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Hamilton’s formulation of inclusive fitness has been with us for 50 years.

During the first 20 of those years attention was largely focused on the evol-

utionary trajectories of different behaviours, but over the past 20 years

interest has been growing in the effect of population structure on the evolution

of behaviour and that is our focus here. We discuss the evolutionary journey of

the inclusive-fitness effect over this epoch, nurtured as it was in an essentially

homogeneous environment (that of ‘transitive’ structures) having to adapt in

different ways to meet the expectations of heterogeneous structures. We pay

particular attention to the way in which the theory has managed to adapt

the original constructs of relatedness and reproductive value to provide a for-

mulation of inclusive fitness that captures a precise measure of allele-frequency

change in finite-structured populations.
1. Introduction
‘Hamilton’s Rule’ [1] states that a trait will be favoured by selection when the

overall fitness benefit to the recipient multiplied by its genetic relatedness to

the actor is greater than the overall fitness cost to the actor [2]. In symbols,

bR . c, (1:1)

and here we use boldface notation for b and c to emphasize the principle that

they must represent the total fitness effect on the individual [3,4]. This will

distinguish it from the fecundity effects b and c, which will generally represent

partial fitness effects. This rule is a mantra for many evolutionary biologists and

there is good reason for that. Although the formulation covers only the fitness

effects on two individuals (actor and recipient), it is simple and compelling and

does capture Hamilton’s fundamental insight that the effect on the recipient

should carry a weight representing relative probability that affects the gene

responsible for the behaviour. More generally of course, particularly in evol-

utionary graphs, an item of behaviour will typically affect the fitness of many

individuals, who can all be regarded as ‘recipients’, and what is called the
inclusive-fitness effect is the weighted sum of these fitness effects bi where the

weights are the relatedness coefficients Ri of the actor to the ith recipient (one

of whom will be the actor itself )

WIF ¼
X

i
biRi: (1:2)

In his 1964 paper, Hamilton argued that under certain general assumptions, an

allele causing such behaviour will increase in frequency precisely when WIF is

positive. In rare cases, there might be only two affected recipients, the actor 0

and its ‘partner’ 1, and in that case

WIF ¼ b0R0 þ b1R1 (1:3)

and with b0 ¼ –c and the relatedness of an actor to itself equal to R0 ¼ 1, we

recover the simple version.

Our purpose here is to trace the development of the theory of inclusive

fitness with particular attention paid to the effect on the evolutionary outcome

of population structure, all the way from the implicit homogeneity of the early

models to a study of the explicit effects of heterogeneity and class structure.

Our setting is finite evolutionary graphs and our particular focus is on recent
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Figure 1. A 5-cycle with an A actor at position 0. This actor gives a primary
benefit b to both neighbours 1 and 4, at a total cost of 2c. These primary effects
translate into secondary competitive effects that act on survival under BD and on
fecundity under DB. Details are given in table 1. (Online version in colour.)

Table 1. Calculation of the inclusive-fitness effect on the 5-cycle with
fecundity payoffs. Relatedness coefficients are calculated in appendix A.

pay-
off

primary secondary

recipient relatedness recipient relatedness

BD focal actor at node 0

– 2c 0 R0 1,4 R1

b 1 R1 0,2 (R0 þ R2)/2

b 4 R1 0,3 (R0 þ R2)/2

WIF ¼ 2b R1 �
R0 þ R2

2

� �
� 2c(R0 � R1) ¼ �b=2� 2c

DB focal actor at node 0

– 2c 0 R0 2,3 R2

b 1 R1 3,5 (R2 þ R1)/2

b 4 R1 1,3 (R1 þ R2)/2
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developments around coefficients of relatedness and repro-

ductive values (RVs). We illustrate our remarks with two

examples, one homogeneous (the 5-cycle) and the other

heterogeneous (the 3-star).
WIF ¼ 2b R1 �
R1 þ R2

2

� �
� 2c(R0 � R2) ¼ b=2� 3c

60
2. Evolutionary graphs
We work with a finite-structured population of constant size.

