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I review recent results concerning the relationship between the inclusive fitness (IF) effect and standard measures of allele fitness

in a finite-population, with attention to the effect of heterogeneity in population structure and nonadditive fitness effects. In

both cases, existing theoretical work is somewhat technical and I try to provide a more transparent account. In a heterogeneous

population it is known that inclusive fitness will generally fail to incorporate the effects of selection on the distribution of alleles

among states unless a reproductive-value weighting is used. But even given that, recent work shows that under certain updating

rules, the IF effect can fail to be equivalent to standard measures such as fixation probability. In terms of synergistic fitness effects, I

review the result that in the finite population model, the IF effect can be calculated using only “additive” relatedness coefficients so

that computational difficulties found in the infinite-population model do not arise. In my own work, there is an interaction here in

that my 2012 work on synergy with Maciejewski made an assumption about inclusive fitness that my 2014 work on heterogeneity

with Tarnita showed to be wrong. I include (Appendix C) a corrected argument for the 2012 result.
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Since its inception 50 years ago (Hamilton 1964) the ideas of in-

clusive fitness (IF) have had a significant impact on the modeling

of evolutionary behavior. There are good reasons for this. It has

provided a powerful heuristic for understanding how selection

acts on behavior and has given us effective methods for calcu-

lating the effects of selection. At the same time there has been a

vigorous discussion around the significance and generality of the

inclusive fitness method in evolutionary studies. See Nowak et al.

(2010) and Abbot et al. (2011) and accompanying articles for a

noteworthy slice of this discussion.

This discussion seems to me to take place in two different

areas, one concerns the extent to which the inclusive-fitness ap-

proach has anything significant (useful or insightful) to say about

the biological world. The other concerns theoretical questions, for

example the assumptions needed for the IF effect to be equivalent

to the probability of gene-fixation. The first of these is inherently

complex and can be hard to pin down. The second can in prin-

ciple be settled unambiguously; all that is needed is a precise

mathematical framework.

My interest here is the second and I will focus on two com-

plications to the classic theory as laid out by Hamilton (1964).

They have been considered for a long time, but have recently––

over the past half-dozen years, received considerable discussion.

They are both fairly technical and no doubt for that reason, are

not as well understood or appreciated as I feel they deserve to be.

They concern the impact on inclusive-fitness theory of first, pop-

ulation heterogeneity, and second, synergistic fitness effects. In

both cases, the story is interesting; however some careful analysis

is required to sort out the different factors at play. My objective

in this review article is to attempt to make them more accessible.

For the first few decades inclusive fitness studies were set in

what I call the infinite-population model but more recently there

has been particular interest in the finite-population model. When

I use the terms “infinite” and “finite” I really mean “large” and

“small.” In fact, as we will see, it is really about the relationship

between population size and the rate of genetic renewal (e.g.,

mutation). The finite model makes sense when the population is

small enough that, under the force of genetic drift, a mixed genetic

state becomes pure (genetic fixation) more quickly than mutation

is able to provide a new allele. Otherwise the infinite model makes

more sense. Inclusive fitness has a somewhat different formulation

in each model.
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In the finite model there is a richer set of potential measures

of allele fitness, for example, allele fixation, and that is perhaps

one of the reasons for considerable recent interest in this model

(Rousset and Billiard 2000; Nowak et al. 2004; Ohtsuki and

Nowak 2006; Taylor et al. 2007a,b; Ohtsuki et al. 2007; Grafen

and Archetti 2008; Tarnita et al. 2009; Taylor 2010; Taylor

and Maciejewski 2012; Allen and Tarnita 2014; Tarnita and

Taylor 2014). My objective here is to review the relationship

of the inclusive fitness effect to these other measures and to

see in particular how this is affected by the complications of

heterogeneous population structure and synergistic effects.

The Components of
Allele-frequency Change
MODEL ASSUMPTIONS

I work with a finite population of N nodes (BOX 1), each occupied

by an asexual haploid individual, and any pair of nodes joined by

an edge are called neighbors (Lieberman et al. 2005). These edges

specify both the fitness determining interactions and the offspring

dispersal probabilities and in general these might be different

(Ohtsuki et al. 2007). Here, I want to use simple assumptions to

obtain a clear understanding of a few recent results, and I assume

that interactions occur along edges and offspring from a node

disperse with equal probability to all neighbors.

Individuals carry one of two alleles, A or B and I let xi

denote the genotype at node i, x = 1 for A and x = 0 for B. I use a

Moran model with BD updating and fecundity payoffs (Ohtsuki

and Nowak 2006). In each time step an A-individual gives each

neighbor a fecundity increment b at cost c, whereas B-individuals

give nothing with no cost. Following that, one individual is chosen

based on relative fecundity to give birth, and its offspring replaces

a random neighbor. The offspring carries the parental allele with

probability 1–u and with probability u is a “mutant,” acquiring

allele A or B with fixed probabilities q and 1–q. I assume that

mutation is rare and the results discussed are calculated to first

order in the mutation rate u.

The state of the population at any time will be a specification

of the allele at each node. When population size N is small and

mutation is rare, the population will spend almost all of its time

in a pure state (allA or allB). Once a mutation creates a mixed

state, the population, under the action of drift and selection, will

change state quickly (relative to the time between mutations) until

it arrives again at a pure state, there to remain awaiting the next

mutation to a new allele. Indeed the overall ratio of time spent in

mixed to pure states is of order u. This time structure is illustrated

in BOX 2.

THE EFFECTS OF SELECTION

In working with this model, our objective is typically to calculate

the relative fitness of the alleles A and B. The literature provides

a number of different measures of this along with a discussion of

their equivalence (BOX 3). The one I will work with here is the

effect of selection on the one-step change in the frequency of the

allele A. Now in a small population, the one-step allele-frequency

change will depend on the state and in a single time step, the

state can change significantly. For this reason, we work with an

average change over all states. We define E(�x) to be the total

(selection plus mutation) long-term average (over all states) one-

step change in allele-frequency (Rousset and Billiard 2000). For

each population state s, we calculate the one-step allele-frequency

change �xs , and then we average these over all states using the

equilibrium state frequencies π∗
s as weights:

E (�x) =
∑

s

�xsπ
∗
s = 0. (1)

As indicated, E(�x) is of course zero as the π∗
s population is at

equilibrium under the joint forces of selection and mutation.

To understand this process, it helps to track through an ex-

ample and in BOX 4 and BOX 5 I track two components of this

process for the 3-star population (BOX 1). This analysis makes

it clear that a substantial calculation is needed to obtain this av-

erage even for a population of size 3, and this makes Hamilton’s

concept of inclusive fitness (in particular, his use of relatedness

coefficients—Appendix A) all the more remarkable. In this re-

gard, I point out that this problem of the apparent complexity of the

calculation of this average does not belong only to the finite pop-

ulation model. Take, for example, a classic situation in an effec-

tively infinite population in which an individual is interacting with

a number of brothers and sisters. We presume that there are many

such interactions going on in many different “households” and we

want to calculate the effect on allele frequency averaged over all

such households and for that we will need to know the distribution

of possible genotype configurations. That is the same problem and

these households are the analogs of the different states.

In terms of the overall average one-step allele-frequency

change, what are we to take as fitness measure (i) in BOX 3––“the

effect of selection on the one-step change in allele frequency”?

Tarnita and Taylor (2014) answer this question by partitioning the

sum according to whether the state is mixed or pure:

E (�x) =
∑

smixed

�xsπ
∗
s +

∑
spure

�xsπ
∗
s = 0. (2)

This decomposition of E(�x) goes back to Nowak et al. (2010

Supporting Information A). I note right away that selection can-

not act in a pure state so that the
∑

spure term provides only the

effect of mutation, and secondly, that if mutation is rare it can

be ignored in the mixed states as their frequency is of order u

(BOX 2). Thus if mutation is rare, both terms are of order u, the∑
spure term capturing the effect of mutation and the

∑
smixed term

capturing the effect of selection. Given this, we might expect that
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BOX 1: Homogeneous and heterogeneous population structure

Here, the edges signify both interactions and offspring dispersal. For example, in graph (d), node 1 has three interactions in each

time step, with nodes 0, 2, and 4, and sends its offspring to these same nodes each with probability 1/3. On the other hand, node 2

has only two interactions and sends offspring to nodes 1 and 3 with equal probability 1/2.

