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Much debate has appeared in the literature over the generality of the inclusive fitness approach in the
modeling of evolutionary behavior. Here I focus on the capacity of the inclusive fitness approach to
effectively handle non-additive or synergistic interactions. I work with a binary interaction with the

matrix game
a b

c d

� �
and I restrict attention to transitive (homogeneous) populations with weak

selective effects. First of all I observe that the construction of “higher-order” relatedness coefficients
permits these synergistic interactions to be analyzed with an inclusive fitness analysis. These coefficients
are an immediate generalization of Hamilton's original coefficient and can be calculated with exactly the
same type of recursive equations. Secondly I observe that for models in which the population is not too
large and local genetic renewal is rare (e,g, rare mutation), these higher order coefficients are not needed
even with non-additive interactions; in fact the synergistic interaction is entirely equivalent to a closely-
related additive one. The overall conclusion is that in the study of synergistic binary social interactions
(2-player games) in a finite homogeneous population with weak selection and rare genetic renewal, a
standard inclusive-fitness analysis is able to predict the direction of allele-frequency change. I apply this
result to analyze a recent model of Allen and Nowak (2015).

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the evolution of social behavior has been hugely
enriched by Hamilton's (1964) construction of inclusive fitness and
the wealth of literature which has developed and extended its
ideas over the past half century. Much recent controversy (Nowak
et al., 2010; Abbot et al., 2011; Bourke, 2011; Herre and Wcislo,
2011; Nowak et al., 2011; Allen et al., 2013; Liao et al., 2015;
Queller et al., 2015) has arisen over the significance and centrality
of the inclusive-fitness approach. The resulting debate, which
typically identifies apparent misunderstandings, has certainly led
to a clarification and sharpening of our understanding of the
inclusive fitness method. One of the most significant issues in this
debate concerns the capacity of the inclusive-fitness approach to
handle non-additive or “synergistic” fitness effects and this ques-
tion is close to my own recent interests. I believe that a synergistic
inclusive fitness theory is now firmly in place and that has
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prompted me to reply to a recent paper of Allen and Nowak (2015)
where it is asserted that “inclusive fitness can only be formulated
if each individual's genotype contributes a separate, well-defined
amount to each other individual's fitness.” In my response below I
first observe that a natural generalization of the standard notion of
relatedness can give us an inclusive-fitness analysis of non-linear
(quadratic) fitness effects. Secondly I point out that there are some
quite standard population models for which the classical “addi-
tive” inclusive-fitness analysis is already able to handle synergistic
fitness effects. Those are the ones in which the process through
which new genetic material enters a neighborhood, for example,
mutation, is rare.

At the core of an inclusive-fitness analysis is the inclusive-
fitness effect

W IF ¼
X

k
aikRi�k ð1:1Þ

of a single focal actor i whose behavior generates a fitness change
aik in a number of recipients k (Hamilton, 1964). Here W IF is a linear
combination of the effects aik each weighted by the focal related-
ness Ri�k to the individual k, this being a measure of the extent of
common genetic ancestry between i and k (Michod and Hamilton,
1980). It has been shown many times in different ways (Hamilton,
1964; Charlesworth, 1980; Queller, 1992a; Taylor 1996, and many
more recent papers cited below) that under a suite of simple
assumptions, particularly weak selection and additive gene action,
the sign ofWIF will tell us whether the selective effects of the action
of an allele will cause its frequency to increase or decrease.

To be more precise about the assumption of additivity, it
requires that the fitness effect aik of the action of i on individual k
depends only on the genotype of i and is independent of all other
genotypes, particularly that of k. This is, I believe, the condition
that Allen and Nowak (2015) had in mind with the stipulation that
“each individual's genotype contributes a separate, well-defined
amount to each other individual's fitness.”

An enormous body of work generated over the past 50 years
has produced many versions and extensions of the fundamental
Eq. (1.1). Much of the recent work in social evolution looks at
binary matrix games in which the selective effects of the behavior
are directly coded by genetic alleles, and in that domain it appears
to be the case that a linear combination of fitness effects such as is
found in Eq. (1.1) will do the job only under particular “additive”
conditions, often referred to as “equal gains from switching.”
Queller (1985, 1992b) was the first to discuss these non-additive or
“synergistic” effects and he observed that they would require an
extension of the standard approach.