We represent it as a graph, that is, a finite set of nodes i with

edges (i, j ) between certain pairs of nodes [5]—see, for

example, figure 1. Nodes that are joined by an edge are

called neighbours. Each node is occupied by a haploid

asexual individual and at the end of each time interval, one

node is chosen to produce a single offspring, which displaces

one of its neighbours. Each individual carries one of two

possible alleles A and B assorting at a fixed locus. Offspring

carry the parental allele except for mutation, which occurs

at birth with a small probability u. In that case, both A and

B mutate to an A form with probability pN and to a B form

with probability 1 – pN. We choose this notation as pN turns

out to be the long-term allele frequency (frequency of A) in

the neutral population.

We suppose that in each time interval each A-individual, as

actor, gives pay-off b to each of its neighbours at cost c per

neighbour. We assume that these pay-offs represent small

increments in fecundity, small enough that we can ignore

second-order effects (w-weak selection as in [6]). These pay-

offs are added to a baseline fecundity of 1 to give each individ-

ual a relative fecundity. To be clear, this assumption of additivity

applies to pay-offs received from multiple A-nodes. For

example, an A-node with three neighbours, one of which is

A, will have relative fecundity 1 þ b – 3c.

At the end of each time interval, the fecundity (probability of

giving birth) of each node is determined by an ‘update rule’ and

herewewill work with a Moran process with either a birth–death

(BD) or death–birth (DB) updating [7,8]. Under a BD updating,

the birth node is determined at random using the relative fecund-

ities as weights. Under a DB updating, a random (unweighted)

node is chosen and the occupying individual is removed. The

replacement offspring is chosen at random from the neighbours

of the chosen node using the relative fecundities as weights.

In other treatments, these pay-offs might also represent incre-

ments in survival but we do not consider that here. It turns out

that in the class of models we work with here there is a symmetry

between the results for fecundity and survival pay-offs [9].
It is clear that as a result of these interactions the fitness

effect on each individual will in general be the result of the

actions of a number of A-nodes. However, Hamilton’s inclus-

ive-fitness effect, briefly described above, considers the effects

of only one A-actor. For this to capture the overall picture,

this ‘focal’ actor must somehow represent all actors and for

that to happen we need some assumptions of symmetry in

the population structure. This question of structure, and the

different forms of internal symmetry it might exhibit, is our

main objective of study in this paper.
3. An example: the 5-cycle
As an example, we consider the cycle graph (figure 1) [10]

with both BD and DB updating and fecundity pay-offs. We

fasten attention on an A-individual at node 0 and examine

the inclusive-fitness effect of its behaviour [11]. The primary

effects are fecundity gifts of b to each of nodes 1 and 4 and a

consequent fecundity loss of 2c for node 0.

From this point on, the story is different for the two

update rules (table 1). Under BD, the gifts represent changes

in the probability that the nodes will be selected to reproduce.

These fecundity effects are called primary, as they are direc-

tly connected to the pay-offs. They will, however, lead

to additional effects on survival classed as secondary. For

example, the gain of b offspring to node 1 will give nodes 0

and 2 a survival loss of b/2 each, and the loss of 2c offspring

from node 0 will give nodes 1 and 4 a survival gain of c each.

However, under DB, no reproduction is possible until we

have a death. For example, the fecundity gift of b to node 1

must await a death from either node 0 or node 2 to be rea-

lized, and in that case the competitive effect of that gift will

be to reduce the effective fecundity of the node ‘on the

other side’. For example, if node 0 dies, the competition to

colonize the vacant node is between nodes 1 and 4, so that

http://rstb.royalsocietypublishing.org/
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Figure 2. Some examples of homogeneous graph-structured populations. (a) A well-mixed population, drawn as a complete graph, where all individuals are free to
interact and replace any member of the population; (b) a lattice with periodic boundary, a toroidal lattice and (c) a structure where individuals interact more strongly
in a triad than between triads, a type of island structure. (Online version in colour.)
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node 1’s gain of b will create an effective loss to node 4’s

fecundity. Actually, that only affects node 4’s reproduction

in half of its opportunities; the other half being the death of

node 3. Thus, the overall effect on node 4 is –b/2. Similar

stories apply to the fecundity gift of b to node 4 and the

fecundity loss of 2c to node 0. The take-away message is

that the secondary effects of primary effects on fecundity

act on survival under BD and on fecundity under DB.