Reproductive classes. An isomorphism of the graph is a one-to-one mapping of the node set to itself that preserves the edges. The

set of isomorphisms can be used to partition the set of nodes into reproductive classes––two nodes are in the same class if there is an

isomorphism of the graph mapping one to the other. A graph is called transitive (Taylor et al. 2007b) if it has only one reproductive

class––given any pair of nodes there is an isomorphism of the node set mapping to the other––roughly speaking the structure “looks

the same” from every node. Transitive graphs are often called homogeneous; otherwise they are called heterogeneous.

For example, examples (a) and (b) are transitive and (c) and (d) are heterogeneous. For graphs (c) and (d) reflection in the vertical

central axis is an isomorphism giving us two classes in (c): {0} and {1, 2}, and three classes in (d): {0}, {1, 4}, and {2, 3}.

In fitness calculations, we often need to take averages over all nodes. It is generally enough to take a focal node in each class and

take the average over these focal nodes, each one weighted by its class size.

Example (c) is known as the 3-star graph, with node 0 called the hub and nodes 1 and 2 called the leaves. I will use this graph as a

key example in my analysis.

BOX 2: The population timeline

Population timeline displaying alternating relatively short intervals of mixed states and relatively long intervals when the state is

pure, A red (black) or B blue (gray), both types of intervals of variable lengths. The transition from a pure to a mixed state is effected

by a mutation when it introduces a new allele. There can also be mutation events in a fixed state that introduce a new copy of the

allele already present but we ignore these as there is no change in allele frequency. The length of the fixed-state intervals has order

1/u (the mean time between mutations) and the length of the mixed-state intervals has order N (Crow and Kimura 1970—time to

fixation. See also Wu et al. 2012). Since u << 1/N, the length of the mixed-state intervals is of order u and we can assume that

mutation does not occur in a mixed state. An important consequence of this is that any two copies of the same allele in a mixed state

can be assumed to be identical by descent.

An important observation, for our purposes, is that since selection can act only in mixed states and the relative time during which

these occur is of order u, the effects of selection on allele frequency will also have order u, the same order as the effects of mutation.

This is worth noting as it is not the case for classical large-population model in which local genetic renewal is generated by means

other than mutation (e.g., migration from afar).
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BOX 3: Measures of A-fitness
In the finite population model that I work with here, three measures of the “fitness” of A have been of particular interest. These are:

(i) The average one-step selective change in allele frequency at the selective equilibrium.

(ii) The difference in the allele frequency at the neutral and selective equilibria (BOX 5).

(iii) The difference ρA – ρB in fixation probabilities.

Here, the fixation probability ρA of an allele A is the probability that a single copy of A in an otherwise B population will survive

till the next fixation (and thus will have identical by descent (IBD) copies at every node). Actually while this definition works fine

in a transitive population, in a heterogeneous population the fixation probability of a gene will depend on the starting node and ρA

and ρB are defined as weighted averages of the node-specific fixation probabilities where the weights are the landing probabilities,

through mutation, of the allele. Details can be found in Allen and Tarnita (2014) and Tarnita and Taylor (2014).

Under quite general conditions (principally rare mutation, but not assuming weak selection), these three measures have been shown

to be sign-equivalent, that is they are all simultaneously positive or negative or zero. (Rousset and Billiard 2000; Taylor et al.

2007a; Nowak et al. 2010, Appendix A, Allen and Tarnita 2014; Tarnita and Taylor 2014). A clarification––when working with

heterogeneous (nontransitive—BOX 1) structures, we often work with allele RV instead of allele frequency. But measures (i) and

(ii) are about allele frequency and the equivalence holds in both transitive and heterogeneous population structures.

Our main interest here is to relate the inclusive fitness effect to these measures. The early work on inclusive fitness typically assumed

a large population and measures (ii) and (iii) were not considered; thus attention was focused on allele-frequency change in a

single time step. Now Price’s (1970) equation will calculate this provided the genetic covariances (which provide the relatedness

coefficients) are calculated at the selective equilibrium (Taylor 2009). The action of selection makes this calculation difficult, but it

can be done when selection is turned off giving us the point of neutral equilibrium and the covariances we obtain here are called the

neutral coefficients of relatedness. These are the coefficients used in the inclusive-fitness formulation (Appendix A) and, as pointed

out by Hamilton (1964, p. 4), when selection is weak they should provide a good approximation and hence the IF effect should give

a good approximation to measure (i) above. Here i discuss some interesting recent analysis giving us general conditions under which

the IF effect is exactly equivalent to measure (i) and hence to measures (ii) and (iii).

the
∑

smixed term is equivalent to fitness measure (i) in BOX 3

and Tarnita and Taylor (2014) show that under standard general

conditions (principally rare mutation, but not assuming weak se-

lection) this is the case, and thus the
∑

smixed term is equivalent to

fitness measures (ii) and (iii) as well.

The decomposition in equation (2) is effectively a partition

of the columns of the state transition matrix M (BOX 5). For

example, for the 3-star population, the mixed-state sum belongs

to columns 1–4 and the pure-state sum belongs to columns 5

and 6.

A WEAK-SELECTION ANALYSIS

I use δ to measure the strength of selection such that b and c are

both of order δ. Then, to first order in δ, I write �xs = �x0
s + �xδ

s

and π∗
s = π0

s + πδ
s where �x0

s is the average one-step change in

allele frequency at state s and π0
s is the equilibrium frequency of

state s (BOX 5), both in the neutral population (selection not act-

ing). Tarnita and Taylor (2014) use this decomposition to analyze

E(�x) into four components:

E (�x) =
∑

smixed

(
�x0

s + �xδ
s

) (
π0

s + πδ
s

)

+
∑
spure

(
�x0

s + �xδ
s

) (
π0

s + πδ
s

)
(3)

=
∑

smixed

�xδ
s π

0
s +

∑
smixed

�x0
s πδ

s +
∑
spure

�xδ
s π

0
s +

∑
spure

�x0
s πδ

s (4)

= �1+�2+�3+�4 = 0. (5)

If we expand equation (3) we get a total of eight terms, four mixed,

and four pure, but equation (4) only has four of these as the two

δ–δ terms are of order δ2 and can be ignored and the two 0–0 terms

together provide the one-step change at the neutral equilibrium

with no selection and this must be zero. Here, I am assuming that

δ is small but significantly greater than the mutation rate u.

We will be working with these four terms so that in equation

(5) I have given them abbreviated names �i . Thus �1 and �2

belong to the mixed states and �3 and �4 belong to the pure

states. Observe that selection acts on the one-step change in allele

frequency in two different ways––first it changes this in each

state, and second (as a result of the first), it changes the weighting

used in taking the average of these different state effects. That

gives us another useful way to partition the four terms––�1 and

�3 assess the effects belonging to each state and �2 and �4

EVOLUTION MARCH 2017 5 1 1
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BOX 4: The average change in allele frequency from the state AAB

F0 = f0∑
fi

= 1 + b − 2c

3 + 3b − 3c

= 1

3
(1 − c) + o(δ)

�xAAB = 1

6
(1 − c)

(
1

3

)
+ 1

6
(3 − c) (0) + 1

6
(2 + 2c)

(
−1

3

)

= − 1

18
− 1

6
c

I take fi to be the initial fecundity of node i, obtained from the benefit-cost interaction. Note for example that node 0 interacts with

both neighbors, and since it carries allele A, in each interaction it gives b at cost c. The probability that node i is selected to give

birth is then its relative fecundity Fi calculated above for i = 0 to first order in the payoffs b and c taken to be of order δ.

The diagram shows that the state AAB has three possible one-step descendent states and the probabilities of each transition are

derived from the fecundities Fi. For example, the F0-calculation tells us that node 0 wins the birth with probability 1
3 (1 − c) and in

that case sends its offspring with probability ½ to each of nodes 2 (giving us the transition to AAA) and 1 (giving us the transition

to AAB). Note that there’s a second way to reach AAB––if node 1 wins the birth.

For each transition the one-step change �x in allele frequency is tabulated and the average change �xs from the state s = AAB

is then calculated taking account of the probability of each transition. This change is calculated from each state s and the overall

average allele-frequency change E(�x) is calculated by taking the average (eq. 1) over the equilibrium state distribution (BOX 2).

assess the effects that come from the change due to selection on

the equilibrium state frequencies. A significant observation is that

�1 and �3 can generally be calculated as they involve the neutral

state distribution, while �2 and �4 generally cannot. To get a

sense of what we will be doing with these, you can peek ahead at

BOX 8.

