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Abstract

We investigate the evolution of sex allocation and dispersal in a two-habitat environment using a game theoretic analysis. One habitat

is of better quality than the other and increased habitat quality influences the competitive ability of offspring in a sex-specific manner.

Unlike previous work, we allow incomplete mixing of the population during mating. We discuss three special cases involving the

evolution of sex allocation under fixed levels of dispersal between habitats. In these special cases, stable sex-allocation behaviors can be

both biased and unbiased. When sex-allocation behavior and dispersal rates co-evolve we identify two basic outcomes. First—when sex-

specific differences in the consequences of spatial heterogeneity are large—we predict the evolution of biased sex-allocation behavior in

both habitats, with dispersal by males in one direction and dispersal by females in the other direction. Second—when sex-specific

differences are small—unbiased sex-allocation is predicted with no dispersal between habitats.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Models of sex allocation address the question of how
best to divide a fixed investment between male and female
components of fitness. In a dioecious species, sex allocation
usually refers to the tradeoff between the production of
sons and the production of daughters (in a brood of fixed
size, a parent cannot choose to rear a son without also
choosing not to rear a daughter). Alternatively, in a
hermaphrodite, sex allocation might refer to the tradeoff
between the production of male and female reproductive
structures.

Under certain conditions, gains made through invest-
ment in male components of fitness can exceed those made
through an identical investment in female components, and
vice versa. In turn, such differences can lead to the
evolution of biased sex allocation (e.g. Trivers and Willard,
1973; Maynard Smith, 1980; Frank, 1987).

A spatially heterogeneous environment is one way by
which sex-differences in fitness gains might come to be
e front matter r 2005 Elsevier Inc. All rights reserved.
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established, provided spatial heterogeneity has different
consequences for males and females. In fact, a spatially
heterogeneous environment—consisting of patches of
differing quality—has been a popular theoretical tool for
investigating the consequences of sex-specific fitness gains
for the evolution of sex allocation behavior (e.g. Charnov,
1979; Bull, 1981; Yamaguchi, 1985; Werren and Simbo-
lotti, 1989; Ikawa et al., 1993; Wade et al., 2003).
Despite the prominence of spatial heterogeneity, many

models only consider specific patterns of dispersal
(Charnov, 1979; Bull, 1981; Yamaguchi, 1985; Werren
and Simbolotti, 1989; Ikawa et al., 1993; Leimar, 1996;
Wade et al., 2003). Furthermore, the influence of the co-
evolution of dispersal has remained largely unexplored.
Previous work has demonstrated that dispersal behavior
that is in some sense ‘‘costly’’ cannot be maintained by
selection in a spatially heterogeneous but temporally
constant environment, under most conditions (Comins
et al., 1980; Hastings, 1983; Greenwood-Lee and Taylor,
2001). However, some forms of costly dispersal can be
maintained over evolutionary time when populations are
class-structured; but in these cases only certain patterns of
dispersal can evolve (Greenwood-Lee and Taylor, 2001).

www.elsevier.com/locate/tpb
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Table 1

Summary of notation used in the main text

Symbol Explanation

det The determinant of a matrix

d/dx Derivative of a function of a single variable x

q/qx Partial derivative with respect to variable x

rx Gradient operator (q/qx1,y,q/qxk)

aij # of class-i offspring of a class-j individual, weighted by

genetic contribution

A ¼ JaijJi,j ¼ 1,y,4, the class transition matrix

aq Proportion of brood that the mutant devotes to sons in

habitat of quality q

bq Proportion of brood that the resident devotes to sons in

habitat of quality q

b Index for quantities associated with the poor quality habitat

c Prop’n of dispersal pool that fails to reach its destination, the

cost of dispersal

dsq Probability that a resident sex-s offspring disperses from

habitat of quality q

dsq Probability that a mutant sex-s offspring disperses from

habitat of quality q

f Index for quantities associated with females

Fq Effective number of females in mating pool of type-q habitat

g Index for quantities associated with good quality habitat

G Matrix of additive genetic variances and covariances

(assumed to be the identity matrix)

I The identity matrix

i,j Index quantities associated with class-i or j; i, j ¼ 1,y,4, or i,

j ¼ sq

K Brood size

m Index for quantities associated with males

m Joint sex-allocation/dispersal reaction norm describing

mutant behavior

Mq Effective number of males in mating pool of type-q habitat

nq Large number of breeding sites available in type-q habitat

p Frequency distribution of mutant across classes

q Indexes quantities associated with habitat quality, q ¼ g, b

r Joint sex-allocation/dispersal reaction norm describing

resident behavior

s Indexes quantities associated with sex, s ¼ m, f

t ‘‘Ecological time,’’ t ¼ 1 corresponds to one generation

t ‘‘Evolutionary time’’

ws Competitive weight given to sex-s offspring born in the good

habitat, we assume wm4wf 41.

W Mutant fitness function
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The existence of different sexes and sex-specific dispersal
provides the class structure necessary for dispersal to
evolve. In turn, we expect sex-specific dispersal patterns to
have important implications for adaptive sex-allocation
behavior in a spatially heterogeneous environment.

In this paper, improved habitat quality results in the
improved success of offspring but we assume that the
extent of the improved success is sex-specific. Our main
goal is to investigate how predictions about patterns of sex
allocation change in a spatially heterogeneous environment
when there is partial dispersal among habitat patches. For
the reasons outlined above, we are particularly interested in
models where sex allocation behavior and dispersal are
both influenced by selection.

We build a game theoretic model and search for stable
sex-allocation and dispersal behaviors. We assume that
sex-allocation behavior is conditional upon local habitat
quality and that dispersal behavior is conditional upon
both local habitat quality and sex. Our main finding
describes how environmental heterogeneity and the evolu-
tion of dispersal rates contribute to the evolution of
different stable levels of sex-allocation. Our co-evolution-
ary approach offers insight into the practical application of
competing hypotheses of sex-allocation evolution, and
highlights some important features of the evolution of
dispersal in a spatially heterogeneous environment.