The inclusive-fitness effect of all this is obtained by

adding these effects up, each weighted by the relatedness

of node 0 to the recipient node. The details are laid out in

table 1 and the coefficients of relatedness are calculated in

appendix A. The calculations give us the inclusive-fitness

effects WIF ¼ –b/2 – 2c for BD updating and WIF ¼ b/2 – 3c
for DB updating.

As we have mentioned, WIF gives us the sign of the rate of

increase of the allele A and, for the 5-cycle, the conditions for

selection to act to increase the frequency of A are

� b . 4c BD updating (3:1)

and

b . 6c DB updating. (3:2)

Under DB updating, altruism (b, c . 0) will be selected if

the benefit inflicted on a neighbour is at least six times the

cost. However, under BD updating, altruism can never

be selected, but spite (–b, c . 0) will be selected if the

harm inflicted on a neighbour is at least four times the cost.

It turns out that these are examples of a general result for

‘homogeneous’ populations, those with a special type of

internal symmetry called transitivity.
4. Transitive graphs
A graph is called transitive [12,13] if given any pair i, j of nodes

there is a bijection T of the node set mapping i to j, which pre-

serves all edges (that is T(i) is a neighbour of T( j) if and only if i
is a neighbour of j—such bijections are called isomorphisms).

Clearly our 5-cycle is transitive (the isomorphisms are the

rotations) and some additional examples are provided in

figure 2. With this assumption, the graph ‘looks the same’

from every node and that allows us to work with a single

‘focal’ node, as we have done in the example above. But a

striking result is that in this case of a transitive graph,

the condition WIF . 0 is independent of the structure of the

graph and depends only on the number N of nodes and

the update rule. For example, for the Moran process with
fecundity pay-offs, the inclusive-fitness effect is positive

exactly when [9,13–16]

�b .(N � 1)c BD updating (4:1)

and

b
N
k
� 2

� �
. (N � 2)c DB updating, (4:2)

where k is the degree of each node (the number of neighbours)

so that for a cycle graph, k ¼ 2. For the case N ¼ 5, k ¼ 2, we get

the conditions above for the 5-cycle. A transparent explanation

in terms of ‘circles of compensation’ of why the DB protocol is

friendlier to altruism than BD is found in Grafen & Archetti

[13]. A further discussion of the relationship between these

two protocols is found in Taylor [9]. For example, if pay-offs

affect survival rather than fecundity, the transitive population

conditions above are reversed: equation (4.1) belongs to DB

and equation (4.2) belongs to BD.

It turns out, not surprisingly, that the transitive graphs are

precisely those for which the simple (one might say ‘initial’)

form of Hamilton’s inclusive-fitness analysis works. For these

graphs, the fitness effects on the population of the actions of

a single focal A-individual are able to capture the selective

advantage of an A-allele. Our objective is to see how inclusive

fitness can be generalized to apply to graphs with more com-

plex symmetry patterns. The short answer is that the analysis

works fine but that we need to incorporate RV and consider

a focal individual for each reproductive class [17].
5. Allele-frequency change: the Price equation
Price’s [18] covariance formula for the selective allele-

frequency change (ignoring mutation) over a single time step

can be written as

D�x ¼ cov(W , x), (5:1)

where W is individual fitness effect (the overall fitness effect of

all pay-offs), x is individual genotype (¼1 for an A-node and 0

for a B-node) and �x is the population-wide allele frequency (the

average genotype). To calculate the overall fitness effect Wi on

each node i, we need to know the state of the population, that is,

which nodes are A and which are B and then the fitness effects

for each node are calculated as the difference between the

fecundity and the mortality effects. For example, for the

5-cycle (figure 1) with BD updating suppose that nodes 0

and 2 are A and the other four nodes are all B. As a result of

the assumption of additivity among effects, we can calculate

http://rstb.royalsocietypublishing.org/
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Table 2. Inclusive-fitness effects on the 5-cycle at each node i for A on
nodes 0 and 2.