GENERAL ANALYSIS OF THE �i

Right away, to allay confusion, I observe that in a pure state �xδ
s

= 0 as selection cannot change the fact that the offspring produced

will carry the allele belonging to that state. Thus �3 is always 0.

However, for comparison’s sake I want to include it.

Turning to �1 = ∑
smixed �xδ

s π
0
s , this is the effect of selec-

tion acting in each state averaged over all mixed states using the

neutral state distribution. Those who have worked with inclusive

fitness, (abbreviated as IF–Appendix A) will recognize that this

is exactly what the IF effect is meant to measure (the neutral state

distribution corresponding to the use of the neutral relatedness

coefficients) and indeed Tarnita and Taylor (2014) show that �1

is indeed sign-equivalent to the IF effect, though further discus-

sion of this is needed in heterogeneous populations (see below).

Now I have already observed that fitness measure (i) in BOX 3 is

sign-equivalent to �1+�2, and thus �2 is what stands in the way

of the sign-equivalence of the IF effect and measure (i).

Finally, it is worth having a brief look at �4 = ∑
spure �x0

s πδ
s .

First, consider the neutral pure-state frequencies determined only

by mutation; to zeroth order in the mutation rate, they are π0
allA =

q and π0
allB = 1 − q (BOX 5), giving us a neutral allele frequency

of q. The standard argument for this is found in Taylor (2007a)

and Tarnita and Taylor (2014); essentially it follows from the fact

that these are the frequencies that give us a zero average one-step

change in allele frequency at neutrality (only mutation acting).

Indeed, to calculate that, we can ignore the mixed states as they

are of order u so that the net change in the pure states will be uq(1–

q) – u(1–q)q and this is zero as expected. The first term provides

the rate uq at which A is produced in allB and the second provides

the rate u(1–q) at which B is produced in allA.

Now let the effect of selection on the equilibrium allele

frequency be δK––this of course is measure (ii) in BOX 3 but

for my purpose we need to know nothing more about it. Then
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BOX 5: The transition matrix and equilibrium state vector

M is the one-step transition matrix of the population. Its columns and rows are indexed by the population states and the column

for each state is the vector of probabilities of the transition to each state. For example, the AAB column gives us the transition

probabilities diagramed in BOX 4. If π is a probability vector, a vector with entries � 0 that sum to 1, then entries of the vector Mπ

will give us the probability of being in each state one time step later.

An equilibrium state vector π is one that is invariant under one-step transition: M π = π. Such a vector is an eigenvector for the

matrix M, and under mild conditions the population, starting in any state, will converge to such an equilibrium. This is the case for

the 3-star population and the equilibrium state vector for this population is:

π∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BAB :
2

3
q(1 − q)u

(
1 + q

(
2b + 10

3
c

))

AAB :
10

3
q(1 − q)u

(
1 + q

(
2b + 10

3
c

)
− 6

5
b − 7

3
c

)

ABB :
10

3
q(1 − q)u

(
1 + q

(
2b + 10

3
c

)
− 14

15
b − 13

15
c

)

ABA :
2

3
q(1 − q)u

(
1 + q

(
2b + 10

3
c

)
− 7

3
b − 3c

)

BBB : (1 − q) + q(1 − q)

(
2b + 10

3
c

)
+ O(u)

AAA : q − q(1 − q)

(
2b + 10

3
c

)
+ O(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3
q(1 − q)u

10

3
q(1 − q)u

10

3
q(1 − q)u

2

3
q(1 − q)u

1 − q + O(u)

q + O(u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, if we let the population run for a long time, the entries of π∗ will give us the proportion of time the population is in that state.

If we turn selection off (set b = c = 0) we get the neutral equilibrium π0 displayed at the right. Notice that the equilibrium frequency

of the first four states (the mixed states) is of order the mutation rate u. This comes from the fact that the only way to escape fixation

(the pure states AAA and BBB) is through mutation. See BOX 2 for a fuller discussion of this.

the pure-state frequencies at the selective equilibrium will be

πδ
allA = q + δK and πδ

allB = 1 − q − δK and the resulting aver-

age one-step change in allele frequency will be

�4 =
∑
spure

�x0
s πδ

s = uq(1 − q − δK ) − u(1 − q)(q + δK )

= −uδK , (6)

and except for the factor u this is the negative of measure (ii) in

BOX 3. Since �3 = 0, we can write the equilibrium equation (5)

as

�1 + �2 = −�4. (7)

Since the left-hand side is equivalent to measure (i), this is a

simple argument that the two measures (i) and (ii) of BOX 3 are

sign-equivalent.

TRANSITIVE POPULATIONS

It turns out that if the population is transitive (BOX 1), then �x0
s

= 0 for every state s and as a result �2 = 0. It is easy enough to see

the reason. Suppose we have a gene on a node that in one time-step

produces on average more than one copy of itself. There can only

be two explanations for this, one has to do with the behavior of the

gene, and the other with the status of its node. If we take away the

difference between alleles (that is the superscript 0 of �x0
s ) and

EVOLUTION MARCH 2017 5 1 3
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BOX 6: Reproductive value

In a heterogeneous graph, we assign a reproductive value (RV) vi to each node i such that nodes in the same reproductive class have

the same RV. These RVs are specified by the condition that in the neutral population (selection turned off) the RV gain of every

node (through birth) is equal to its RV loss, where a death at node i counts as −vi and a birth at node i counts as v j if the offspring

colonizes node j (Taylor 1990, 2009; Leturque and Rousset 2002; Maciejewski 2014; Tarnita and Taylor 2014). These conditions

determine the node RVs up to a constant.

As an example I provide the RV calculation for graph (d). I assume BD updating so that at neutrality all nodes have the same probability

of giving birth, and to have simple numbers, suppose this probability is 1. Take the nodes 0, 1, and 2 as class representatives with

RV v0, v1, and v2. The equations are:

RV gain through birth = RV loss through death.

node0 : v1 =
(

1

3
+ 1

3

)
v0. node1 :

v0 + v1 + v2

3
=

(
1

2
+ 1

3
+ 1

2

)
v1. node2 :

v1 + v2

2
=

(
1

2
+ 1

3

)
v2.

These solve to give (up to a constant) v0 = v2 = v3 = 3/13 and v1 = v4 = 2/13, normalized so that
∑

vi = 1. In fact for examples

such as those above in which the edges at each node represent offspring dispersal routes all with the same node-specific probability,

a result of Maciejewski (2014) shows that the reproductive values vi depend only on the degree of the node. Indeed under DB

updating, they are proportional to the degree of the node and under BD updating to the reciprocal of the degree. Note that this

makes qualitative sense. Under DB it is good for a node to have high degree as this provides many opportunities for reproduction;

conversely under BD it is good for a node to have low degree as this reduces the probability of death. This result would have given

us the values vi for graph (d) without any calculation. Indeed this also gives us the node RV for the 3-star graph (c): the hub has v0

= 1/5 and the leaves have v1 = v2 = 2/5 (Appendix B).

the difference between nodes (that is the transitivity) both of those

explanations disappear. As a result, to first order in δ, measure (i)

of BOX 3 is equivalent to �1 and its calculation requires only

the neutral state distribution and is therefore feasible. Indeed its

sign can be obtained from the IF effect. This result goes back

to Rousset and Billiard (2000), and is extended in Taylor et al.

(2007a).

POPULATION HETEROGENEITY

In a heterogeneous population �x0
s and therefore �2 can be

nonzero and as a result fitness measure (i) is not in general equiv-

alent to the IF effect and cannot generally be feasibly calculated.

This is the case for the 3-star population and, for example, BOX

4 shows that �x0
s = –1/18 for the state s = AAB. To jump ahead,

BOX 8 provides a table of the �i values for the 3-star population.

Hamilton (1972, p. 204) was perhaps the first to notice that

the inclusive fitness calculation might not deliver the one-step

change in allele frequency when there is population heterogene-

ity. Using computer simulations he discovered an error in his

1967 article on extreme sex ratios in which the inclusive fitness

argument led him to an incorrect value for the ESS sex allocation

under haplodiploidy (p. 485). He pinned the error on his failure

to weight the fitness effects with reproductive values and we will

now look more closely at the connection between these and the

�i measures.

