitation trait could be readily extended

to consider further interacting traits. For instance, invest-

ments in the production and subsequent exploitation of a

shared public good (figures 1 and 2) are likely to interact

with investment in defence of the public good (in a

microbial setting, investment in allelopathic traits such

as bacteriocins; Brown et al. 2009). When there are

more than two interacting traits, the system and the analy-

sis becomes more complicated. Given a stable asocial

boundary (all traits constrained by selection to zero),

the addition of further social dimensions trivially

diminishes the likelihood that the asocial limit remains

stable (simply as there are more ways to be social).

More subtly, as dimensions are added, the likelihood

that any particular dimension becomes social (i.e. non-

zero) increases, as evolution in an additional dimension

can potentially favour the elaboration of the initially con-

strained focal trait (for instance, in figure 1b, the focal

dimension x is constrained to zero when y ¼ 0; however,

unilateral elaboration of y from zero subsequently favours

http://rspb.royalsocietypublishing.org/
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elaboration of x). This illustration echoes and generalizes

Sober & Wilson’s (1998) argument that any mechanism

that leads to the emergence of affordable punishment

will allow the elaboration of a more costly, and therefore

previously constrained, cooperative trait (Sober &

Wilson 1998, p. 144).

Following escape from the asocial boundary, predict-

ing the ultimate system fate becomes more complex

with increasing dimensionality. As the number of traits

increases, the conditions for stability of any equilibrium

become more severe, but the number of equilibrium

points also generally increases. If the costs of large

values of all traits are prohibitive, the dynamical system

will stay bounded and has to go somewhere (converging

to a stable point or cycle, or exhibiting chaotic behaviour)

and the ecological systems that survive today are generally

those that have arrived at a stable convergence. It is likely

that such convergence has often wound up at the bound-

ary on which one or more potential traits have been lost

(although synergistic trait interactions will tend to

favour trait coexistence), so that the interesting question

becomes which behaviours are maintained in a particular

system. In this study we have begun to build a framework

in which this question might be studied.
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APPENDIX A. GENERAL METHODOLOGY
Let W(x0, y0, X, Y) be the fitness of an individual (x0, y0,)

in a neighbourhood (X, Y ). Then the inclusive fitness

effects of an x-increase and of a y-increase have the form:

Hðx; yÞ ¼ RxBxðx; yÞ � Cxðx; yÞ; ðA 1Þ

and

Kðx; yÞ ¼ RyByðx; yÞ � Cyðx; yÞ; ðA 2Þ

where

Cx ¼ �
@W

@x0

Bx ¼
@W

@X

Cy ¼ �
@W

@y0

By ¼
@W

@Y
;

ðA 3Þ

all derivatives evaluated at x0 ¼ X ¼ x, and y0 ¼ Y ¼ y

(Taylor & Frank 1996). The notation is chosen because,

in models of cooperative behaviour, C and B can be

regarded as a cost and a benefit. We allow the possibility

that the x- and y-relatedness are different. For example,

if x is a cooperative and y a selfish trait, the x-neighbour-

hood might be smaller than the y-neighbourhood. If

H(x, y) (or K(x, y)) is positive, selection will favour

higher values of x (or y). We write this as

RxBxðx; yÞ . Cxðx; yÞ
RyByðx; yÞ . Cyðx; yÞ

; ðA 4Þ

and we obtain the form of Hamilton’s (1964) classical

rule for each trait separately. There is an assumption

here of independence in x and y; that is, no genetic corre-

lation between them (individuals with high or low values

of one trait are neither more nor less likely to carry high or
Proc. R. Soc. B (2010)
low values of the other). Given this assumption, the con-

dition for a point (x*, y*) to be an evolutionary equilibrium

is that H(x, y) and K(x, y) be zero.

We now turn to the question of the stability of such an

equilibrium: what will happen to small departures from

(x*, y*)? The classical condition of convergence stability

(Christiansen 1991) is that Hx , 0 and Ky , 0 at

(x*, y*), where the subscript denotes partial derivative.

In this case, both x and y will be separately stable with

the other variable held fixed; that is, if the population-

wide values of x or y depart from equilibrium, selection

will favour those values closer to the equilibrium.

To account for the joint effect of departures in both

traits, we consider the dynamical system

dx

dt
¼ Hðx; yÞ

dy

dt
¼ Kðx; yÞ; ðA 5Þ

modelled after the standard adaptive dynamics (Leimar

in press). Note that a stationary point of the system

(H ¼ K ¼ 0) will be a point of evolutionary equilibrium.