2. Model life cycle

All notation used in the description of the model below is
summarized in Table 1. We consider a dioecious species
undergoing discrete, non-overlapping, and we suppose that
its population is separated into two patches of habitat
connected by dispersal of offspring.

As is typical of the game theoretic approach, we focus on
the overall fitness of a rare ‘‘mutant’’ reaction norm in a
population of individuals using the ‘‘resident’’ reaction norm.

We assume that offspring produced on one habitat
(the ‘‘good’’ habitat) are more vigorous competitors
than offspring produced in the other habitat (the ‘‘bad’’
habitat). Let ws41 denote the competitive ability of a sex
s ¼ m, f individual born on the good patch, measured
relative to the competitive ability of a same-sex individual
born on the bad patch. Male–male competition occurs for
mates, whereas female–female competition occurs for
breeding sites. For simplicity we consider only cases where
wm4wf ; i.e. where the advantage of being raised in the
good habitat is more substantial for males than for females.

We assume that the habitat of quality q supports a large
number of breeding sites nq (where q ¼ g if good, and q ¼ b

if bad). We assume further that nq is constant over time,
and is large enough to allow us to disregard kin selection.
The way in which kin-selection operates on the evolution
of sex allocation and its co-evolution with dispersal has
been explored elsewhere and is well understood (Taylor,
1988, 1994, 1995; Leturque and Rousset, 2003; Wild and
Taylor, 2004).
Fig. 1 depicts the model life cycle. A given generation is
begun with the birth of offspring. Each female in the
population produces K offspring, where K is very large. On
average, a proportion bq of the offspring of a resident
female in a type-q habitat is devoted to sons. We denote the
same proportion for a mutant female as aq. We assume that
these ‘‘sex-allocation behaviors’’ are under maternal
control (i.e. due to maternal genotype).
Following birth, all adults die, and offspring disperse.

We assume that offspring dispersal behavior is controlled
by the offspring itself. A resident sex-s offspring leaves
a patch of quality q (to compete on the other patch)
with probability dsq, independent of others in its cohort.
The analogous probability for mutant is dsq. Dispersal
is costly, and a proportion c of dispersing individuals
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Fig. 1. A schematic depicting the life cycle considered by the model.
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is removed from the dispersal pool, on average.
Patch-specific mating pools form immediately after
dispersal.

Each female is fertilized by one male in the local mating
pool. In contrast, males must compete for their mates; and
males are not equally competitive in this respect. More-
over, from the perspective of a male, not all mates are
equally desirable: winning a mating with a female raised in
the bad habitat is not as valuable as winning a mating with
one raised in the good habitat. In order to discuss the
mating success of males, then, we must consider effective
numbers of same-sex competitors (i.e. number of compe-
titors weighted by competitive ability, wm) and effective
numbers of mates (i.e. number of female mates weighted by
competitive ability, wf). In short, we seek to calculate the
expected effective number of matings. Let

Mg ¼ K ½wmngbgð1� dmgÞ þ nbbbdmbð1� cÞ�, (1a)

Mb ¼ K ½nbbbð1� dmbÞ þ wmngbgdmgð1� cÞ� (1b)

be the effective number of males competing in the mating
pools of the good and bad habitats, respectively; and let

Fg ¼ K ½wf ngð1� bgÞð1� dfgÞ þ nbð1� bbÞdfbð1� cÞ�, (2a)

Fb ¼ K ½nbð1� bbÞð1� dfbÞ þ wf ngð1� bgÞdfgð1� cÞ� (2b)

be the effective number of receptive females in the mating
pools of the good and bad habitats, respectively. It follows
that a male, reared in the good habitat, but competing in
the type-q habitat expects

wmF q=Mq ðq ¼ g; bÞ (3)
effective matings. Similarly, a male reared in the bad
habitat, but competing in the type-q habitat, expects

Fq=Mq ðq ¼ g; bÞ (4)

effective matings.
After mating, fertilized females in a type-q habitat

compete with one another for one of nq breeding
opportunities. Since F q can also be interpreted as the
effective number of females competing in the type-q
habitat, we have that the expected reproductive success of
a female raised in the good habitat but competing in the
type-q habitat is

wf nq=F q ðq ¼ g; bÞ. (5)

Likewise, the expected reproductive success of a female
raised in the bad habitat but competing in the type-q
habitat is

nq=F q ðq ¼ g; bÞ. (6)

Because the competition for breeding opportunities
occurs among fertilized females, not all of the matings
won by a male translate into reproductive success. To
determine the reproductive success of males, then, we
normalize (3) and (4) by multiplying these by nq=Fq,
respectively. That is to say, the reproductive success of a
male produced in the good habitat and competing in the
type-q habitat is

ðwmFq=MqÞðnq=F qÞ ¼ wmnq=Mq ðq ¼ g; bÞ (7)

and that of a male raised in the bad habitat and competing
in the type-q habitat is

ðF q=MqÞðnq=F qÞ ¼ nq=Mq ðq ¼ g; bÞ. (8)

Eqs. (5)–(8) will be used in the calculation of fitness,
below.