REPRODUCTIVE VALUE

It has been understood for a long time that in a heterogeneous pop-

ulation, different classes of individuals can make different future

contributions to the gene pool and any analysis of fitness should

take account of these differences. Fisher (1927, p. 106) referred

to “a consistent system of valuation by which the potential value

to the population of future generations, of each age group, may be

measured” and in 1930 he formalized the notion of reproductive

value (RV) of an individual as its long-term future genetic contri-

bution to the population and argued for its use as a weighting to

be applied when comparing the fitness of individuals in different

age classes.
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BOX 7: The average change in allele reproductive value from the state
AAB

�x̂AAB = 1

6
(1 − c)

(
2

5

)
+ 1

6
(3 − c) (0) + 1

6
(2 + 2c)

(
−1

5

)
= − 2

15
c

The state transition probabilities are the same as BOX 4 but now we calculate changes in allele RV where each copy of A is weighted

by the RV of the node it inhabits. If we normalize so that total population RV is 1, then the hub has RV 1/5 and each leaf has RV 2/5.

For each transition the one-step change �x̂ in allele RV is tabulated and the average change �x̂s from the state s = AAB is then

calculated taking account of the transition probabilities. Note that the neutral change �x̂0
s is now zero. This was not the case without

the RV weighting. Indeed in BOX 4 we calculated that �x0
s = −1/18. It might well have struck you as strange that the quantity

�xs that is designed to measure the effect of selection, should be nonzero when selection is turned off. That was certainly one of

many signals that an adjustment was needed, and that turned out to be reproductive value.

Finally, the overall average change in allele RV E(�x̂) is calculated by taking the average over the equilibrium state distribution.

In the study of evolutionary graphs, each node i is assigned

a reproductive value vi determined up to a multiplicative con-

stant by the recursive condition that at neutrality, the one-step

RV-weighted fitness change of each node is zero (BOX 6). In

other words, for each individual, RV-weighted fecundity equals

RV-weighted mortality where offspring are weighted by the RV

of the node they inhabit. We typically normalize the vi so that

total population RV is 1. Using a recursive argument it is not

hard to see that these values vi do indeed provide the long-

term neutral genetic contributions of the node. If we use the

concept of graph isomorphism (BOX 1) to partition the set of

nodes into reproductive classes––two nodes are in the same

class if there is an isomorphism of the graph mapping one to

the other––then nodes in the same reproductive class have the

same RV.

The condition, that at neutrality every node has zero one-step

RV-weighted fitness change, leads to a significant mathematical

result. Following Tarnita and Taylor (2014) we use a hat to signal

the RV-weighting. Then in any state s, define the RV-weighted

allele frequency to be x̂s = ∑
i vi xi where recall that xi = xi,s is

the genotype of node i in state s. Then in the neutral population

(b = c = 0) the one-step RV-weighted allele frequency change

from any state s is zero �x̂0
s = 0 (Taylor 1990; Leturque and

Rousset 2002; Taylor 2009). This is illustrated in BOX 7.

Thus, if Fisher (1930) has not already given us a good enough

reason to use RV-weights when assessing fitness in heterogeneous

populations, here is a mathematical reason––when we use the

RV-weighted allele-frequency measure, the component �2 of se-

lective allele-frequency change belonging to selective changes in

the state distribution becomes �̂2 and vanishes. If we put hats on

all the �i to signal the use of the RV-weighted allele frequency,

the equilibrium equation (5) becomes

E(�x̂) = �̂1 + �̂2+�̂3+�̂4 = 0, (8)

and the argument above shows that �̂2 = 0. On the other hand �̂1

is equivalent to the RV-weighted IF effect and since it uses the

neutral state distribution it can be calculated.

THE RV-WEIGHTED IF EFFECT

The story from this point is summarized in BOX 8. The use of

reproductive values in our calculations of allele frequency change

saves us from the intractable calculations of the selective state

distribution. But there is a slight disconnect––in heterogeneous

populations, the resulting measure �̂1 of selective one-step change

in allele reproductive value can fail to be equivalent to the measure

�1 + �2 of selective one-step change in allele frequency. Since

�4 and �̂4 are sign-equivalent, the reason for this disconnect has

to be found in the term �̂3.
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BOX 8: The four weak-selection components of E(�x) and E(�x̂)

Effects of selection E(�x) (no RV) E(�x̂) (RV-weighted)

Mixed states within-state effect �1 = ∑
smixed

�xδ
s π

0
s IF effect (no RV) �̂1 = ∑

smixed
�x̂δ

s π
0
s RV-weighted IF effect

Mixed states state distribution effect �2 = ∑
smixed

�x0
s πδ

s equals 0 in transitive pop �̂2 = ∑
smixed

�x̂0
s πδ

s =0 RV makes this zero.

Pure states within-state effect �3 = ∑
spure

�xδ
s π

0
s =0 �̂3 = ∑

spure
�x̂δ

s π
0
s

Pure states state distribution effect �4 = ∑
spure

�x0
s πδ

s ≡ negative (ii) in BOX 3 �̂4 = ∑
spure

�x̂0
s πδ

s ≡ negative (ii) in BOX 3

sum 0 0

Column 2, E(�x), measures changes in allele frequency; column 3, E(�x̂), measures changes in allele RV. In a transitive population

these are the same (all vi = 1/N) and rows 2 and 3 are both zero leaving us with rows 1 and 4 that are identical in magnitude and

opposite in sign.

Row 1 employs the neutral state distribution and looks only at the mixed states, and that’s exactly what inclusive fitness does. Thus

row 1 gives the IF effect both using and not using an RV weighting.

The measures of A-fitness in BOX 3 refer to allele frequency. Thus they live in column 2. Measure (i) of BOX 3 is sign-equivalent

to �1 + �2.

Row 4 is also interesting. By definition it gives us the net rate at which copies of A are produced or lost in the pure states when

interactions are neutral. We calculate this in equation (6) and show that it is equivalent to the negative of measure (ii) of BOX 3.

Looking at the components in the 3-star population tabulated below we see that the RV-weighted IF effect �̂1 can fail to be equivalent

to measure (i) in BOX 3––the effect of selection on the one-step change in allele frequency �1+�2. The key to understanding this

lies in the interpretation of �̂3.

The components in the 3-star population with BD updating

�1 = 1

81
q(1 − q)μ(−44b − 94c) �̂1 = 2

45
q(1 − q)μ(−11b − 21c)

�2 = 1

81
q(1 − q)μ(−10b + 4c) �̂2 =0

�3 =0 �̂3 = 2

45
q(1 − q)μ(−b + c)

�4 = 2

9
q(1 − q)μ(3b + 5c) �̂4 = 8

45
q(1 − q)μ(3b + 5c)

sum = 0 sum = 0

Look closely at �3 and �̂3 (BOX 8). Here, we are considering

the effect of selection acting in each pure state on the one-step

change in allele frequency. In the allB state selection can have no

effect as there is no b–c behavior. In the allA state, selection will

alter the relative probability that different nodes will be chosen

to give birth. This will certainly not affect allele frequency as the

offspring will always be B with probability u(1–q) and otherwise

will have the parental A. But the question of who is chosen to give

birth does affect the node on which the offspring will establish

and thus it can affect the RV of the offspring. This is the selective

change in RV measured by �̂3. This effect of selection might be

thought to be negligible as it requires a mutation to take effect,

but the fact is that the IF effect itself has the same order as the

mutation rate, so that the two effects �̂1 and �̂3 work together to

provide the total selective effect. The table at the bottom of BOX

8 is worth studying.

THE �-CALCULATION

The 3-star example tabulated in BOX 8 and analyzed in Appendix

B is small enough (only six states) that we can work out its
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transition matrix and from there the state frequency vector (BOX

5). For larger populations this approach quickly becomes infea-

sible. But if we use the neutral state distribution, recursive meth-

ods can be used to calculate average one-step allele frequency

change––for example the neutral relatedness coefficients effec-

tively calculate the average over all states, and these are calculated

recursively (Taylor 2013). Now it is the odd-numbered�i that use

the neutral distribution, so these can all be calculated. Let us see

how we can get the rest.