For such a point to be dynamically stable (Otto & Day

2007), we first require that Hx , 0 and Ky , 0,

and these are the conditions (above) of separate conver-

gence stability, but we also require the additional

condition Hx Ky . Hy Kx that the linearized system have

positive determinant. If this fails, departures from equili-

brium in one variable can destabilize the other. This

condition can be written

aRxRy þ bxRx þ byRy þ c . 0; ðA 6Þ

where

a ¼ BxxByy � BxyByx;

bx ¼ BxyCyx � BxxCyy;

by ¼ ByxCxy � ByyCxx;

c ¼ CxxCyy � CxyCyx;

and (as above) the second subscript denotes partial

derivative. When the two interaction neighbourhoods

are the same, Rx ¼ Ry ¼ R, condition (A 5) becomes

aR2 þ bRþ c . 0; ðA 7Þ

where b ¼ bx þ by .
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T. Székely, J. Komdeur & A. J. Moore). Cambridge,
UK: Cambridge University Press.

West, S. A., Pen, I. & Griffin, A. S. 2002 Cooperation and
competition between relatives. Science 296, 72–75.

(doi:10.1126/science.1065507)
West, S. A., Griffin, A. S. & Gardner, A. 2007 Social seman-

tics: altruism, cooperation, mutualism, strong reciprocity
and group selection. J. Evol. Biol. 20, 415–432. (doi:10.
1111/j.1420-9101.2006.01258.x)

http://dx.doi.org/doi:10.1086/285203
http://dx.doi.org/doi:10.1007/BF02409751
http://dx.doi.org/doi:10.1007/BF02409751
http://dx.doi.org/doi:10.1038/415137a
http://dx.doi.org/doi:10.1098/rspb.1994.0156
http://dx.doi.org/doi:10.1038/377520a0
http://dx.doi.org/doi:10.1086/425623
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01104.x
http://dx.doi.org/doi:10.1038/nature02744
http://dx.doi.org/doi:10.1146/annurev.micro.54.1.641
http://dx.doi.org/doi:10.1016/0022-5193(64)90038-4
http://dx.doi.org/doi:10.1016/0022-5193(64)90038-4
http://dx.doi.org/doi:10.1038/2281218a0
http://dx.doi.org/doi:10.1038/2281218a0
http://dx.doi.org/doi:10.1038/269578a0
http://dx.doi.org/doi:10.1186/1471-2148-8-238
http://dx.doi.org/doi:10.1186/1471-2148-8-238
http://dx.doi.org/doi:10.1038/nature04387
http://dx.doi.org/doi:10.1038/nature04387
http://dx.doi.org/doi:10.1086/427090
http://dx.doi.org/doi:10.1098/rspb.2008.0842
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/doi:10.1111/j.1461-0248.2007.01132.x
http://dx.doi.org/doi:10.1111/j.1461-0248.2007.01132.x
http://dx.doi.org/doi:10.1146/annurev.micro.55.1.165
http://dx.doi.org/doi:10.1146/annurev.micro.55.1.165
http://dx.doi.org/doi:10.1086/323114
http://dx.doi.org/doi:10.1073/pnas.0335420100
http://dx.doi.org/doi:10.1016/j.tree.2009.02.009
http://dx.doi.org/doi:10.1016/j.tree.2009.02.009
http://dx.doi.org/doi:10.1046/j.1420-9101.2000.00219.x
http://dx.doi.org/doi:10.1111/j.1558-5646.2007.00191.x
http://dx.doi.org/doi:10.1016/j.tpb.2008.03.002
http://dx.doi.org/doi:10.1007/BF02270971
http://dx.doi.org/doi:10.1007/BF02270971
http://dx.doi.org/doi:10.1006/jtbi.1996.0075
http://dx.doi.org/doi:10.1006/jtbi.1996.0075
http://dx.doi.org/doi:10.1016/j.jtbi.2007.07.006
http://dx.doi.org/doi:10.1016/j.jtbi.2007.07.006
http://dx.doi.org/doi:10.1038/444050a
http://dx.doi.org/doi:10.1086/425223
http://dx.doi.org/doi:10.1126/science.1065507
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01258.x
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01258.x
http://rspb.royalsocietypublishing.org/


1   

Supplementary Materials 

Joint evolution of multiple social traits - a kin selection analysis 

 

Sam P. Brown
1
, Peter D. Taylor

2
 

 

1
Department of Zoology, University of Oxford, South Parks Rd, Oxford OX1 3PS, UK. 

2
Department of Math and Stats, Queen’s University, Kingston ON K7L 3N6, Canada 

 

1. Two interacting public goods traits (figure 3) 

We begin by analysing the simplest fitness function explored in our paper 

 

W(x0, y0, X, Y)  = pX + qY + sXY – cx0
2
 – ky0

2
 

 

representing the costs and benefits of investment into two costly public goods traits x and 

y (with independent social benefits p and q, and direct costs c and k). The presence of 

both public goods together can lead to increased (synergy, s > 0) or decreased 

(interference, s < 0) rewards.  