node i
effect of
node 0

effect of
node 2

total effect
Wi

0 – 2c – b/2

– b/2

– b/2 – 2c – 3b/2

1 c þ b c þ b 2c þ 2b

2 – b/2 – 2c – b/2

– b/2

– 2c – 3b/2

3 – b/2 c þ b c þ b/2

4 c þ b – b/2 c þ b/2
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Wi by adding the separate effects of the behaviour of nodes 0

and 2. The calculation is given in table 2 and the resulting

selective change of allele frequency is

D�x ¼cov(W , x) ¼ E(Wx)� E(W)E(x) ¼ E(Wx)

¼ 1

6

X
i
Wixi ¼

1

6
(W0 þW2) ¼ �3b� 4c

6
, (5:2)

where we have used the fact that E(W ) ¼ 0, as the population

size is constant.

The calculation in equation (5.2) gives the allele-frequency

change in a particular state. However, over time, the popu-

lation will wander among many possible states each with its

own long-term frequency. One might well ask, in this case,

how we might construct a reasonable measure of the overall

selective advantage of the allele A. The generally accepted

answer to this was provided in 2000 by Rousset & Billiard:

take the average state-specific selective allele-frequency

change D�x and then average these over all states, each state

weighted by its long-term frequency of occurring. That is not

an easy calculation, as the state frequencies are not generally

analytically accessible, but under certain general conditions

this average can be calculated with the inclusive-fitness effect.

The transition from this average allele-frequency change

to the inclusive-fitness effect is technically rather interesting.

We summarize the process here and provide the missing cal-

culation in appendix B. For simplicity, we work with a

transitive population but we show later how the analysis gen-

eralizes to heterogeneous populations. What we need to

calculate is
X

s
psD�xs ¼

X
s
pscovs(W , x), (5:3)

where ps is the frequency of state s and covs is the covariance

over all nodes of the population in state s. The notation can

get a bit hard to keep track of, so we adopt a notational

device found in Taylor et al. [16]. We use round brackets to rep-

resent an average or a covariance over all nodes in the

population, and square brackets to represent an average or a

covariance over all population states. With this notation,

equation (5.3) is written

E[D�x] ¼ E[cov(W , x)]: (5:4)

The expression on the right-hand side asks us to calculate the

covariance of fitness with genotype over the population in a

fixed state and then average these over all states. In this form,

the calculation is intractable. The trick, and the essence of

Hamilton’s 1964 approach, is to argue that under certain

assumptions it is permissible to interchange the order of the

operations and to calculate instead

E[D�x] ¼ E(cov[W , x]): (5:5)

The equivalence of (5.4) and (5.5) is established in appendix

B. In equation (5.5), we take a fixed node and calculate the

covariance between its genotype and fitness over all possible

states, and then average this over all nodes.

In the case of a transitive population, the result of this

first covariance will be the same for all nodes and the final

average is unnecessary. In this case, the formulation for

average allele-frequency change becomes

E[D�x] ¼ cov[W0, x0], (5:6)

where i ¼ 0 is a randomly chosen ‘focal’ node. We see later

how to extend this formulation to heterogeneous graphs.
6. The inclusive-fitness effect: relatedness
In a graph-structured population, the overall fitness Wi of

each node i will be, to first order in the pay-offs, a linear func-

tion of the node genotypes

Wi ¼ 1þ
X

j
bijxj, (6:1)

where bij is the fitness effect on i of an A-allele at node j. It

is important to note that bij are independent of state, and in

that case they can be pulled out of the square brackets

in equation (5.5):