Suppose we have a heterogeneous population, and �2 is

nonzero. Fasten attention on the table at the end of BOX 8. Using

reproductive values, we calculate �̂1 and �̂3. From the equilib-

rium equation (8), we get �̂4. Now �4 calculates the same thing

as �̂4 except in different units––�4 uses frequency and �̂4 use

RV. Recall that these components live in the two pure states with

selection turned off, so that the only change in allele frequency

comes from mutation. Every mutation event that changes an A

to B or a B to A changes the allele frequency by ±1/3. That is

a �4-change. What is the corresponding �̂4-change? Well since

all three nodes have birth probability 1/3, the offspring will land

on the hub (node 0) with probability 2/3 and on a leaf (nodes 1

and 2) with probability 1/3. In the first case this is a change in

RV of ±1/5 and in the second case this is a change in RV of ±2/5

(Appendix B). Thus the average change in RV is (2/3) (±1/5) +
(1/3) (±2/5) = ±4/15. Thus to change from �4 units to �̂4 units,

we multiply by the ratio of 4/15 to 1/3 and that is 4/5. In BOX 8,

that is how 2/9 changes into 8/45.

Finally, �1 can be calculated as the IF effect without using

RV (though for those used to working with RV, care must be

taken to count all the different kinds of fitness effects), and�2 is

obtained from equation (5).

Inclusive Fitness with Synergistic
Fitness Effects
MATRIX GAMES

Evolutionary game theory goes back more than 40 years. In

binary interactions, each player’s payoff depends on the strat-

egy employed by both partners, and the possible payoffs are

recorded in a payoff matrix (Maynard Smith 1974; Grafen 1979;

Maynard Smith 1982). Much recent work concerns the case of

two strategies, treated here, giving us a 2 × 2 payoff matrix⎡
⎣a11 a12

a21 a22

⎤
⎦ , (9)

where the first row gives the payoffs to an A-player (with an A or B

partner) and the second row belongs similarly to B. I assume that

the payoffs represent small increments in fitness, small enough

that we can ignore second-order effects in the ai j . For each player,

the payoff is added to its baseline fitness of 1. This weak-selection

assumption, that the ai j are small, allows us to write individual

fitness as a linear combination of the payoffs (the ai j ) belonging to

different interactions, but this is not enough to give us another form

of additivity––additivity in the genotypes of the interacting indi-

viduals. That is the additivity that I am interested in here as that is

what is required for the standard relatedness coefficients to work.

SYNERGY

Queller (1985) was the first to discuss this question, and to note

that it required an extension of the standard notion of relatedness.

He worked with the payoff matrix

⎡
⎣b − c + d −c

b 0

⎤
⎦ , (10)

which has the “cost-benefit” form found in Hamilton’s Rule,

in that an A-individual gives benefit b to its partner at cost c,

but if the partner is also A, it gives a “synergistic” bonus d.

As an example, suppose nodes i and j play the matrix game

and node j sends offspring to node k with probability m jk .

Then the fitness effect on k through this potential offspring is

wK = −m jk(bxi − cx j + dxi x j ) and this is linear in the geno-

types only if d = 0. The general 2 × 2 matrix A (eq. 9) can be

put into the b-c-d form (eq. 10) by subtracting a22 from all terms.

This gives an equivalent game as it changes the payoffs but not

the final fitness effects. In this equivalence, the synergistic term d

will be zero exactly when a11 + a22 = a21 + a12. The advantage

of the form (eq. 10) is that it situates the quadratic fitness effect

entirely in the parameter d and if d = 0, the matrix (eq. 10) simply

delivers the b–c interaction.

Having said that, I should point out that when a payoff matrix

is put into this form, b need not have a benefit interpretation,

nor need c be interpreted as a cost. As an example, the classic

hawk-dove game (Maynard Smith 1978; Grafen 1979) has matrix

[ v 0
2v v − k] where row one belongs to the dove, v is half the value

of the resource being contested and k is the cost of a fight for

each contestant. This is put into the synergistic form (eq. 10)

by subtracting v–k from all entries, giving us

[
k k − v

2vk + v 0

]
=[

b − c + d −c

b 0

]
where b = v + k, c = v – k, and d = –k (Taylor and

Maciejewski 2012). But clearly b and c are not easily interpretable

as benefit and cost.

Following Queller’s (1985)article, a number of studies found

different ways to handle these synergistic effects. The earliest of

these employs regression coefficients (Queller 1992; Lehmann

and Keller 2006; Gardner et al. 2011); this approach does in-

deed deliver fitness as a linear function of individual genotypes,

but an important disadvantage for me is that the interaction
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payoffs b, c, and d are buried in the regression coefficients and

we lose sight of them. A second approach introduces higher order

relatedness coefficients (Ohtsuki 2010; Taylor and Maciejewski

2012; Taylor 2013); these preserve the integrity of the payoffs

and capture the quadratic behavior by the relatedness coefficients

that now need to accommodate relatedness among more than two

(for the model here, three) individuals. I will return to this in the

discussion.

But now for a surprise. It turns out, quite unexpectedly, that

in the standard finite population model with rare mutation dis-

cussed here, the mathematical difficulties posed by this form of

synergy disappear and the standard inclusive fitness effect is able

to calculate both �1 and �̂1––neither regression coefficients nor

higher order relatedness coefficients are needed.

SYNERGY IN THE FINITE-POPULATION MODEL

Tarnita et al. (2009) work with the general payoff matrix

(eq. 9) and show that under the assumptions of weak selection

and that the only difference between A and B is found in the ma-

trix payoffs (see Appendix C for details), there exists a parameter

σ, dependent on the population structure but independent of the

payoffs, for which the condition that allele A be fitter than B can

be written:

σ(a11 − a22) + (a12 − a21) > 0. (11)

Here, they define A-fitness using measure (ii) of BOX 3, but then

it must hold for measures (i) and (iii) as well. If we replace the

ai j in condition (eq. 11) by the entries of the matrix (eq. 10) and

rearrange, we get (σ − 1)b − (σ + 1)c + σd > 0. Reparametriz-

ing, taking β and γ to be the coefficients of b and –c, this tells us

that the coefficient of d is halfway between β and γ, giving us the

form

βb − γc +
(

β + γ

2

)
d > 0. (12)

We have seen above that in a transitive population, the IF effect is

equivalent to measure (i) of BOX 3 giving us the sign equivalence:

WIF ≡ βb − γc +
(

β + γ

2

)
d (13)

(Taylor and Maciejewski 2012). If we set d = 0 we have the

standard IF effect WIF = βb − γc (with the same β and γ,

since these do not depend on the payoffs) and that tells us

that β and γ can be calculated using the standard relatedness

coefficients.

Equation (13) can be rewritten

WIF ≡ β

(
b + d

2

)
− γ

(
c − d

2

)
, (14)

and we can say that the synergistic matrix (10) is “equivalent” to

the additive benefit-cost matrix[
B − C −C

B 0

]
, (15)

with B = b + d
2 and C = c − d

2 . To be more precise, a fi-

nite population in which every A individual gives benefit b +
d/2 to its partner (regardless of partner genotype) at cost c –

d/2, will experience exactly the same overall conditions (av-

eraged over all states) for the frequency of A to increase as

for the synergistic interactions of the matrix (eq. 10) (Taylor

2016).

These inclusive-fitness remarks hold in transitive popula-

tions. To clarify this situation, note that the results of Tarnita

et al. (2009) hold in all finite population structures, transitive

or not. In extending these results to the IF analysis, Taylor and

Maciejewski (2012) assumed that the IF effect was always equiv-

alent to the effect of selection on the one-step change in allele

frequency (measure (i) of BOX 3) provided reproductive value

was used in heterogeneous populations. As described above, the

subsequent analysis of Tarnita and Taylor (2014) showed that

this may not be the case (BOX 8). This makes the analysis of

Taylor and Maciejewski (2012) incomplete and I correct this in

Appendix C.

If the synergistic interactions in the matrix (eq. 10) pose no

problem for inclusive fitness, what was all the early fuss about?

The point is that we are working here with the finite population

model whereas, for example, Queller’s (1985) analysis was set

in what is often called the infinite-population model. So what is

it that makes these two population models behave differently?

I now show that this is not about population size per se, but

is about its relation to the rate of what might be called genetic

renewal.