3. Mutant fitness and evolutionary dynamics

We use the class-structured approach described in
Taylor (1990), and in Taylor and Frank (1996). If a census
is taken at birth (Fig. 1), individuals can be placed into one
of four categories (i.e. classes): class 1 ¼ female on the
good patch; class 2 ¼ male on the good patch; class
3 ¼ female on the bad patch; and class 4 ¼ male on the bad
patch. When it is convenient to do so, we will use fg ¼ 1,

mg ¼ 2, fb ¼ 3, and mb ¼ 4 to index classes.
To calculate mutant fitness, in general, we introduce the

mutant sex-allocation/dispersal reaction norm

m ¼ ðag; ab; dfg; dmg; dfb; dmbÞ (9)

at low frequency, to a resident population whose average
behaviors are described by

r ¼ ðbg; bb; dfg; dmg; dfb; dmbÞ. (10)

Our measure of mutant fitness, W is related to
the initial rate of increase of a small subpopulation
of mutants. When computing W, we will assume that
(i) the resident population is at demographic equilibrium,



ARTICLE IN PRESS

Table 2

Description of the transition matrix, A(m, r) ¼ Jaij(m, r)J

Kð1� agÞð1� dfgÞwf ng=2Fg Kð1� bgÞð1� dmgÞwmng=2Mg Kð1� agÞð1� cÞdfbng=2Fg Kð1� bgÞð1� cÞdmbng=2Mg

Kagð1� dfgÞwf ng=2Fg Kbgð1� dmgÞwmng=2Mg Kagð1� cÞdfbng=2Fg Kbgð1� cÞdmbng=2Mg

Kð1� abÞð1� cÞdfgwf nb=2Fb Kð1� bbÞð1� cÞdmgwmnb=2Mb Kð1� abÞð1� dfbÞnb=2Fb Kð1� bbÞð1� dmbÞnb=2Mb

Kabð1� cÞdfgwf nb=2Fb Kbbð1� cÞdmgwmnb=2Mb Kabð1� dfbÞnb=2F b Kbbð1� dmbÞnb=2Mb
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�
�
�
�
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(ii) the distribution of mutants across classes is the
same as that for the resident, and (iii) selection
is weak. These assumptions are standard in game-
theoretic analyses of class-structured populations (e.g.
Taylor, 1990).

Let aijðm; rÞ denote the expected number of class-i
offspring of a class-j mutant, weighted by genetic
contribution. We determine expressions for these expecta-
tions following the model life cycle outlined above
(Fig. 1). To compute a11ðm; rÞ, for instance, we note that
a mutant female born in the good habitat (i) does not
disperse with probability (1� dfg), (ii) is mated exactly
once, (iii) competes successfully for wf ng=F g breeding
opportunities in the good habitat, and (iv) expects a
proportion (1� ag) of her K offspring to be daughters. It
follows that

a11ðm; rÞ ¼ ð1=2ÞKð1� agÞð1� dfgÞwf ng=F g, (11)

where 1/2 weights the daughters by the genetic contribution
of their mother.

We compute other aij’s (15 others, 16 in total, see
Table 2), and summarize them with the positive matrix-
valued function

Aðm; rÞ ¼ aijðm; rÞ
�
�

�
�

�
�

�
� i; j ¼ 1; . . . ; 4. (12)

If p(t) is the vector whose ith entry is the frequency of the
mutant in class i at the beginning of generation t, the
dynamics of the small mutant subpopulation are described
by

pðtþ 1Þ ¼ Aðm; rÞpðtÞ. (13)

Mutant fitness, then, is correctly expressed as the leading
eigenvalue of A(m, r) (Metz et al., 1992).

Computing the leading eigenvalue of a 4� 4 matrix-
valued function is often very difficult. Therefore, we opt for
the alternative fitness expression based on one proposed by
Courteau and Lessard (2000):

W ðm; rÞ ¼ � det½Aðm; rÞ � I�, (14)

where I is the 4� 4 matrix identity matrix (see also Taylor
and Bulmer, 1980; Maynard Smith, 1982).

Our game theoretic analysis will rely on the so-called
‘‘selection gradient’’ defined by the vector

rmW ðrÞ ¼ ðqW=qag; qW=qab; qW=qdfg,

qW=qdmg; qW=qdfb; qW=qdmbÞm¼r. ð15Þ
We use (15) in the following dynamical description of the
evolution of r:

dr=dt ¼ GrmW ðrÞ, (16)

where t ¼ 1 represents one unit of evolutionary time, and
G is a matrix whose diagonal entries give the additive
genetic variance found in the component traits, and whose
off-diagonal entries give the additive genetic covariance
between pairs of component traits (Abrams et al., 1993;
Day and Taylor, 2003).
An ‘‘evolutionarily stable reaction norm’’ will be under-

stood as an asymptotically stable equilibrium of (16)
with the additional property that no rare mutant using
m will have a rate-of-increase strictly greater than one
(the ‘‘Nash condition’’). For simplicity, we will assume G is
the 6� 6 identity matrix. In general, G will not be the
identity matrix, which means that, in general, genetic
constraints will yield equilibria other than those we study
here (i.e. other than points at which the selection gradient
vanishes).
We checked asymptotic stability of equilibria following

the standard mathematical techniques from the theory
of dynamical systems (e.g. Hofbauer and Sigmund,
1988; see Appendices A and B). We will deal with the
Nash condition with a heuristic argument set out in
Appendix A.