E[D�x] ¼ E(cov[Wi, xi]) ¼ E
X

j
bijcov[xj, xi]

� �
: (6:2)

Here, for clarity, we have replaced the random variables W and

x in equation (5.5) with Wi and xi and the expectation E is over

all nodes i. The covariance in equation (6.2) takes a fixed pair of

nodes and asks how their genotypes covary over the long-term

life of the population. And the point is that this can be calcu-

lated with a simple argument. As a result of our assumption

on the mutation process, the nodes i and j are either identical

by descent (IBD) or independent [16]. The probability in the

first case is the coefficient of consanguinity (CC) Gij (appendix

A), and in this case the covariance will be the genic variance

var[x], and in the second case the covariance is zero. Thus,

cov[xj, xi] ¼ Gijvar[x] (6:3)

and

E[D�x] ¼ E
X

j
bijGij

� �
var[x] ¼ E

X
i
bijGij

� �
var[x]: (6:4)

In the middle term of equation (6.4), the j-summation ranges

over the actors and the final expectation is over all recipients i.
The final term moves towards an inclusive-fitness formula-

tion by reversing them so that the summation ranges over the

recipients and the expectation is taken over the actors [17,19].

The Gij are sometimes used as coefficients of relatedness,

and indeed in infinite population models they do play that

role, though under diploidy they should be normalized by

dividing by Gjj the CC of the actor with itself [20]. However in

finite population models, they should not, strictly speaking, be

considered as relatedness coefficients. For one thing, they are

always greater than or equal to 0, and in finite populations altru-

ism and spite are often studied [21] and negative relatedness

plays an important conceptual role. In the literature, there

seems to be a diversity of candidates for relatedness in finite

population models [4,22–24]. Such formulations subtract from

http://rstb.royalsocietypublishing.org/
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G an average value calculated over some reference population,

so that the relatedness of actor j to recipient i has the form

Rij ¼
Gij � �G
1� �G

, (6:5)

where the denominator ensures that the focal relatedness to itself

is 1. This G-average might be calculated over the whole popu-

lation or over an ‘economic neighbourhood’ [25]—the set of

nodes that experiences the negative effects of the primary pay-

offs. With a graph structure, such a node set is not so easy to

get hold of, as the secondary effects are not uniform. In a transi-

tive population, a standard normalization takes �G to be the

average CC of the focal actor to the whole population; an advan-

tage of that is that the focal node has average relatedness zero to

the population.

As we have assumed the population size is constant, the

sum of all fitness effects on any actor j must be zero:P
i bij ¼ 0, and we can (except for the denominator in

equation (6.5)) replace Gij in equation (6.4) by Rij. We define

the inclusive-fitness effect to be

WIF ¼ E
X

i
bijRij

� �
, (6:6)

and then from equation (6.4)

WIF ¼
E[D�x]

(1� �G)var[x]
(6:7)

so that the inclusive-fitness effect has the same sign as E[D�x],

the long-term average one-step change in allele frequency.

As above, in a transitive population, the summation in

the round brackets of equation (6.6) will be the same for each

node j, and we can take afocal actorand eliminate the expectation:

WIF ¼
X

i
biRi: (6:8)

Here bi is the fitness effect of the focal actor on recipient i and Ri is

the probability the focal actor is IBD to recipient i. We now look for

an analogue of equation (6.8) in a heterogeneous population.
7. Heterogeneous populations:
reproductive value

The RV of a node is roughly defined as its expected contribution

to the future gene pool of the population. Fisher [26] was per-

haps the first to understand that individuals with different RV

need to be treated as belonging to different ‘reproductive

classes.’ As an illustration, he produced a plot of RV against

age in humans (p. 28) and pointed out that ‘The value shown

is probably correct . . . for assessing how far it is worthwhile to

give assistance to immigrants in respect of infants . . . for such

infants will usually emigrate with their parents’ (p. 29).