MUTATION RATE AND POPULATION SIZE

We say that two individuals are identical by descent (IBD) if

they descend from the same mutation event with no intervening

mutation. Now our assumption of rare mutation together with

small population size allows us to assume (to first order in u) that

mutation never occurs when there is more than one IBD class in

the population. The point is that drift will clear the population of

more than one IBD class much more quickly than mutation is able

to provide a new such class (BOX 2). In particular, in a mixed state

(which is where selection acts) any two copies of the same allele

must be IBD. This turns out to be the critical condition behind

the Tarnita et al. (2009) result and the IF formulation (eq. 13). To

illustrate that, I provide here a direct heuristic argument for the

equivalence of the synergistic matrix (eq. 10) with the additive

matrix (eq. 15). A rigorous argument is found in Appendix C.

5 1 8 EVOLUTION MARCH 2017



PERSPECTIVE

HEURISTIC ARGUMENT FOR THE EQUIVALENCE OF

THE MATRICES (EQ. 10) AND (EQ. 15)

To begin, I remark that one of the main assumptions of the Tarnita

et al. (2009) article is that the interaction payoffs provide the only

difference between the alleles A and B (Appendix C, assumption

AS2). Thus, in the neutral population (all payoffs equal to 0) the

probability G that a focal individual is IBD to an interactant is

the same whether the focal genotype is A or B. Thus, using the

payoff matrix (eq. 10) the average payoff to a focal A or B player

is

WA = G(b − c + d) + (1 − G)(−c)

WB = (1 − G)b.
(16)

Here, we have used the fact that in a mixed state any two copies

of the same allele must be IBD. If we make the same calculation

for the payoff matrix (eq. 15), we get

WA = G(b − c + d) + (1 − G)(−c + d/2)

WB = (1 − G)(b + d/2).
(17)

Now observe that the difference WA – WB is the same for both

(eq. 16) and (eq. 17). Alternatively if we add (1–G)d/2 to both

payoffs in (eq. 16) we get the payoffs in (eq. 17). Since increasing

all payoffs by the same amount has no effect on any fitness effect,

the two matrices give equivalent conditions.

This argument emphasizes that the rarity of mutation is a

critical reason the synergistic matrix (eq. 10) is effectively addi-

tive, in that it causes genetic identity in state (having the same

allele) to be the same as identity by descent in any mixed state in-

teraction. Said another way, effective nonadditivity in the matrix

(eq. 10) requires interactions between A-individuals who are not

IBD. Such interactions happen routinely in the infinite-population

model when the force of genetic renewal (e.g., long-range migra-

tion) is not rare (as it typically the case).

To be more general, this result is actually about the interaction

between population size and genetic renewal (BOX 2). If genetic

renewal is rare enough that the time required for genetic drift to

clear multiple IBD classes is much shorter than the time between

renewal events, then the matrix (eq. 10) will behave additively,

that is, it will be equivalent to (eq. 15).

THE INFINITE POPULATION MODEL

To emphasize this I look briefly at the infinite population model

for which Taylor and Maciejewski (2012) obtained the following

generalization of equation (13):

WIF =
(

βb − γc + β + γ

2
d

)
+ α

(
p − 1

2

)
d, (18)

where α, β, and γ are independent of both the matrix payoffs and

the equilibrium allele frequency p. Here, genetic renewal is gen-

erated by periodic migration “from afar” and p is the frequency of

A among these immigrants and thus it is the analogue of q in the

finite population model. The first bracket has the form of equa-

tion (13) and β and γ involve only the standard linear relatedness

coefficients, whereas the coefficient α typically requires the cal-

culation of more complex higher order relatedness coefficients.

However, Taylor and Maciejewski (2012) show that, relative to β

and γ, the coefficient α has the same order as the rate of genetic

renewal––so if this is rare, frequency dependence disappears to

first order in this rate. For example, for an infinite island model

(Wright 1931) with randomly mixing demes of size n and BD

updating (Moran 1958), Taylor and Maciejewski (2012) obtain

WIF ∼
(

−c + 1

2
d

)
+

(
p − 1

2

) (
nm

nm + 2(1 − m)

)
d, (19)

and we can clearly see the relative dependence of the final term on

the migration rate m. If migration was rare, we could ignore the

final term and, as for the finite population model, the synergistic

effects could be handled with the standard relatedness coefficients.

Discussion
I have worked here with what is often called the finite population

model. Over the 50-year span of our study of inclusive fitness, it

has been a focus of interest only for the last third. This interest

began with the work of Rousset and Billiard (2000) and continued

from there with the growing interest in evolutionary graph theory

(Lieberman et al. 2005). The ideas that have emerged have greatly

enriched our understanding of strategy fitness and allowed us to

compare the inclusive fitness effect with an array of other fitness

measures, for example those in BOX 3.

My interest here has been to gain a better understanding of

recent studies of two theoretical aspects of inclusive fitness, one

that seeks to understand its interaction with heterogeneous pop-

ulation structure, and the other that looks at the way it handles

nonadditive (synergistic) fitness effects. Both of these have a long-

standing history in the shaping of inclusive-fitness theory but re-

cently special considerations have arisen in the finite-population

model. Ideas of class structure and the significance of repro-

ductive value certainly go back to Fisher (1930), and Hamilton

(1972) was the first to incorporate these into an inclusive-fitness

model. Subsequent discussions of the role of reproductive value

are found in Charlesworth and Charnov (1981), Taylor (1990),

Rousset (1999), Pen and Weissing (2000), and Taylor (2009).

The special status of synergistic fitness effects in matrix games

was first discussed by Queller (1985) and subsequently analyzed

by Queller (1992), Lehmann and Keller (2006), Ohtsuki (2010),

Gardner et al. (2011), and Taylor and Maciejewski (2012).
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HETEROGENEITY AND REPRODUCTIVE VALUE

We have seen that in a finite transitive (BOX 1) population struc-

ture the inclusive fitness effect gives a measure of allele fitness

equivalent to those obtained by other standard approaches (BOX

3), though as always, one needs to look carefully at the assump-

tions being made. But in a heterogeneous or class-structured pop-

ulation, this is not in general the case and I have illustrated this in

some detail using a small (N = 3) population.

To discuss the reason for this, we must first understand that

selection acts on allele frequency in two different ways, first in

each population state, it alters the fitness of different individu-

als, and secondly (effectively as a result of the first), it alters the

state distribution, the frequency with which certain states occur.

Standard inclusive fitness, in working with the neutral state dis-

tribution, accounts only for the first of these. Of course one must

ask at this point how allele fitness should be measured and it

has been argued (Grafen 2015) that fitness effects arising from

changes in allele distribution, for example across reproductive

classes (which will be the case here), are a separate category and,

following Fisher (1930), should perhaps not be counted as part of

the effects of selection on allele frequency. That may well have

merit, but my interest here is in comparing the IF effect with other

standard measures of allele fitness and the fact of the matter is that

in finite heterogeneous populations the effect of selection on the

one-step change in allele frequency, measure (i) of BOX 3, has to

include this effect of allele distribution to be generally equivalent

to other standard measures.

Under population transitivity, and this was often implicitly

assumed in the early models, the effect of the altered state dis-

tribution on its own has no effect on allele frequency change, at

least to first order in the strength of selection. The reason for this

is that when no selection is acting, there is no average change of

allele frequency from any particular state, and thus the average

change over all states will be zero no matter how we weight the

states.

But in a heterogeneous population, this may no longer be

the case and the altered state distribution can have a significant

effect on allele frequency. There is a fix for this and that is to use

reproductive values as a weight on the nodes when calculating the

IF effect (e.g., compare �2 and �̂2 in BOX 8). However, the RV-

weighted IF effect (�̂1 in BOX 8) might no longer provide the

entire effect of selection on allele-frequency change (�1 + �2

in BOX 8). The reason is that once we start to work with RV-

weighted allele frequency, another factor can enter, and that is

the effect of selection, not in the mixed states (which is where

inclusive fitness operates) but in the pure states where a node

inhomogeneity can cause a change in the RV of a new mutant––a

change that acts differently on different alleles (�̂3 in BOX 8).

That is an effect that IF does not capture but the standard measures

of selective allele frequency change (BOX 3) do.

This result is quite sensitive to the assumptions of the model.