 

Using appendix equations (1-3), the inclusive fitness effects of an x-increase and of a y-

increase are  

H(x, y)  =  R(p+sy) – 2cx        (S1) 

K(x, y)  =  R(q+sx) – 2ky        (S2) 

(for simplicity, we assume Rx = Ry = R). 

 

The dynamical system (appendix eqn 5) describing the joint evolution of both traits, 

),( yxH
dt

dx
= , ),( yxK

dt

dy
= , can be analysed by inspection of the Jacobian matrix (Otto & 

Day 2007) 
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where the subscripts denote partial derivative. The single stationary point (evolutionary 

equilibrium) in this linear dynamical system is defined by H(x*, y*) = K(x*, y*) = 0, 

yielding 

 

 (x* =

! 

R(2pk + Rqs)

4ck " (Rs)
2

 , y* = 

! 

R(2qc + Rps)

4ck " (Rs)
2

)      (S3) 

 

Note that at this point we have Hx < 0  and  Ky  < 0 thus both x* and y* will be separately 

convergence stable with the other variable held fixed.  However, these conditions are not 

enough to guarantee that (x*, y*) is a stable point of the dynamical system.  This requires 

the additional condition that the linearized system have positive determinant (i.e. Hx Ky – 

Hy Kx  >  0, appendix), which gives the condition 4ck > (Rs)
2
.  Therefore, given trait 

independence (s = 0), the two public goods traits remain stable in a joint-evolving 

system. However, given any form of interaction (s ! 0), the evolutionary equilibrium is 

increasingly unlikely to be stable with increasing relatedness.  

 

Figure 3 provides an illustration of model S1 for neutral, synergistic and interference 

forms of interaction.  

 

2. Production and exploitation (figures 1,2) 

 

We now return to the model presented in figures 1-2,  

W = 0
2
0

0

)(

)(
ykxk

kY

Xy
yx !!

+

+

"

#
         (S4) 

Using appendix equations (1-3), the inclusive fitness effects of an x-increase and of a y-

increase are 
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(for simplicity, we assume Rx = Ry = R) 
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Solving 

! 

dx

dt
=
dy

dt
= 0  for x=x* and y=y* we find three equilibria, of which those in the 

positive quadrant (at most two at a time) are plotted as a function of relatedness in figure 

2 (the solutions were found using Mathematica, yielding expressions too long to be 

informative, and are not shown). The stability of these equilibria can be assessed by 

inspection of the Jacobian matrix 
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where subscripted H and K denote partial derivatives. Note that Hx  and  Ky are negative 

for any positive x and y, so all candidate (x*, y*) equilibria will be separately 

convergence stable (Christiansen 1991) with the other variable held fixed, ie  the 

nullclines (blue and red lines in fig 1a,b) are attractors (true for all plotted nullclines). 

However, these conditions are not enough to guarantee that (x*, y*) is a stable point of 

the dynamical system (appendix eqn 5); this requires the additional condition that the 

linearized system have positive determinant (i.e. Hx Ky – Hy Kx  >  0). A numerical 

examination of the determinant of J(x*, y*) for each candidate equilibrium in the positive 

quadrant allows the further discrimination between stable (solid lines) and unstable 

(dotted lines) equilibria, as illustrated in figure 2. We illustrate this numerical 

examination in figure S1 (defining the stability of equilibria presented in figure 2a).  

 

3. Interference among selfish traits (figure 4) 

 

Finally, we analyse the model appearing in Figure 4, a two-dimensional generalization of 

Frank’s (1994) model of the evolution of selfishness. In Frank’s (1994) model for the 

evolution of a single selfish trait x, fitness is 

! 

W (x0,X) =
x0

X
(1" X) , with ESS x* = 1 – R, i.e. 

relatedness favours restraint from selfish competition. In our two-dimensional 

generalization of this model, a common resource (e.g. space) is exploited in different 

ways for two distinct selfish purposes x and y (e.g. acquisition of food and shelter). In 

figure 4, we analyse this model in an explicit demographic setting, an infinite island 
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model with demes of size n and non-overlapping generations. Focal fecundity (not 

fitness) in our example becomes  

 

! 