One such extension is based on the use of a multilinear regres-
sion analysis (Queller, 1992a, 1992b; Gardner et al., 2011). This
approach retains the mathematical form of the inclusive fitness
effect (1.1) but the fitness effects aik are no longer constructed
mechanistically directly from the entries of the payoff matrix (e.g.
by following the effects of a fecundity benefit through the pattern of
offspring dispersal), rather they are replaced by more general
coefficients of linear regression. Effectively this approach says that
for the purpose of measuring allele frequency change, the fitness-
determining interactions behave as if they combine additively.
However in forming this linear combination, the biologically
meaningful parameters such as the entries of the payoff matrix and
offspring dispersal probabilities are often replaced by more abstract
entities and one loses the direct intuition of the formulation.

Here I will work with another type of extension, one that
preserves the meaning of the fitness effects aik, but extends the
summation found in (1.1) to incorporate quadratic fitness effects
aijk and corresponding relatedness coefficients Rij�k. In this
extension, individuals i and j are in a sense joint actors in that the
fitness effect aijk on k depends not simply on the genotype of the
focal actor i, but on the product xixjof the genotypes of i and j, and
the coefficients of relatedness Rij�k depend on the various prob-
abilities of genetic identity among all three individuals.

Finally and unexpectedly, I will observe that in the case in
which local genetic renewal (mutation or migration) is rare, and
the population size is not too large, these generalized relatedness
coefficients Rij�k are not actually needed; rather the quadratic
synergistic effects referred to above can be handled with the
standard coefficients Ri�k. To be more explicit, I will show (Eq.
(2.6) below) that in this case, the inclusive-fitness effect can be
given an “additive” formulation in which every individual's gen-
otype does indeed contribute a separate, well-defined amount to
each other individual's fitness. In the Appendix I provide a simple
worked example of this. I end with an inclusive fitness analysis of
the two examples discussed by Allen and Nowak (2015).
2. Inclusive fitness with pairwise interactions

2.1. Population structure

I begin with a finite population represented as an evolutionary
graph, a set of nodes, indexed by i and j, etc., each occupied by a
single asexual haploid breeder. The structure of the population is a
specification of fitness interactions among the nodes as well as
node succession, the probability that in each time step, breeder i is
replaced by breeder j or by its offspring. An evolutionary graph has
a homogeneous or transitive structure (Taylor et al., 2007b) if for any
given pair i, j of nodes there is an isomorphism of the node set
mapping i to j, that is, a bijection which preserves all components of
the structure: interaction and node replacement. Roughly speaking,
the structure “looks the same” from every node, that is, if an
inhabitant of any node was blindfolded and removed and then put
back on a node at random, it would be unable to tell whether it had
been moved. When transitivity fails, the orbits of the set of all
isomorphisms partition the node set into reproductive classes and
individuals in different classes might have different reproductive
values which typically need to be accounted for. To keep the ana-
lysis simple I will assume the population has a transitive structure.

There are many ways to model birth and death and here I allow
either a Moran process in which in any time-step there is a single
birth and death, or a Wright-Fisher process in which generations
are non-overlapping and in each time-step all individuals bear
offspring and die and the offspring repopulate the nodes.

I suppose that there are two alternative alleles A and B in the
population determining behavior and I let the genotypic value xi of
the breeder on node i be the frequency of A in its genotype. To
maintain local genetic variability, we need a source of new genetic
material and I assume that this comes through “long-range”
migration or mutation or both.

2.2. Matrix games

In each generation an individual has a number of pairwise

interactions, each playing the game with payoff matrix
a b
c d

� �
(Maynard Smith, 1982; Queller, 1985; Nowak and May, 1992;
Nowak et al., 2004) where the first row gives the payoffs to an A-
player (with an A or B partner) and the second row belongs
similarly to B. I assume that the payoffs represent small incre-
ments in fitness, small enough that we can ignore second-order
effects. For each offspring, the average payoff is added to the
baseline fitness of 1. Here we take individual fitness to measure
genetic contribution to the next generation.

In inclusive-fitness studies, a normalized version of the matrix
is often used. If we subtract d from each entry so that the payoff
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from a B–B interaction is zero, the matrix can be written in the
form

B�CþD �C

B 0

� �
ð2:1Þ

where

B¼ c–d;
C ¼ d–b ð2:2Þ

D¼ a–b–cþd

The matrix (2.1) has the “cost-benefit” form found in Hamil-
ton’s Rule, that is, each A-individual, as actor, gives benefit B to its
partner at cost C, but if the partner is also A, it gives a “synergistic”
bonus D (Queller 1985, 1992b). The advantage of the form (2.1) is
that it situates the quadratic fitness effect entirely in the para-
meter D; when a focal actor i interacts with j, the gift D is received
by j only if the product xixj is 1.