Here, I have assumed BD updating but with DB updating (and

fecundity payoffs) �̂3 = 0 and the effect disappears. The reason

is simple enough; DB updating together with fecundity payoffs

produces no effect on the node occupied by a new mutant. Another

assumption concerns the timing of mutation or any other form of

genetic renewal.

This IF anomaly in a heterogeneous population does not arise

in the infinite population model. Here, the RV-weighted IF effect

does capture the full effect of selection on the one-step change in

RV-weighted allele frequency. The reason is that in this model,

the population is virtually always in a mixed state unlike the finite

model in which the mixed-state frequencies are of order u. And

in a mixed state the IF effect does captures everything, provided

of course that under heterogeneity, we use RV weights (Taylor

1990). Most of the 50-year history of inclusive fitness has worked

in a large or infinite population and that is one reason that this

exception has not been discussed until recently.

Adaptive dynamics (Geritz et al. 1998) is an active area that

works with a large population in which fixation probability is

a prominent feature. But the population model it works with is

quite different from the finite population model here. Our fitness

measure here is an average over all population states but adaptive

dynamics works largely with states in which one or the other of the

alleles is rare; thus it requires the notion of frequency-dependent

fitness. The populations it works with are typically transitive (e.g.,

randomly mixed) but it might be interesting to apply the ideas here

to adaptive dynamics in a heterogeneous population.

SYNERGISTIC INTERACTIONS

Queller (1985) first drew attention to the problems experienced

by the inclusive fitness approach when there are synergistic inter-

actions, specifically that generalized “quadratic” covariances are

needed to play the role of relatedness and these are difficult to

calculate. Not long afterwards he proposed a solution, that a focus

on genes (as is the case here) rather than on phenotypes, together

with the use of partial regression coefficients (of fitness on geno-

types of interactants), can give a completely general formulation

of Hamiton’s Rule (Queller 1992). An excellent review of this

approach is found in Gardner et al. (2011). Queller (1992) did

point out that while this approach was theoretically significant,

it did lose sight of the different phenotypic effects that one can

more easily measure and that we are certainly more interested

in here. In terms of the analysis here, these “phenotypic effects”

correspond to the entries b, c, and d of the payoff matrix (eq. 10)

that are typically buried in the regression coefficients, and thus

my preferred solution to the synergism dilemma is to assign the

nonlinearity to the relatedness coefficients and consider the relat-

edness of “a pair of actors” to a recipient (Ohtsuki 2010; Taylor

2013).
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Having said all this, it is a surprise to discover that, in the

finite population model, synergistic fitness effects do not actually

require the use of the generalized (quadratic) relatedness coeffi-

cients (Tarnita et al. 2009; Taylor and Maciejewski 2012; Taylor

2016). Indeed equation (13) shows that the coefficient of d in the

WIF formula is simply the average of the coefficients of b and c,

and these can be calculated in terms of the standard relatedness

coefficients.

It is worth saying a bit about this result. Equation (18) belongs

to an infinite population model in which genetic renewal (e.g.,

through migration from afar in a population with allele frequency

p) is not necessarily rare. Alan Grafen, in comments on an earlier

draft, suggested that the heuristic argument for the equivalence of

equations (16) and (17) might be made to work in such a case if

G were replaced by the probability of having an identical allele

(call this G#) that might or might not be identical by descent

(IBD). These will not be the same when genetic renewal is not

rare. The problem with this is that G# will be different for A- and

B-individuals unless the population allele frequency p is ½. But

in that case, the alternative argument does work and we get the

IF form (eq. 13). This can of course be directly obtained from

equations (18) and (19) setting p = ½.

I have a few reasons for deciding to discuss synergistic ef-

fects here. First of all I regard Tarnita et al. (2009) as a significant

piece of work leading to an important feature of the finite pop-

ulation model. In thinking about this result I am struck by the

fact that my own work with nonadditive interactions, using only

the matrix form (eq. 10), would have had great difficulty finding

that result as the argument (Appendix C) relies heavily on the

more symmetric structure of the matrix (eq. 9). That is a nice

example of the importance of the right notation in facilitating

discovery.

The second reason has to do with the “understanding” of this

result, that it really is not about population size at all but about

the relationship between population size and the rate of genetic

renewal. What we need is a population timeline, such as found

in BOX 2, such that there is unlikely to be a mutation in any

“mixed-state” interval between fixations—for example this will

be the case if u << 1/N. What this gives us, and this is in fact the

critical condition for equation (13), is that in a mixed state two

individuals with the same genotype will be IBD.

It is worth reinterpreting this in an infinite-population model.

Take for example the infinite (or large) island population belong-

ing to equation (19) with demes of size n and migration between

demes at rate m. If the product mn is small (<< 1) then the last

term in equation (19) can be ignored and we are left with the

additive form of equation (13). In this case, each deme would fol-

low the timeline of BOX 2 and since interactions are within each

deme, we could again say that in a mixed deme two individuals

with the same genotype will be IBD.

The third reason is that in my own theoretical work, I made

the assumption that (under weak selection and rare mutation) the

IF effect is equivalent to the selective one-step change in allele

frequency (measure (i) BOX 3) in both transitive and nontransi-

tive populations but that turned out to be incorrect requiring the

argument in Appendix C.
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Appendix A
Inclusive fitness and the one-step change

In the finite-population model, one measure of the fitness of the

allele A (measure (i) of BOX 3) calculates the one-step selective

increase in allele frequency at each state and then takes the average

of this over all states. But in practice, rather than handle each state

separately and then take the average over all states (since state

frequencies are hard to get hold of), we take each node separately

(in fact it is enough to take one focal node in each reproductive

class) and calculate its average fitness (fecundity and mortality)

over all possible states––and then finally average this over all

nodes. Of course the fitness effects at each node depend on the

genotypes of the focal neighbors, but if we know the probability

that each neighbor is A or B, that should be enough to allow

us to take the average. Those probabilities are effectively what

Hamilton (1964) called the coefficients of relatedness.

To avoid having to take account of the genotype distribution

of pairs and triples of neighbors, etc. we make an assumption

of additivity of effects. If the focal individual receives help from

several neighbors we do not expect that in general the total benefit

will be the sum of the benefits from each individual action. If these

effects are small, then this additive assumption should be a rea-

sonable approximation and subsequent analyses have shown that

this “weak selection” assumption can deliver the needed additivity

(Grafen 1985; Taylor 1996).

A transitive population
In this case, the “personal fitness” effect of the A-behavior on a

focal A-individual has the mathematical form:

WPF =
(∑

i
βi Ri

)
b −

(∑
i
γi Ri

)
c, (A.1)

where the sum runs over all individuals i whose behavior affects

focal fitness and the coefficients βi and γi provide the fractional

effects on the focal individual of the benefit b and cost c. The

coefficient Ri is the relatedness of the focal individual to individual

i and it effectively provides the probability that individual i carries

the allele A (and therefore exhibits the A-behavior) given that the

focal individual carries A (Michod and Hamilton 1980).
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Hamilton (1964) turned this cause-effect relationship around,

taking a single focal A-actor and adding up all the fitness effects of

its A-behavior on the fitness of others, each effect again weighted

by the focal relatedness Ri to the recipient. The resulting expres-

sion looks the same but it is now called the inclusive fitness effect

of the allele A:

WIF =
(∑

i
βi Ri

)
b −

(∑
i
γi Ri

)
c, (A.2)

where the sum runs over all individuals affected by the focal A-

behavior and the Ri provide the probability that these individuals

carry the focal allele. Thus this is the effect of the action of a single

copy of A on the fitness of all neighboring copies. The conceptual

advantage of this formulation is that it puts the bearer of the allele

A in the driver’s seat, so to speak, such that it can be viewed

as selecting its behavior with regard to all the various effects it

might have on the fitness of many neighbors, each weighted by

its relatedness to the focal actor.

As an example, suppose that the focal A-individual provides

fecundity benefit b to node i that sends its offspring to nodes j and

k with probabilities 3/4 and 1/4, respectively. In that case the IF

effect of this single benefit will be

WIF =
(

3

4
(Ri − R j ) + 1

4
(Ri − Rk)

)
b. (A.3)

Note that I have chosen to break the Ri up into its two com-

ponents, each corresponding to a node replacement––on nodes j

and k. This is my preferred way to do the accounting and it is

useful when we use reproductive values. The fecundity gift of b

to i is called a primary effect, and the resulting mortality effect

on j and k is called secondary (West and Gardner 2010).