Possibly the first appearance of RV in a calculation of inclus-

ive fitness is found in Hamilton’s [27] work with altruistic

behaviour in eusocial species, in which, in the case of the haplo-

diploid genetic system, the diploid females have twice the RV of

the haploid males. In this paper, Hamilton corrects (p. 204) an

error he made in his 1967 paper on extreme sex ratios in

which a neglect of this RV ratio led him to an incorrect value

for the evolutionarily stable strategy sex allocation under haplo-

diploidy (p. 485). To our knowledge, this is the first example of

an inclusive-fitness calculation in a heterogeneous population in

which the wrong result is obtained if RVs are not used.

In the post-Hamiltonian world, it was assumed, without

much in the way of formality, that inclusive-fitness
arguments need to take account of variations in RV—after

all, it is surely the future gene pool that counts [28]. As an

‘obvious’ example, consider a mother feeding her nestlings

giving total benefit b at cost c. Suppose that half her nestlings

will die. Suppose that we are at the point where the mother

can tell which half will die. Then, we might imagine two

alternative strategies: feed only those who will live and feed

only those who will die. An inclusive-fitness calculation that

did not take account of RV would provide the same condition

for both cases, but clearly they have very different implications

for gene-frequency increase. Later (tables 3 and 4), we provide

specific results for the N ¼ 3 star graph.

Another early example is found in West Eberhard’s [29] sug-

gestion that altruistic acts by individuals of low RV towards

related individuals of high RV are more likely to be selected for

than is altruism in the reverse direction. This is taken from

Charlesworth & Charnov [30] who provided the first rigorous

connection between RV-weighted fitness effects and gene-

frequency increase with an inclusive-fitness model in an

age-structured population. A nice example of the deployment

of RVs in a class-structured population (in which there are

breeders, helpers and waiters) is found in Pen & Weissing [31].

In the more recent graph-structured evolutionary models,

the class structure derives not so much from different roles

(male–female, parent–offspring, breeder–worker) as different

edge configurations, but the same general considerations

apply. To define these classes, we return to our concept of

graph isomorphism, and define the reproductive classes to be

the orbits under the set of all graph isomorphisms. That is,

two nodes are in the same class if there is an isomorphism

mapping one to the other. Thus, a transitive graph has only

one reproductive class; otherwise, there is more than one

class and the graph is called heterogeneous (figure 3).

Our rough definition above of RV seems to neglect

mutation. In our finite graph model, the long-term future of a

population without mutation is simply fixation of one of the

current genes, and thus our definition of RV is equivalent to fix-

ation probability. Place an allele A at node i with B at all other

nodes. Let the population run with neutral selection (all

pay-offs zero) and no mutation. Then, the RV vi of node i is

the probability that the population will become fixed in a pure

A state. With this definition, vi are normalized to have sum 1.

It should be clear that nodes in the same reproductive class

will have the same RV, but the converse is not true. In fact, it

has been shown [34] that the RV of a node is proportional

under DB updating to its degree and under BD updating to

the reciprocal of its degree. Note that this makes qualitative

sense. Under DB, it is good for a node to have high degree,

as this provides many opportunities for reproduction; conver-

sely, under BD, it is good for a node to have low degree, as this

reduces the probability of death. But note that degree does not

determine class, as seen, for example, in the Frucht graph [33]

(figure 3c). Here, all nodes have the same degree, and hence the

same RV but they are all in different reproductive classes. The

same behaviour at two such nodes will have the same effect

on the population allele frequency, but in other ways can

affect the population differently.
8. The heterogeneous price equation
Now let us return to the Price equation D�x ¼ cov(W , x) for

the one-step selective allele-frequency change. We must first

http://rstb.royalsocietypublishing.org/
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Table 3. Calculation of the inclusive-fitness effect on the 3-star with BD updating and fecundity payoffs. Reproductive values are proportional to the reciprocal
of the degree of the node so that vH ¼ 1/5, vL ¼ 2/5. Relatedness coefficients are calculated in appendix A.