4. Special cases with fixed dispersal

Our purpose in this section is to connect our model with
previous theoretical results. Setting dsq ¼ dsq (s ¼ m, f and
q ¼ g; b) in Table 2, reduces our model to one that
describes the evolution of sex-allocation behavior, alone.
In this reduced model, dispersal behavior is considered to
be a parameter, and mutants are permitted to deviate only
from the resident sex-allocation behaviors, bg and bb. We
need only consider two of the equations from the six-
dimensional system (16):

dbq=dt ¼ qW=qaqjm¼r ðq ¼ g; bÞ. (17)

4.1. Case 1: no dispersal between habitats

When dispersal parameters are all set equal to zero A is a
block-diagonal matrix and the model describes the evolu-
tion of sex-allocation behavior in two isolated habitats. In
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Table 3

Summary of evolutionarily stable sex-allocation behaviors in a hetero-

geneous environment when the habitat on which an offspring competes is
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this case stable sex-allocation behaviors are bg ¼ bb ¼ 1=2.
This corresponds to Fisher’s (1930) classical result for the
evolution of the unbiased sex ratio.
independent of its natal habitat. Note that dispersal does not evolve

nb=ngowf owm wf onb=ngowm wf owmonb=ng

bg ½1þ nb=wf ng�=2 1 1

bb 0 0 [1� wmng=nb]/2
4.2. Case 2: no dispersal by one sex

In many animal taxa one sex is often described as being
more ‘‘philopatric’’ while the other is described as being
more ‘‘dispersive’’ (Greenwood, 1980). We consider an
extreme instance of this pattern of sex-specific dispersal in
which one sex does not disperse (dispersal by the opposite
sex, conditional on habitat quality, is fixed at some
arbitrary level). In both cases—either dmq ¼ 0, or
dfq ¼ 0ðq ¼ g; bÞ—we find stable sex-allocation behaviors,
bg ¼ bb ¼ 1=2. This result generalizes an earlier result
about the evolution of unbiased sex allocation in a patchy,
but otherwise homogeneous landscape (Kirkpatrick and
Bull, 1987).
4.3. Case 3: all dispersal parameters equal 1/(2�c)

Setting all dispersal parameters equal to 1/(2�c) yields a
scenario in which the probability that an offspring
competes in a type-q habitat is independent of its
birthplace. This case corresponds to models studied
previously by Charnov (1979) and Bull (1981), where (i)
the global population is well-mixed at the time of mating,
Good Habitat
Patches

Bad Habitat
Patches

Females arrive

at new site

Mating in a global mating pool

Birth Birth

(Census pop’n)

Females leave mating pool

Females arrive

at new site

Fig. 2. A schematic depicting the life cycle considered in previous models

for the evolution of sex allocation in a heterogeneous environment. In

these models, we often think of the environment as being divided into

many habitat patches. Some patches are of high quality (good habitat

patches), others are of low quality (bad habitat patches).
and (ii) all fertilized females encounter the various habitat
types with the same probability (Fig. 2).
We identify three possible outcomes for the evolution of

bg and bb in this case. As expected, each outcome has been
previously identified by both Charnov (1979), and Bull
(1981). Table 3 shows that habitat-dependent sex-alloca-
tion is always biased in favor of one or the other sex, and
that there is always at least one habitat in which pure-sex
broods are produced. The direction of sex-allocation bias
in a given habitat depends on inequality relationships
between the parameters wm and wf , and the ratio nb=ng (see
Table 3).

5. Co-evolution of sex allocation and dispersal

5.1. Preliminaries

Analysis of the complete six-dimensional system (16) is
simplified by four observations. Each observation is
justified in the appendix using an argument based on
reproductive value (RV) (i.e. genetic contribution to the
population in the distant future).
Suppose the population has reached an evolutionarily

stable state. It follows that:
1.
 One-way dispersal does not occur;
a single sex does not exhibit bi-directional dispersal.
2.
 At this point we note either (a) patches are not
connected by dispersal (i.e. ‘‘isolated’’), or (b) they are
connected through dispersal by males in one direction
and dispersal by females in the opposite direction. The
third and fourth observations, respectively, provide
details about the patterns of dispersal and sex alloca-
tion we expect in a population that has reached an
evolutionarily stable state.
3.
 If the two habitats are connected by dispersal, then it
must be that males disperse from the good habitat
to bad, and females disperse from the bad habitat
to good. In addition, evolutionary stability requires
wmð12cÞXwf =ð12cÞ.
4.
 If mothers in both habitats produce broods of mixed
sex, and if habitats are connected by dispersal, then
wmð12cÞ ¼ wf =ð12cÞ.

We regard the case in which wmð12cÞ ¼ wf =ð12cÞ as
structurally unstable, that is to say a small perturbation in
the parameters leads to one of four generic scenarios
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outlined below. In the first three scenarios, habitats
are connected by dispersal and extreme sex-allocation
behaviors are found in at least one habitat (Fig. 3a–c,
appendix). In the fourth scenario, when wmð12cÞowf =
ð12cÞ, dispersal between habitats does not occur and sex-
allocation behavior is unbiased (Fig. 3d).

5.2. Evolutionarily stable behaviors

When wmð12cÞ4wf =ð12cÞ the co-evolution of sex
allocation and dispersal results in one of Figs. 3a–c.
m

m

f

m

f

f
m

f

m

f

m

f

m

m

m

f

f

f

(a)

(b)

(c)

(d)

Good Habitat Bad Habitat

Fig. 3. A schematic depicting four generic outcomes for the co-evolution

of sex-allocation behavior and dispersal. Sexes found in the broods

produced in a given habitat are indicated inside a circle. The dispersive sex

in a given habitat is written above the arrow indicating the direction of

dispersal.