2.3. An inclusive-fitness analysis

Tarnita et al. (2009) provide an elegant general analysis of the

matrix game
a b

c d

� �
in a finite population with weak selection and

rare symmetric mutation between A and B. They show that the con-
dition for the allele A to have a selective advantage over B has the form.

σ a–dð Þ4 c–bð Þ ð2:3Þ
for a coefficient σ that depends on the population structure but not on
the payoffs a, b, c and d. Taylor and Maciejewski (2012) extend this
analysis to “infinite”-population models in which the mechanism that
maintains genetic diversity need not be rare, whether it is mutation or
a process of migration “from afar.” Using the matrix form (2.1), they
show that the inclusive-fitness effect has the following simple form:

W IF ¼ βB�γCþ βþγ
2

þ q�1
2

� �
α

� �
D ð2:4Þ

Here the coefficients α, β and γ are independent of both the
matrix payoffs and the average allele frequency q. Since β and γ are
independent of D, they will be unchanged if we set D equal to zero.
But in this case we have a standard “additive” benefit-cost inter-
action and thus β and γ must depend only on the standard relat-
edness coefficients Ri�k. However the coefficient α typically
requires the calculation of higher-order coefficients Rij�k. Such
coefficients are defined in terms of quadratic genotypic covariances
of the form covðxixj; xkÞ first identified by Queller (1985, 1992b, Eq.
2.8) and further analyzed and developed by Ohtsuki (2010), Taylor
and Maciejewski (2012) and Taylor (2013). A simple worked
example of these R-coefficients in action is found in the Appendix.

Taylor and Maciejewski (2012) show that, in comparison to β
and γ, the coefficient α in Eq. (2.4) has the same order as the rate of
genetic renewal. When this is generated by rare mutation, its
effect is small compared to the effect of β and γ and Eq. (2.4)
simplifies to:

W IF ¼ βB�γCþ βþγ
2

� �
D ð2:5Þ

Eq. (2.5) delivers two striking conclusions. First, relative allelic
fitness is independent of allele frequency q, and secondly, syner-
gistic interactions (captured by the effect D) can be handled with
standard coefficients of relatedness such that the higher-order
coefficients Rij�k need not be calculated. Of course they are still
present hidden inside the coefficient (βþγ)/2 of D, but Eq. (2.5)
gives us a general formulation of the inclusive fitness effect in a
finite population with rare mutation in terms of the standard
relatedness coefficients Ri�k.
To emphasize this, we can rewrite Eq. (2.5) in the form

W IF ¼ β BþD
2

� �
�γ C�D

2

� �
ð2:6Þ

which tells us that a non-additive interaction with benefit B, cost C
and synergistic bonus D, can be modeled as an additive interaction
with benefit B0 ¼BþD/2 and cost C0 ¼C–D/2. Effectively Eq. (2.6)
asserts that the synergistic behavior can be captured with a stan-
dard benefit-cost interaction in which the benefit is given to all
interactants regardless of their genotype provided that we add D/2
to the benefit and subtract D/2 from the cost. In terms of the matrix
formulation, what Eq. (2.6) tells us is that in case genetic renewal is
rare (through rare mutation or migration) the synergistic matrix

game
B�CþD �C

B 0

� �
is equivalent to the additive game

B�CþD �CþD=2
BþD=2 0

" #
ð2:7Þ

If the transformation Eqs. (2.2) are applied to Eq. (2.5), the
condition that WIF40 can be written:

ðβþγÞða�dÞ4 ðβ�γÞðb�cÞ ð2:8Þ
and this is the condition (2.3) of Tarnita et al. (2009) with σ ¼ βþ γ

β� γ.