A heterogeneous or class-structured population
In this case nodes in different classes may have different repro-

ductive value vi and both the primary and the secondary effects

of each payoff should be weighted by the node RV. For the i-j-k

example above, the RV-weighted IF effect will be

ŴIF =
(

3

4
(Ri − R j )v j + 1

4
(Ri − Rk)vk

)
b. (A.4)

Note when a behavior affects the probability of a birth event, the

relatedness belongs to the node of the parent but the offspring is

valued according to the node it inhabits.

Appendix B
Inclusive fitness analysis of the star population

with N = 3 nodes (Fig. A1)

Node 0 is called the hub and is connected to nodes 1 and 2, called

the leaves. The hub has two interactions and each leaf has one.

Figure 1. The 3-star graph

Offspring dispersal from a leaf is only to the hub and from the hub

it is to each leaf with probability ½. This is a small population

but it still has all the complexities that concern us and it has a

manageable number of states. I use BD updating with fecundity

payoffs.

RV calculation
There are two reproductive classes, the hub class H = {0} and the

leaf class L = {1, 2}. To use simple numbers for the calculation,

suppose all nodes are given one offspring:

RV gain through birth = RV loss through death.

Hub : vL = 2vH

Leaf : vH = 1/2vL

Note that the equations are identical. If there are C reproductive

classes, the RVs will be determined by C–1 of the C possible

equations. The solution that sums to one (v0 + v1 + v2 = 1) is

vH = 1/5 and vL = 2/5.

Relatedness calculation
As relatedness coefficients between nodes, I use the probabilities

G that the nodes are identical by descent (IBD) (Michod and

Hamilton 1980; Rousset and Billiard 2000; Taylor 2013). Let

these be between:

Individual and self : G0 = 1

Hub and leaf : G1

Leaf and leaf : G2

The one-step recursive equations between these are:

G1 = (1 − u)

(
(1/2)G0 + (1)G0 + (1)G2

5/2

)

= (1 − u)

(
3G0 + 2G2

5

)

G2 = (1 − u)G1
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For the first, consider the hub-leaf pair. The most recent replace-

ment came at the leaf from the hub at rate ½ (G = 1) or at the

hub from the same leaf at rate 1 (G = 1) or at the hub from the

other leaf at rate 1 (G = G2). To form an average I have divided

by the total rate 5/2. The second belongs to the leaf-leaf pair.

Replacement is from the hub giving G1. These equations solve to

give, to first order in u:

G1 = 1 − 7

3
u

G2 = 1 − 10

3
u.

Inclusive fitness calculation
We calculate the fitness of the allele A by adding up the fitness

effects of all interactions of a focal A-individual. There are two

ways of organizing this calculation: working with a focal recipient

(personal fitness) or with a focal actor (inclusive fitness). Here, I

use the latter. For this I need to take a focal individual in each actor

class. In this case, both classes act (sometimes only one class acts

but both classes feel the effects) so I consider a focal hub actor

and a focal leaf actor. Finally, I add up the effects weighting each

actor by its number of primary interactions of each type.

Hub actor (interacting with one leaf) Gives b to leaf R = G1.

The extra offspring go to the hub with RV = vH and increase hub

mortality––relatedness to actor (self) is R = G0 and again RV =
vH.

Effect : b(G1 − G0)vH

Gives –c to self: R = G0. The extra offspring go to the leaf RV =
vL and increase leaf mortality R = G1 and again RV = vL.

Effect : −c(G0 − G1)vL

Total effect : ŴIF(H) = b(G1 − G0)vH − c(G0 − G1)vL =
(bvH + cvL)(G1 − G0)vL = 1

15 (−7b − 14c) .

Leaf actor (interacting with hub) Gives fecundity b to hub:

R = G1. The extra offspring goes to a leaf RV = vL and increases

leaf mortality R = (G0+G2)/2 (leaf to self and other leaf) and

again RV = vL.

Effect : b

(
G1 − G0 + G2

2

)
vL.

Gives –c to self: R = G0. The extra offspring goes to hub RV =
vH and increases hub mortality R = G1 and again RV = vH.

Effect : −c(G0 − G1)vH

Total effect : ŴIF(L) = b
(
G1 − G0+G2

2

)
vL − c(G0 − G1)vH =

1
15 (−4b − 7c)

Sum over both focal actors The focal hub actor has two inter-

actions (with both leaves) and the leaf actor has two interactions

(as there are two leaves).

ŴIF = 2ŴIF(H) + 2ŴIF(L) = u
2

15
(−11b − 21c)

to first order in the mutation rate u. We often omit the u-multiplier,

though it’s a useful reminder that in this model, the IF effect is of

order u. Comparing this result with BOX 8 we see it is 3 times the

measure �̂1 tabulated there. The reason is that our analysis here

counted changes in allele number rather than allele frequency, and

with N = 3, the latter is 1/3 of the former.

Appendix C
The relationship between the result of Tarnita

et al. (2009) and the IF effect in a heterogeneous

population

Our argument here draws heavily on the proof found in Tarnita

et al. (2009). Suppose we have a finite graph-structured population

of asexual haploid individuals occupying all nodes, with rare

mutation and fitness determining pairwise interactions such that

an A-individual gives benefit b to its partner at cost c, but if the

partner is also A, it gives a “synergistic” bonus d. We make the

following two assumptions:

AS1: Selection is weak. More precisely the conclusions are

valid to first order in the strength of selection. As part of this

assumption we need the fitness components (e.g., the fecundities,

mortalities, and the state transition probabilities) to depend differ-

entiably on the strength of selection (otherwise “first order” has

little meaning).

AS2: The payoffs provide the only difference between the

alleles A and B. For example, there are no differences connected

with the update rules, partner choice or offspring dispersal (e.g., in

the neutral population, the probability an offspring born on node

i will disperse to node j is independent of the allele it carries).

Then the IF effect can be calculated with the standard “addi-

tive” inclusive-fitness analysis and has the mathematical form:

WIF = βb − γc +
(

β + γ

2

)
d,

where the coefficients β and γ are dependent on the population

structure but independent of the payoffs. Here it is understood that

in a heterogeneous population (Taylor 2009; Tarnita and Taylor

2014), the IF effect ŴIF will be formulated with reproductive

values.

Proof. In a heterogeneous population, the IF effect is equiv-

alent to what we have called �̂1 = ∑
smixed �x̂δ

s π
0
s , the effect of

selection on the average one-step change in allele RV calculated

with the neutral state distribution. With a slight notational modi-

fication, I suppress the strength of selection δ, and in terms of the
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general matrix (eq. 9), I let �x̂A
s = �x̂A

s (a11, a12, a21, a22) denote

the average one-step RV change for the allele A at the state s, and

let �x̂B
s be the corresponding change for allele B. For example

for the state s = AAB in BOX 7, we have �x̂A
s = − 2

15 c = 2
15 a12.

Then

�x̂A
s (a11, a12, a21, a22) = −�x̂B

s (a11, a12, a21, a22)

= −�x̂A
s (a22, a21, a12, a11) (C1)

The first equation holds because the RV sum over all nodes is

always 1 so what A gains, B will lose and the second equation

follows from AS2 above so that if we both interchange the alleles

and permute the corresponding matrix entries the result should

not change.

Now take the average of the first and last expressions over

all states s using the neutral state distribution noting that π0
s is

independent of the payoffs:

�̂1(a11, a12, a21, a22) = −�̂1(a22, a21, a12, a11). (C2)

Using the differentiability of �̂1 (AS1) and the fact that it is zero

at neutrality, the first-order multivariable Taylor expansion of �̂1

will have the form:

�̂1 = k1a11 + k2a12 + k3a21 + k4a22, (C3)

where the ki are independent of the payoffs. From (B2):

k1a11 + k2a12 + k3a21 + k4a22

= − (k1a22 + k2a21 + k3a12 + k4a11) . (C4)

Now since (B4) holds for all ai j , we deduce that k4 = – k1

and k3 = – k2. This allows us to write (B3) as

�̂1 = k1(a11 − a22) + k2(a12 − a21)

∼ σ(a11 − a22) + (a12 − a21),

where I have taken σ = k1/k2 and used � to denote sign equiva-

lence. This gives us equation (11).
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