Table 4

Summary of evolutionarily stable sex-allocation and dispersal behaviors in a h

nb=ngowf =ð1� cÞowmð1� cÞ wf =ð1� cÞo
Fig. 3a Fig. 3b

bg ½1þ nbð1� cÞ=wf ng�=2 1

bb 0 0

df g 0 NA

dmg nbð1� cÞ=½wf ng þ nbð1� cÞ� 1
2

dfb
1
2

1
2

dmb NA NA

NA ¼ not applicable, selection cannot act on dispersal rate because it is not e
Table 4 presents expressions for the stable equilibrium sex-
allocation/dispersal behaviors in each case.
There are two noteworthy features of Table 4. First, we

find sex-allocation behavior almost identical to that for
the models studied by Charnov (1979) and Bull (1981)—the
exception being that wsð12cÞorws=ð12cÞ have taken
the place of ws, s ¼ m, f (cf. Table 3). Second, we see a
stable pattern of dispersal that is quite different from the
dispersal pattern assumed in the model summarized by
Table 3, i.e. dsq ¼ 1=ð22cÞ. Since this precise dispersal
pattern cannot be recovered in the co-evolutionary model
with costly dispersal, we do not, strictly speaking, regard
the result presented in Table 4 as a generalization of those
in Table 3.
Although the expressions wf =ð12cÞ and wmð12cÞ might

seem strange, they do have a biological interpretation.
Think of same-sex competition as a lottery, with the winner
being awarded either a mate, or a breeding site. For every
lottery ticket given to a male (respectively, female) born in
the bad habitat, wm (respectively, wf ) are given to a same-
sex competitor born in the good habitat. But, since bi-
directional dispersal by one sex is not stable, wm and wf do
not represent the true advantage enjoyed by individuals in
the lottery born into a good habitat. Recall that the lottery
occurs after costly dispersal and an individual who
disperses must forfeit a proportion c of his/her tickets.
Relative to a (philopatric) competitor in the bad habitat, a
male who leaves the good habitat, has only wmð12cÞ tickets
in the lottery. Similarly, relative to a (dispersive) compe-
titor from the bad habitat—namely a female who remains
in the good habitat—has wf =ð12cÞ tickets in the lottery. In
short, costly dispersal modifies the realized advantage of
being born in a good habitat.
Let us now try to further develop our intuition about

the results summarized by Table 4. Consider the middle
column of Table 4. Why might we expect the evolution
of dispersal rates equal to 1/2, when bg ¼ 1 and bb ¼ 0?
The answer is not immediately clear. To be specific,
suppose nb ¼ 2ng, and wf =ð12cÞo2owmð12cÞ. In this
case, male-advantage in the good habitat is strong
enough to encourage complete investment in sons here.
In contrast, the corresponding female-advantage is weak
enough to favor mothers in bad habitat who produce
eterogeneous environment when the difference between wm and wf is large

nb=ngowmð1� cÞ wf =ð1� cÞowmð1� cÞonb=ng

Fig. 3c

1

½1� wmð1� cÞng=nb�=2
NA
1
2

wmð1� cÞng=½wmð1� cÞng þ nb�

0

xpressed.
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only daughters. By assumption, the bad habitat provides
twice as many breeding opportunities as the good
habitat. Does it not stand to reason that 1/3 of females
should disperse (two females settle in the bad habitat
for every one female that settles in the good habitat)?
If so, then does it not follow that males should
disperse with probability 2/3 for a similar reason? The
answer is, no. To correct this line of reasoning, we must
consider RV.

The total RV of males equals the total RV of females
(Fisher, 1930). Since there are twice as many females as
males at birth (nb ¼ 2ng), the RV of one son is twice that of
one daughter. By assumption, there are twice as many
females as males at birth; and so the RV of one son is twice
that of one daughter. Even though there are twice as many
breeding opportunities in the bad patch, offspring pro-
duced there (i.e. females) are only half as valuable. It
follows that offspring should wish to encounter both
habitats with equal frequency.

Next suppose nb=ng is smaller, say nb=ng ¼ 1, but we
keep wf =ð12cÞ and wmð12cÞ unchanged. We are now in the
first column of Table 4. As long as daughters are produced
in the bad habitat, a smaller nb=ng reduces the total number
of daughters born, and there is now incentive to produce
daughters in the good habitat also.

Now let us consider why the dispersal rates in Table 4
are to be expected when ng=nb ¼ 1 (first column). If sex
allocation behaviors are at stable levels, then there
are fewer males than females at birth. Furthermore,
one daughter born in the good habitat is a better
competitor than is one daughter born in the bad habitat.
It follows that offspring (male or female) born in the good
habitat are more valuable than the females born in the bad
habitat.

The male dispersal decision in this case is relatively
straightforward. Competition in the (good) habitat-specific
mating pool means that there are fitness gains to be
made by dispersing to the bad habitat. Nevertheless,
a male expects that offspring born in the good habitat
are more valuable. It follows that he chooses dispersal
rate less than one half so that his offspring, should
he have any, are more likely to be born in the good
habitat (observe that nb=ð½wf =ð12cÞ�ng þ nbÞ ¼ ðnb=ngÞ=
ðwf =ð12cÞ þ nb=ngÞo1=2Þ.

The dispersal decision made by a female when ng=nb ¼

1owf =ð12cÞowmð12cÞ is more complicated. Following
the logic used to explain male dispersal we might expect
that dfb41=2; so why is this not so (cf. Table 4)? Unlike
male dispersal in this case, dispersal from the bad habitat
puts a female at a disadvantage by placing her in proximity
to superior competitors. Although the offspring produced
in the good habitat have higher RV, it is less likely that a
poor quality female would win a breeding opportunity
here.

A description of the case in which wf =ð12cÞ

owmð12cÞonb=ng (last column) can be constructed in an
analogous manner, and this is left to the reader.
5.3. Additional dynamic equilibria

We must acknowledge that when wmð12cÞowf =ð12cÞ

there exist equilibria of (16) for which both dispersal
between habitats and sex-allocation bias are maintained.
For convenience we refer to these equilibria as, ‘‘additional
equilibria.’’
We consider the ‘‘additional equilibria’’ to be of little

biological importance. Invariably, their stability is enforced
by a requirement that potential mutant invaders disperse in
a direction that is opposite to that of their same-sex
competitors. Although we have found that local stability of
‘‘additional equilibria’’ is mathematically possible, they
lack the more desirable property of global stability. By the
proof of Observation 2 (appendix), dispersal by the
aforementioned mutant invaders is always detrimental.
Interestingly, when such mutants are not forced into
dispersal, the stability of each ‘‘additional equilibrium’’
fails.
The reader should note that we can not guarantee the

global stability of the main equilibria discussed above (i.e.
our stability analysis is still local). However, unlike the
‘‘additional equilibria,’’ the global stability of our main
equilibria cannot be ruled out in the same manner.