2.4. Relatedness

Finally we recall the definition of relatedness. We say that two
individuals i and k are identical by descent (IBD) if they have a
common ancestor without any intervening mutation. Given that,
the relatedness R of an actor i to a recipient k can be expressed as

Ri�k ¼
Gik�G

G0�G
ð2:9Þ

where Gik is the probability that the two are IBD, G0¼1 is the
probability that an individual is IBD to itself, and G is the average
IBD of an individual to all individuals in the population (Rousset
and Billiard, 2000; Taylor et al., 2007a). Then the relatedness of an
individual to itself (G¼G0) is R0¼1 and the average relatedness to
the population (G¼G) is R¼0. I point out that the normalization in
Eq. (2.9) (subtracting G and then dividing by 1–G) is conventional
when working with transitive populations but is optional in that
the G-coefficients can serve on their own as relatedness. An
advantage of the normalization is that it gives us negative coeffi-
cients of relatedness (whereas Gik is always Z0). However in non-
transitive populations for which there are different reproductive
classes, the normalization can be problematic as G can vary among
different classes (Taylor, 2009).

The standard R-coefficient in Eq. (2.9) will serve my needs in
the analysis of the next section, but in the Appendix I provide the
analogous formula for the higher-order coefficients Rij�k.
3. An inclusive-fitness analysis of the example of Allen and
Nowak

Allen and Nowak (2015) consider a finite population with non-
overlapping generations and N haploid breeders each of which has
a large number n of asexual offspring. They use a two-allele model

with bi-allelic mutation and general matrix game
a b

c d

� �
as

described above. The offspring engage in many binary interactions,
a proportion r of which are with sibs while the remaining 1�r are
random in the population at large. The total game payoff for each
offspring provides a small fitness increment and then to form the
next generation of adults, N offspring are chosen from the
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population at large, with probability weighted by fitness. This is a
transitive population structure with non-overlapping generations
which updates through what is generally called a Wright-Fisher
process.

Allen and Nowak (2015) use fixation probability to compare the
fitness of A and B, but under weak selection in a transitive
population, the inclusive-fitness effect will provide an equivalent
condition (Taylor et al., 2007a; Tarnita and Taylor, 2014) and I now
obtain their results with a general inclusive-fitness analysis.

3.1. A general analysis

I begin with a comment about the general inclusive-fitness Eq.
(1.1). The fitness effects aik must capture all effects of the matrix
interaction, not only the immediate effects B, C and D on future
fecundity but also the later derived effects, often called “secondary”
(West and Gardner, 2010). For example in a population of constant
size an extra offspring given to one individual must reduce the fit-
ness of another. For that matter, even if the population is growing,
such effects can still be felt in terms of the total RV of the population
gene pool. In the model of Allen and Nowak, these secondary effects
are all felt at random in the population and focal relatedness to these
is R¼0 (Eq. 2.9). Thus in the following analysis I can restrict attention
to the immediate fecundity effects of B, C and D.

To calculate β and γ in Eq. (2.5), we can set D¼0 (see discussion
after Eq. 2.4) so that each offspring interaction consists of a single B-
gift at cost C. Since the interaction is between sibs with probability r
and is otherwise at random, the inclusive-fitness effect has the form:

WIF ¼ BðrRSþð1�rÞRÞ�CR0 ¼ BrRS�C ð3:1Þ
where RS is the relatedness between offspring sibs.

Allen and Nowak (2015) make two alternative assumptions
about the action of mutation. In the first, mutation effectively
occurs in the adult so that all offspring of a mutant adult are
mutant (and therefore all IBD). In the second case, the mutation
occurs and takes effect in the offspring such that a mutant off-
spring is not IBD to its sibs.

3.2. The first mutation scenario

Here the entire focal sibship is effectively (phenotypically)
clonal and RS¼1, giving

W IF ¼ Br�C ð3:2Þ
From the coefficients of B and C we get β¼r and γ¼1, and the
condition (2.8) that WIF40 becomes:

ðrþ1Þða�dÞ4 ðr�1Þðb�cÞ ð3:3Þ
as obtained by Allen and Nowak (2015), Eq. (10) for their equiva-
lent condition ρA4ρB.

3.3. The second mutation scenario

In this case effective mutation occurs independently among the
offspring. To calculate the relatedness between sibs we first note
that two sibs are IBD if neither is mutant and the probability of
that is:

GS ¼ ð1�uÞ2 � 1�2u ð3:4Þ
We calculate G from the recursive equation:

G
0 ¼ ð1�uÞ2 1

N
þN�1

N
G

� �
ð3:5Þ

where the prime means “next generation.” To be IBD, two random
next-generation offspring must first both be non-mutant. Given
that, they are sibs with probability 1/N (since the number of
offspring is large) and in that case are IBD; otherwise their parents
are two random offspring from the current generation and in that
case are IBD with probability G. At equilibrium, G