F =
x0

X
(1" k1X " k2Y ) +

y0

Y
(1" k3X " k4Y ) " k5x0

2
" k6y0

2        (S7) 

 

with x, y interactions generated by the mutual inhibition of competitive rewards, driven 

by k2 and k3 (the additional direct cost terms k5 and k6 are added to demonstrate behaviour 

in a non-linear system). Following Taylor (1992) and Taylor et al. (submitted), the 

inclusive fitness effects of an x-increase and of a y-increase are now 

! 

H (x, y) =
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+
"F
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1
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xn
    (S8) 

! 

K (x, y) =
"F

"y0
+
"F

"Y

1

n
=
k2y # k3x +1+ n(1# y(k4 + 2k6y) # k3x)

yn
    (S9) 

 

Solving 

! 

dx

dt
=
dy

dt
= 0  for x=x* and y=y*, we find four equilibria, of which those in the 

positive quadrant are plotted as a function of deme size in figure 4 (the solutions were 

found using Mathematica, yielding expressions too long to be informative, and are not 

shown). The stability of these equilibria can be assessed by inspection of the Jacobian 

matrix  
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where subscripts denote partial derivatives  

 

In keeping with our earlier example cases, we can also analyse our two-dimensional 

selfish trait example as an open model, with focal fitness (now encompassing both 

fecundity and mortality) 
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! 

W =
x0

X
(1" k1X " k2Y ) +

y0

Y
(1" k3X " k4Y ) " k5x0

2
" k6y0

2       (S10) 

 

Using appendix equations (1-3), the inclusive fitness effects of an x-increase and of a y-

increase are now 

H(x, y)  = 
x

ykxkRykxkkx )1()2(1 23251 !+!!+!
     (S11) 

K(x, y)  =
y

xkykRxkykky )1()2(1 32364 !+!!+!
     (S12) 

(for simplicity, we assume Rx = Ry = R) 

 

Solving 

! 

dx

dt
=
dy

dt
= 0  for x=x* and y=y*, we again find four equilibria, of which those in 

the positive quadrant are now plotted as a function of relatedness in figure S2a,d (the 

solutions were found using Mathematica, yielding expressions too long to be informative, 

and are not shown). The stability of these equilibria can be assessed by inspection of the 

Jacobian matrix  
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where subscripts denote partial derivatives. For example in fig. S2 we numerically 

examine the trace and determinant of J(x*, y*)for the equilibria illustrated in fig. S2a,d, to 

distinguish stable from unstable equilibria.  
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Supplementary Figures 

 

Figure S1. Numerical stability analysis of the public goods model (eqn S4) presented 

in figure 2a. (a) the stable equilibrium. (b) the positive determinant of the stable 

equilibrium. (c) the unstable equilibrium. (d). the negative determinant of the unstable 

equilibrium. The two equilibria sketched in panels (a,c) are combined in figure 2a. Model 

and parameters as for figure 2a.  

 

Figure S2. Numerical stability analysis of the selfishness model (eqn S10). (a) the 

unstable equilibrium. (b) the negative determinant of the unstable equilibrium. (c) the 

negative trace of the unstable equilibrium. (d) the stable equilibrium. (e) the positive 

determinant of the stable equilibrium. (f) the negative trace of the stable equilibrium.  The 

two equilibria sketched in panels (a,d) are the ‘open model’ analogue of the results in 

figure 4c, with population structure here defined by a relatedness parameter of R = 0.2, 

instead of a deme size of n = 5. All other parameters as for figure 4c.  
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Figure S2. 

Out[107]=

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0

1.2

!x!, y!" a

0.2 0.4 0.6 0.8 1.0
r

"1.0

"0.8

"0.6

"0.4

"0.2

0.0

det

b

0.2 0.4 0.6 0.8 1.0
r

"3.0

"2.5

"2.0

"1.5

"1.0

"0.5

0.0

trace

c

0.0 0.2 0.4 0.6 0.8 1.0
r0.0

0.2

0.4

0.6

0.8

1.0

1.2

!x!, y!" d

0.2 0.4 0.6 0.8 1.0
r

5

10

15

20

det

e

0.2 0.4 0.6 0.8 1.0
r

"20

"15

"10

"5

trace

f

a b
c

d  e  f

R

R R

R R

R

x*, y*

x*, y*


	Joint evolution of multiple social traits: a kin selection analysis
	Introduction
	Results
	Production and exploitation
	Synergistic and antagonistic interactions among social traits

	Discussion
	We thank Angus Buckling, Andy Gardner, Sébastien Lion, Craig Maclean, Daniel Rankin, François Taddei and Stuart West for helpful discussions and/or comments on an earlier draft. We thank the Wellcome Trust (S.P.B.) and the Leverhulme Foundation (P.D.T.) for financial support.
	Appendix A. General methodology
	References