6. Discussion

6.1. Main results

This paper investigates the evolution of sex-allocation in
a two-habitat environment when sex-allocation and dis-
persal co-evolve. Many theoretical models have considered
the evolution of sex allocation when fitness gains made
through the investment in one sex differ from those made
through an equal investment in the other sex. However,
most do not adequately model spatial heterogeneity, which
is an important mechanism by which such differences in
fitness gains arise. Some recent exceptions include Juillard
(2000) and Leturque and Rousset (2003), but these are
limited to the case where habitat quality only influences
overall fecundity, i.e. wf ¼ wm. In this paper, we assume
that spatial heterogeneity has sex-specific consequences for
competitive ability. Most importantly, we do not assume
that the population is well mixed when mating occurs
(cf. Charnov, 1979; Bull, 1981; Leimar, 1996; Wade et al.,
2003).
Special cases of our model highlight the importance of

mixing in a heterogeneous environment to the evolution of
biased sex-allocation behavior. When dispersal between
habitats is prevented, differences in competitive ability
among individuals are of no consequence, and selection
favors equal investment in sons and daughters in both
habitats. This is the sex-allocation prediction made by
Fisher (1930). Equal investment is also favored when
dispersal is limited to a single sex.
By contrast, in a well-mixed population (i.e. dsg ¼

1=ð22cÞ for s ¼ m, f and q ¼ g; b), stable sex-allocation
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are precisely those presented in Charnov (1979) and Bull
(1981). Biased sex-allocation behavior is expected to
evolve, consistent with predictions of verbal theory (Trivers
and Willard, 1973; see also Carranza, 2002).

Recent authors have noted the need for a complete co-
evolutionary theory of sex allocation and dispersal (e.g.
Perrin and Mazalov, 2000). The theory developed in this
paper shows the value of such ‘‘co-evolutionary ap-
proaches.’’ In particular, we demonstrate that both the
sex-allocation predictions made Fisher and those made by
Trivers and Willard are possible within the context of a
single, unified model framework (note that, in contrast to
predictions made by Trivers and Willard (1973, p. 91)
themselves, biased sex-allocation behavior in this model,
i.e. biased investment, is reflected in biased brood sex-
ratios).

When the difference between wm and wf is small so
that wf =ð12cÞ4wmð12cÞ (or c close to one), habitats
become isolated and sex allocation behaviors become
unbiased (a ‘‘Fisherian’’ prediction). When the difference
in sex-specific advantages wm and wf are substantial so that
wf =ð12cÞowmð12cÞ (or c close to zero) sex-allocation
behavior will be consistent with the predictions of Charnov
(1979) and Bull (1981), provided competitive advantage is
discounted appropriately.

6.2. Implications for the evolutionary theory of

sex-allocation

Extreme sex-allocation behavior can be found across a
wide variety of taxa. Some of this extreme behavior
matches the predictions of existing theory quite well. The
sex-allocation behavior of parasitoid wasps in relation to
host quality, for instance, shows a tight match to theory
(e.g. Charnov et al., 1981; see also Ode and Hunter, 2002).

In other cases, theoretical predictions about sex-alloca-
tion behavior can be difficult to verify. Variation in the sex-
allocation behaviors of birds and mammals, for instance,
presents a challenge to sex-allocation theory simply because
multiple interacting factors might be considered relevant
(Clutton-Brock and Iason, 1986; Cockburn et al., 2002; Silk
et al., 2005). Similar difficulties have arisen in the study of
human sex ratios (Lazarus, 2002), and sex ratios of the
eusocial hymenoptera (e.g. Boomsma and Grafen, 1990 and
references therein). It is in these kind of problematic cases
where the theory developed above might be best considered.

Inconsistent empirical results have lead to the reasonable
attitude that problematic sex-allocation behavior need not
be ‘‘fitted into the straightjacket of theory’’ (Cockburn
et al., 2002, p. 280). Instead of relying on a single adaptive
hypothesis to explain observed sex-allocation behaviors,
authors might seek pluralistic explanations that reflect the
biology of the taxon of study. Nevertheless, some patterns
of sex-allocation can even confound this pluralistic
approach (e.g. Silk et al., 2005).

Few (if any) studies of sex-allocation behavior in nature
account for the co-evolution of sex-allocation with other
important traits like dispersal. Including dispersal evolu-
tion in a theoretical framework could explain any proble-
matic variety of sex-allocation behaviors as simply a
consequence of disparities in habitat quality within a
particular metapopulation. We must emphasize, however,
that these comments are only speculative at present and
more field data is required. The message we wish to convey
is that careful consideration of co-evolving behaviors is
important to understanding the evolution of sex-allocation
behavior. A co-evolutionary approach could reduce the
complexity of explanations for observed sex-allocation
behavior.
Many authors have noted that life-history details, in

particular, ought to be considered when making predic-
tions about sex-allocation behavior (see note and refer-
ences in West and Sheldon, 2002). Our results indicate that,
in addition to life history details, predictions about sex
allocation ought to account for spatial heterogeneity of the
environment (e.g. extent of heterogeneity, how a particular
organism experiences this heterogeneity, etc.).