0 ¼ G, and this
solves to give G¼ 1�2Nu (see the note at the end of the Appendix
for the best way to obtain the solution). Then from Eq. (2.9) the
relatedness between sibs is:

RS ¼
GS�G

1�G
¼ 1�2u�ð1�2NuÞ

1�ð1�2NuÞ ¼N�1
N

ð3:6Þ

and from Eq. (3.1):

WIF ¼ BrRS�C ¼ Br
N�1
N

�C ð3:7Þ

From the coefficients of B and C, we get β¼ rN�1
N and γ¼1 and the

condition (2.8) that WIF is positive can be written:

ðrNþN�rÞða�dÞ4 ðrN�N�rÞðb�cÞ ð3:8Þ
as obtained by Allen and Nowak (2015; Section 6) for their
equivalent condition ρA4ρB.
4. Discussion

4.1. Additive and non-additive games

Matrix-game models have a significant venerable history
(Maynard-Smith and Price, 1973; Maynard-Smith, 1982; Queller,
1985; Nowak and Sigmund, 2004) and receive much theoretical

attention today. The game matrix
a b

c d

� �
provides the fitness

effects of the interaction in terms of the strategies (in our case,
genotypes) of both players. Hamilton (1964) framed his inclusive-
fitness analysis in terms of the fitness effects of the actions of a focal
individual i on all whose fitness is affected by that behavior. For
example he talks about the fractions of the harm and benefit which
the individual itself causes to the fitness of its neighbors k, where
these fractions are in fact the coefficients of relatedness Ri�k. But his
discussion assumes that these fitness effects are independent of the
genotypes of these neighbors; these genotypes enter only into the
calculation of relatedness. A game can be modeled in this way only
when it satisfies the condition aþd¼bþc. By subtracting the con-
stant d from all payoffs, such “additive” games can be written in the

form
B�C �C

B 0

� �
and can be interpreted in the Hamiltonian

framework; each A-individual gives benefit B to its partner at cost
C, regardless of the partner genotype.

Queller (1985, 1992b) was the first to observe that, again by
subtracting d, the same general game could be written in the form
B�CþD �C

B 0

� �
which allows the effects to be described in a

Hamiltonian inclusive-fitness framework––D is an extra benefit an A-
individual bestows if its partner also carries the A-allele. Queller
pointed out that the D-term requires a modification of the standard
inclusive-fitness formulation, and that is what has led to the intro-
duction of the higher-order relatedness coefficients Rij�k. These can
be calculated following the same recursive approach that works for
the standard coefficients (e.g see the Appendix) and thus this gives
us a natural generalization of the inclusive-fitness method.

That story is interesting enough but now it takes a rather
unexpected turn. These generalized relatedness coefficients Rij�k
appear in the general formulation (2.4) only in the α-term, while
the terms β and γ involve only the standard coefficients Ri�k.
Furthermore the order of α is the same as the order of the
mechanisms of local genetic renewal, be they mutation or
migration from afar (Taylor and Maciejewski, 2012). In the case in
which the only such force is provided by mutation and this is
assumed to be rare, the contribution of these generalized
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relatedness coefficients is negligible and can be ignored. That gives
us Eq. (2.5) which involves only the standard coefficients Ri�k.
What this tells us is that we can treat the synergistic interaction as if
it were an additive benefit-cost interaction.

Just to highlight this a bit more, the system of recursive equa-
tions for the various IBD coefficients G generally allows us to see
that the higher order coefficients Gijk can be written as linear
combinations of the standard coefficients Gijk. As an example of this,
study the system (A1) in the Appendix––the equations for G3 and
G4 can be solved together giving us expressions for G3 and G4 in
terms of G1 and G2. Because of the nature of the recursive system,
this will generally be the case, and what that tells us is that we can
expect the coefficient of D in the inclusive fitness formula (2.5) to be
a linear combination of the coefficients β and γ of B and C. But we
would expect this linear combination to depend on the population
structure, so that it is quite unexpected that, in the case in which
genetic renewal is rare, the coefficient of D is (βþγ)/2 for all
populations regardless of their structure.

4.2. Mutation and migration

In formulating a mathematical model we need a source of new
genes; otherwise, even given the effects of selection, the popula-
tion will eventually be genetically uniform. Two standard mathe-
matical ways to provide this are found in genetic mutation and
migration “from afar”; this final requirement is needed as in a
structured population, migrants from near-by are apt to find
relatives where they settle. In fact, to be quite formal, we often
assume that the population is “infinite,” so that migrants are cer-
tain to be unrelated to those they encounter. Furthermore this
allows us to assume that they carry the allele A with a fixed
probability q, and that is needed in the model formulation. A
similar assumption is made in the mutation process.