6.3. Implications for the evolutionary theory of dispersal

Dispersal between habitat patches is predicted to evolve
for a variety of reasons. For instance, dispersal is favored
in a temporally variable habitat when the threat of local
extinction looms (Comins et al., 1980). Dispersal is also
advantageous when it ensures that competition between
relatives or inbreeding can be avoided (Motro, 1991). In
the absence of kin selection, temporal fluctuation and
inbreeding depression, it is class structure (e.g. sex-
structure, age-structure) of a population that becomes the
main feature by which costly dispersal in a spatially
heterogeneous environment can be maintained (Green-
wood-Lee and Taylor, 2001). Even in the presence of class
structure, only specific patterns of dispersal can be
considered to be evolutionarily stable. In particular, it
has been demonstrated both here and elsewhere that in a
two-patch habitat selection will not favor either one-way or
bi-directional dispersal by a single class (Greenwood-Lee
and Taylor, 2001).
It is likely that habitats in nature vary in such a way that

optimal division of resources among different class-
components of fitness in one habitat patch is not optimal
in another. For example, sex-allocation behavior might be
strongly biased, or size-at-maturity may be noticeably
smaller in one habitat than in another. The habitat-specific
economics of these important life-history decisions will
certainly have implications for optimal rates of dispersal.
Again we stress that understanding dispersal in a broader
co-evolutionary context is useful.

6.4. Limitations and extensions

There are at least four important limitations to our
investigation not yet addressed. First, we have made some
simplifying ecological assumptions. Most notable are the
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assumptions that habitat density and quality both remain
constant over time. At some ecological scales, both of these
quantities are likely to fluctuate over time. We might
expect, for example, that there are ‘‘good seasons’’ where
disparities between patches are small (perhaps non-
existent) and population densities unusually high. Our
conclusions, of course, are limited by such assumptions;
and future work might seek to understand the conse-
quences of incorporating a more ‘‘realistic’’ ecology into
our model.

Second, our model posits a habitat that is divided into
only two patches, but such habitats are likely rare in nature.
This assumption is primarily made for convenience, since
one of our intentions was to understand the consequences
of movement between habitats of different quality for sex-
allocation behavior. In a multipatch model, where all type-q
patches are identical in all respects, dispersal between
habitat patches of the same quality will not occur.
Individuals should be unwilling to pay a cost for no gain.
Other generalizations, though, might still be interesting. For
example, one might consider the case in which habitats are
divided into an arbitrary number of quality levels.

Third, the relationships that determine whether or not
sex-allocation bias is stable involve not only wm and wf , but
also the cost of dispersal, c. In natural populations these
costs might be difficult to ascertain (Wolff, 1994). This
limits the applicability of the qualitative predictions made
by our model.

Finally, we have assumed that competition between
males and females is irrelevant to both the evolution of sex-
allocation behavior and dispersal. Recent theory indicates
that male–female competition can influence predictions
about the co-evolution of these behaviors (Leturque and
Rousset, 2004).
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Appendix A. Co-evolution when habitats connected by

dispersal

It is possible to use simple RV arguments to say a great
deal about which dispersal and sex allocation configura-
tions might be evolutionarily stable. In particular we can
argue that when habitats are connected by dispersal the
only possibilities are those identified in Fig. 3a–c. We will
need the following notation:
�
 vsq ¼ RV of a sex-s individual born in the type-q habitat
at the time of census in a monomorphic resident
population.
�
 v0sq1,q2 ¼ RV of sex-s individual born in the type-q1

habitat after successful dispersal to a type-q2 habitat,
while in a monomorphic resident population.

The row vector, [vfg, vmg, vfb, vmb] is the left eigenvector of
the matrix A(r, r) associated with an eigenvalue of one. The
conditional RVs can be defined in terms of the entries of
the left eigenvector as follows:

v0fgq ¼ wf ½Knq=2Fq�½ð1� bqÞvfq þ bqvmq�, (A.1)

v0mgq ¼ wm½Knq=2Mq�½ð1� bqÞvfq þ bqvmq�, (A.2)

v0fbq ¼ ½Knq=2Fq�½ð1� bqÞvfq þ bqvmq�, (A.3)

v0mbq ¼ ½Knq=2Mq�½ð1� bqÞvfq þ bqvmq�. (A.4)

Note that always v0sgq ¼ wsv
0
sbq.

There is another connection between conditional RV
and the entries of the left eigenvector when dispersal is at
equilibrium. It is easy to see that complete dispersal dsq ¼ 1
will never occur in a two-habitat model at equilibrium.
Thus, at equilibrium either dispersal is zero, in which case

v0sq1;q1oð1� cÞv0sq1;q2 (A.5)

or dispersal lies strictly between zero and one, in which case

v0sq1;q1 ¼ ð1� cÞv0sq1;q2. (A.6)

If we write

vsq1 ¼ ð1� dsq1Þv
0
sq1;q1 þ dsq1ð1� cÞv0sq1;q2, (A.7)

Eqs. (A.5)–(A.7) tell us that, at equilibrium

vsq1 ¼ v0sq1;q1: (A.8)
Argument for observation 1

The argument for observation 1 is based on one made in
Greenwood-Lee and Taylor (2001), but is not identical. We
will show that one-way dispersal is not stable, by showing
instead that any dispersal to the bad habitat must be
compensated by dispersal from the same habitat, and vice
versa.
Write the transition matrix A(r, r) as

Ag 0

0 Ab

�
�
�
�
�

�
�
�
�
�

Dgg Dgb

Dbg Dbb

�
�
�
�
�

�
�
�
�
�
, (A.9)

where

Aq ¼
K

2

nqð1� bqÞ=Fq nqð1� bqÞ=Mq

nqbq=F q nqbq=Mq

�
�
�
�
�

�
�
�
�
�
, (A.10)

Dgg ¼
wf ð1� dfgÞ 0

0 wmð1� dmgÞ

�
�
�
�
�

�
�
�
�
�
, (A.11)
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Dbb ¼
1� dfb 0

0 1� dmb

�
�
�
�
�

�
�
�
�
�
, (A.12)

Dbg ¼
wf ð1� cÞdfg 0

0 wmð1� cÞdmg

�
�
�
�
�

�
�
�
�
�
, (A.13)

Dgb ¼
ð1� cÞdfb 0

0 ð1� cÞdmb

�
�
�
�
�

�
�
�
�
�
. (A.14)

It can be verified that there exists a column vector u ¼

½ug; ub�
T ¼ ½ufg; umg; ufb; umb�

T such that at equilibrium in a
monomorphic population u ¼ Aðr; rÞu. The vector u gives
the steady state distribution of individuals in this mono-
morphic, class-structured population. Using the notation
introduced above, we have that

ub ¼ Ab½Dbgug þDbbub�. (A.15)

Eqs. (A.3)–(A.4) and (A.8) tell us that, at equilibrium,
the row vector vb ¼ ½vfb; vmb� is the left eigenvector of Ab

associated with an eigenvalue of one. Left multiplication of
(A.15) by vb yields

vbub ¼ vb½Dbgug þDbbub�. (A.16)

Let the column vector eb ¼ ½dfbufb; dmbumb� denote the
number of individuals dispersing from the bad habitat, and
note that

Dbbub ¼ ub � eb. (A.17)

Similarly, the entries of the column vector

ib ¼ Dbgug (A.18)

give the numbers of individuals arriving on the bad patch.
Substituting (A.17) and (A.18) into (A.15) and (A.16) we
get

vbib ¼ vbeb. (A.19)

Eq. (A.19) tells us that a weighted sum of immigrants
must be balanced by a weighted sum of emigrants.

Argument for observation 2

Suppose that sex-s disperses in both directions. As
indicated above dispersal cannot be complete. It follows
that

vsg ¼ v0sgg ðfromA:8Þ, (A.20)

¼ ð1� cÞv0sgb ðfromA:6Þ, (A.21)

¼ ð1� cÞwsv
0
sbb ðfrom comment followingA:4Þ, (A.22)

¼ ð1� cÞ2 wsv
0
sbg ðfromA:6Þ, (A.23)

¼ ð1� cÞ2 v0sgg ðfrom comment followingA:4Þ, (A.24)

¼ ð1� cÞ2 vsg ðfromA:8Þ. (A.25)
Since, both c and vsg are greater than zero (A.25) yields a
contradiction. We conclude that sex-s cannot disperse in
both directions.

Argument for observation 3

Suppose sex-s1 disperses from the good habitat to the
bad habitat; and suppose sex-s2 disperses in the opposite
direction. Note that this assumption implies that sex-s1 is
certainly produced in the good habitat, and sex-s2 is
certainly produced in the bad habitat. It follows that

v0s1;gg ¼ ð1� cÞ v0s1;gb ðfromA:6Þ, (A.26)

¼ ð1� cÞws1v
0
s1;bb ðfrom comment followingA:4Þ, (A.27)

¼ ð1� cÞws1vs1;b fromA:8Þ, (A.28)

pð1� cÞws1vs2;b ðsince s2 is produced in bad habitatÞ,

(A.29)

¼ ð1� cÞws1 v0s2;bb ðfromA:8Þ, (A.30)

¼ ð1� cÞ2 ws1 v0s2;bg ðfromA:6Þ, (A.31)

¼ ð1� cÞ2ws1 v0s2;gg=ws2 ðfrom comment followingA:4Þ,

(A.32)

¼ ð1� cÞ2 ws1vs2;g=ws2 ðfromA:8Þ, (A.33)

pð1� cÞ2 ws1vs1;g=ws2 ðsince s1 is produced in good habitatÞ,

(A.34)

¼ ð1� cÞ2 ws1v0s1;gg=ws2 ðfromA:8Þ. (A.35)

We can summarize (A.26)–(A.35) with the inequality
v0s1;ggpð1� cÞ2ws1v0s1;gg=ws2 which is equivalent to

ws2=ð1� cÞpws1ð1� cÞ: (A.36)

Since we assume wf owm, (A.36) tells us that males must
be sex-s1and females must be sex-s2.

Argument for observation 4

If mixed-sex broods are produced on both habitats, and
if habitats are connected by dispersal, then (A.29) and
(A.34) hold as equalities. It follows that (A.36) holds as an
equality.

Appendix B. Sketch of stability argument

In this appendix, we present a brief sketch of a typical
stability argument. We assume that the reader is familiar
with Appendix A and has convinced him/herself that
(if dispersal is occurring in an evolutionarily stable state)
(a) one sex disperses in one direction while the opposite sex
disperses in the opposite direction; and (b) one sex is not
produced in at least one of the two habitats.
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Consider the situation illustrated in Fig. 3a, i.e. suppose
that resident behaviors are fixed at

dfg ¼ 0 and bb ¼ 0. (B.1)

When (B.1) is substituted into to Eq. (16), we find that
the remaining four elements of the righthand side of (16)
vanish when

bg ¼ ½1þ nbð1� cÞ=wf ng�=2, (B.2)

dmg ¼ nbð1� cÞ=½wf ng þ nbð1� cÞ�, (B.3)

dfb ¼ 1=2, (B.4)

dmb ¼ arbitrary value. (B.5)

A standard linear stability analysis reveals that
(B.1)–(B.5) is stable against local perturbations restricted
to bg, dmg and dfb. Furthermore, the projection of the
selection gradient at (B.1)–(B.5) onto the bb-axis (respec-
tively, dfg-axis) indicates that selection will maintain bb ¼ 0
(respectively, dfg ¼ 0).

Clearly, selection cannot maintain dmb at any particular
value, since this trait is not expressed at equilibrium
(bb ¼ 0). The results of Appendix A, however, show that
selection will ‘‘correct’’ any expressed perturbation in dmg.
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