I observe that in models, such as Wright's (1943) island model
with large population size, we often assume that migration is the
sole force for local genetic renewal and that it is not rare. As a
consequence, the simple form for WIF given by Eq. (2.5) no longer
holds and we need the α term of Eq. (2.4), and as I have observed,
this generally requires the calculation of the higher-order relat-
edness coefficients (Ohtsuki, 2010; Taylor and Maciejewski, 2012).
As a consolation for this additional complexity, we get a form of
frequency dependence through the long-term allele frequency q,
and with that comes the possibility of a stable polymorphism of
pure strategies (Taylor and Maciejewski, 2012).

Finally, I remark that I assumed throughout that the population
structure is transitive, but Eqs. (2.4–2.8) hold in heterogeneous
(non-transitive) structures provided the inclusive-fitness effect is
formulated using reproductive values (Taylor, In preparation).

4.3. Additivity and the strength of selection

Almost no fitness interactions have strictly linear effects and
one should not talk of linear approximations without introducing
the strength of selection. Hamilton, in his original 1964 analysis,
felt it reasonable to assume linear effects on fitness only because
most benign mutations are of small effect. I should point out that
the scenario Hamilton seems to have had in mind was that gen-
otype affects behavior (phenotype) which in turn affects the fit-
ness of one or more individuals. In our haploid model if an indi-
vidual’s fitness is a function w¼ f ðz1; z2; :::; znÞ of the phenotypes of
n individuals, and if genotype x has a small effect on phenotype,
z¼z0þδx, then a first-order Taylor expansion will give us a fitness
effect that is linear in the genotypic values: w¼w0þδ

Pð∂f =∂ziÞxi
(Grafen, 1985). In the matrix game model I work with here there is
an assumption of weak selection, but this does not give us a first-
order Taylor expansion in genotype because fitness connects
directly with genotype without going through a continuous
intermediate z.
4.4. Some remarks on the effects of population structure

Right from the beginning (Wilson, 1975), questions about the
effects of the population structure were raised. Over the past
decade, considerable attention has been paid to the spatial
assortment of individuals (Hauert and Doebeli 2004; Traulsen and
Nowak, 2006; Ohtsuki and Nowak, 2006; Ohtsuki, 2010) and it has
increasingly been made clear that we should have a wide range of
modeling approaches in our evolutionary toolbox and be prepared
to choose the one (or ones!) that give us the technical capacity
and/or the insights that we want. A particularly interesting (and
longstanding) debate of this type is one that compares the theo-
retical and technical advantages of approaches using inclusive
fitness and multilevel selection (Lehmann et al., 2007; Damore and
Gore, 2012; Frank, 2013; Okasha, 2015).

Considerable work particularly at the microbial level over the
past decade has revealed a surprisingly rich variety of behaviors,
particularly cooperative behaviors that exhibit marked frequency
dependence in that the frequency of the competing types affects
the very structure of the population and can even alter the payoffs
in the matrix (Smith et al., 2010; Damore and Gore, 2012). In this
case, under weak selection, Hamilton’s Rule can perhaps give us a
short-term account of allele frequency change, but more special-
purpose models are needed to understand long-term behavior.

One significant aspect of working with microbes is that, perhaps
due to their simple structure and short generation time, it is often
much easier to measure the fitness effects of the behavior––the
benefits and costs––than it is with larger slower more complex
organisms. Chuang et al. (2010) study an interesting “synthetic”
microbial system in which they are able to chemically modify the
benefit of a public good interaction and measure the effect on
Hamilton's Rule. I find this work particularly interesting as it employs
what might be called a “natural” agent-based simulation and such
approaches significantly enhance our understanding of the working
of our mathematical models. In one case the effective benefit chan-
ged in a non-linear way across treatments (with different cooperator
frequencies) and that led to some counter-intuitive findings. Such
results alert us to the simplicity of the assumptions we generally
make in our mathematical models and this is most certainly true of
Hamilton’s Rule. Having made that point, it works the other way
around as well. Mathematical models can give us valuable indica-
tions of what to look for in setting up our simulations.
5. Conclusions

Evolutionary models of binary interaction with the general

game matrix
a b

c d

� �
can be handled with an inclusive fitness

approach provided “higher-order” relatedness coefficients are
employed. These coefficients are an immediate generalization of
Hamilton's original concept of relatedness and can be calculated
with exactly the same type of recursive equations. However,
models that rely upon rare mutation as the source of genetic
renewal provide an interesting special case in which the general
game matrix is equivalent to an “additive” matrix (aþd¼bþc)
such that the higher-order coefficients are not needed and a
standard inclusive-fitness analysis will correctly measure allelic
fitness.
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Appendix

The purpose of the appendix is to use a simple finite population
to illustrate the inclusive-fitness calculation using the higher-order
relatedness coefficients and then demonstrate that the same
answer is obtained using the additive matrix form (2.7).

Population structure. I consider the 5-cycle (Fig. 1). In each time
step each A-individual gives a fecundity benefit B to each of its two
neighbors at cost C. In addition, when the neighbor also carries the
allele A, an extra benefit D is bestowed. I assume that these fitness
effects are small and augment the base fecundity 1. An offspring is
a clone of its parent with probability 1�u and otherwise it is A or
B with probabilities q or 1�q.

Relatedness calculation. I begin by noting that the symmetry of
the structure (Fig. 1) allows us to get by with only five IBD coef-
ficients, and to simplify the analysis I call them Gi (0r ir4):
� G0¼G11¼1: to self
� G1¼G12: to neighbor
� G2¼G13: to non-neighbor
� G3¼G123: three in a row
� G4¼G124: three not in a row

In addition we let G¼ G0 þ2G1 þ2G2
5 be the average G of an individual

to the population. The one-step recursive equations for the Gi are

G1 ¼
1�u
2

G2þG0ð Þ; G3 ¼
1�u
3

G1þG2þG4ð Þ ðA1Þ

G2 ¼
1�u
2

G2þG1ð Þ; G4 ¼
1�u
3

G2þG3þG4ð Þ

For example, to obtain the G1 equation, calculate the prob-
ability that nodes 1 and 2 are IBD. Choose the node of the pair that
was most recently replaced, say node 2 (by symmetry), and ask
where the offspring came from. With probability u it was a mutant
(giving G¼0) and otherwise (probability 1�u) it came from nodes
1 or 3 with equal probability ½.

To solve these equations to first order in u the most elegant
approach is to set Gi¼1�giu and simplify the equations to get

g1 ¼ 1þg2þg0
2

; g3 ¼ 1þg1þg2þg4
3

ðA2Þ

g2 ¼ 1þg2þg1
2

; g4 ¼ 1þg2þg3þg4
3

1

2

34

5

1/21/2

Fig. 1. The 5-cycle. There are 5 nodes each with 2 neighbors and each occupied by a
single haploid breeder. I use Moran updating so that there is one birth in each time
step with the offspring displacing each neighbor with probability ½. This is a
transitive population structure.
And, noting that g0¼0, these solve to give:

g1 ¼ 4; g2 ¼ 6; g3 ¼ 7 and g4 ¼ 8 ðA3Þ
This gives us G¼ 1�gu¼ 1�4u since g¼ g0 þ2g1 þ2g2

5 ¼ 4. Finally,
again using the symmetry, we need only five relatedness coeffi-
cients and Taylor (2013) provides the formulae for these in a
transitive population, although in that presentation the R-coeffi-
cients are not normalized.

self : R0 ¼ R1�1 ¼
G0�G

G0�G
¼ 1

neighbour : R1 ¼ R1�2 ¼
G1�G

G0�G
¼ g�g1

g
¼ 4�4

4
¼ 0

non� neighbour : R2 ¼ R1�3 ¼
G2�G

G0�G
¼ g�g2

g
¼ 4�6

4
¼ �1

2
ðA4Þ

synergistic inside : R3 ¼ R12�2 ¼
G2�GþðG0�G1Þq

G0�G
¼ g�g1þg1q

g
¼ q

synergistic outside : R4 ¼ R12�3 ¼
G3�GþðG1þG2�2G3Þq

G0�G
¼

¼ g�g3þð2g3�g1�g2Þq
g

¼ q�3
4

The final two formulae in (A4) follow from the general equa-
tions:

Rij� j ¼ Rij� i ¼
ðGij�GÞþðG0�GijÞq

G0�G

Rij�k ¼
ðGijk�GÞþðGik�GijkÞqþðGjk�GijkÞq

G0�G
ðA5Þ

found in unnormalized form in (Taylor 2013). Note that the first of
these equations is a special case of the second. To give some
intuition for the second equation, note that it modifies the effect of
D when the gift is given by i to j and affects the fitness of k. And
since we are keeping track of the change in A-frequency, the
coefficient Rij�k essentially counts the instances where k has the
allele A. Now the actor i is assumed to already carry A, so for the
gift to be given we need j to carry A, so that means we want the
cases in which j and k both carry A. First this will occur when all
three are IBD and that’s covered by the first bracket on the right.
Secondly this will happen when i and k are IBD but not IBD to j
(and the probability of that is Gik�Gijk) but j independently carries
A, and the probability of that is q. That’s covered by the second
bracket on the right. Analogously, we might have that j and k are
IBD but not IBD to i (and the probability of that is Gjk�Gijk) but
both j and k independently carry A, and the probability of that is q,
as they are IBD. That’s covered by the third bracket.

Inclusive-fitness analysis. I begin with the full analysis that
makes use of the synergistic relatedness coefficients Rij�k. The
inclusive-fitness effect turns out to be:

W IF ¼ B R1�2�
R1�1þR1�3

2

� �
�C R1�1�

R1�5þR1�2

2

� �

þD R12�2�
R12�1þR12�3

2

� �
ðA6Þ

derived as follows. Take node 1 as a focal A-actor (x1¼1) and
consider its interaction with node 2. First it gives node 2 a
fecundity benefit B and the potential extra offspring increase the
mortality of nodes 1 and 3. The initial gift is weighted by the
relatedness coefficients R1�2, and the secondary mortality effects
are weighted by R1�1 and R1�3. Then it pays the cost C of the gift
and the potential reduction in offspring decreases the mortality of
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nodes 5 and 2. The initial effect is weighted by the relatedness
coefficient R1�1, and the secondary mortality effects are weighted
by R1�5 and R1�2. Finally its synergistic gift of D to node 2 is
dependent upon having x2¼1, and in this case as for B, the
potential extra offspring increase the mortality of nodes 1 and 3.
The initial effect is weighted by the relatedness coefficient R12�2,
and the secondary mortality effects are weighted by R12�1 and
R12�3. When we substitute the expressions from the Eq. (A4), we
get:

W IF ¼ B R1�
R0þR2

2

� �
�C R0�

R1þR1

2

� �
þD R3�

R3þR4

2

� �
;

¼ B 0�1�1=2
2

� �
�C 1�0

2

� �
þD q�qþq�3=4

2

� �

¼ �1
4
B�Cþ3

8
D ðA7Þ

Now I do the “additive” analysis provided by Eq. (2.6) with
benefit BþD/2 replacing B and cost C�D/2 replacing C. According
to the result of (A7) we will get:

W IF ¼ BþD
2

� �
R1�

R0þR2

2

� �
� C�D

2

� �
R0�

R1þR1

2

� �

¼ �1
4

BþD
2

� �
� C�D

2

� �
¼ �1

4
B�Cþ3

8
D ðA8Þ

as before. Note that these equations both give us β¼–1/4 and γ¼1,
so that βþ γ

2 ¼ 3
8, and as expected from Eq. (2.5), this is the coeffi-

cient of D.
I remark that the 5-cycle analyzed above is a transitive popu-

lation, and in this case, under many updating rules, WIF depends
only on the size of the population. This surprisingly simple result
is an effect of a cancelation between primary and secondary effects
(Taylor, 1992). For example, for a Moran process with BD updating,
β¼–γ/(N�1) where N is population size (Taylor et al., 2007b;
Grafen and Archetti, 2008) and thus by Eq. (2.5) the inclusive-
fitness effect always has the form W IF ¼ � 1

N�1B�CþN�1
2N D. We

could have written the final answer in Eq. (A8) without having
done any work at all.

Note: the method we used above to solve the Eq. (A1) can be
used to easily solve Eq. (3.5) with G

0 ¼ G. The equation is G¼
ð1�uÞ2 1

NþN�1
N G

� �
and to work to first order in u, we set G¼ 1�gu

and ð1�uÞ2 ¼ 1�2u. Multiplying through by N gives us
Nð1�guÞ ¼ ð1�2uÞð1þðN�1Þð1�guÞ
and to first order in u, this solves to give g ¼ 2N.
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