pay-off

primary secondary

RVrecipient relatedness recipient relatedness

hub actor (node 0)

– 2c 0 R0 1 R1 vL

b 1 R1 0 R0 vH

b 2 R1 0 R0 vH

WIF(H) ¼ 2b(R1 � R0)vH � 2c(R0 � R1)vL ¼ (� 21b� 42c)/40

leaf actor (node 1)

– c 1 R0 0 R1 vH

b 0 R1 0,2 (R0 þ R2)/2 vL

WIF(L) ¼ b R1 �
R0 þ R2

2

� �
vL � c(R0 � R1)vH ¼ (� 12b� 21c)/80

WIF ¼ WIF(H)þ 2WIF(L) ¼ � 3
40

u(11bþ 21c)

Table 4. Calculation of the inclusive-fitness effect on the 3-star with DB updating and fecundity payoffs. Reproductive values are proportional to the degree of
the node so that vH ¼ 2/4, vL ¼ 1/4. Relatedness coefficients are calculated in appendix A.

pay-off

primary secondary

RVrecipient relatedness recipient relatedness

hub actor (node 0)

– 2c 0 R0 0 R0 vL

b 1 R1 1,2 R1 vH

b 2 R1 1,2 R1 vH

WIF(H) ¼ 2b(R1 � R1)vH � 2c(R0 � R0)vL ¼ 0

leaf actor (node 1)

– c 1 R0 0,2 (R0 þ R2)/2 vH

b 0 R1 1 R1 vL

WIF(L) ¼ b(R1 � R1)vL � c R0 �
R0 þ R2

2

� �
vH ¼ �c

R0 � R2

2

� �
vH ¼ �

1
2

c

WIF ¼ WIF(H)þ 2WIF(L) ¼ �c
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ask, in a heterogeneous graph, what we should even mean by

allele frequency. A gene on a more valuable node will con-

tribute many more copies of itself to the future than a gene

on a less valuable node. It would thus appear that any

measure of the ‘effective’ frequency of an allele A should

take account of the value of the nodes it occupies. That has

prompted the definition of RV-weighted allele frequency in

any state S as x̂ ¼ x̂S ¼
P

i vixi [35–37]. A closely related

way to realize the vector kx̂Sl is as a left eigenvector.

Regard x̂S as the total RV of all A-genes in state S. Under neu-

trality, any copy of A must hold its RV over each update step,

and that gives us a system of forward recursive equations for

x̂S. Now those equations, when framed in vector-matrix form,

tell us that kx̂Sl is the left eigenvector of the state transition

matrix A at neutrality [35].
To calculate the one-step selective change in x̂, fitness

effects must be RV-weighted, that is, when an individual

dies the RV of its node is lost and when an offspring is

born the RV of the node it occupies is gained. Using Ŵ for

this RV-weighted form of fitness, Price’s formula for average

RV-weighted allele-frequency change is

Dx̂ ¼ cov(Ŵ , x): (8:1)

This formula calculates the one-step selective change in

RV-weighted allele frequency of the population in any

particular state. Its long-term average is

E[Dx̂] ¼ E[cov(Ŵ , x)] (8:2)

and this is the general version of equation (5.4).

http://rstb.royalsocietypublishing.org/
http://rstb.royalsocietypublishing.org/


(a) (b) (c)

Figure 3. Three examples of heterogeneous graph-structured populations. (a) In contrast to the homogeneous structures considered previously, many authentic
social structures are known to have a few highly connected individuals while the majority of individuals have far fewer connections. Such models can be generated
by a preferential attachment algorithm [32]. Nodes with different numbers of connections will certainly be in different reproductive classes. However this is far from
being the only distinguishing characteristic—for two nodes i and j to be in the same class, there must be an isomorphism of the graph mapping i to j. (b) The
central node has degree 4 and the 12 others have degree 3. There are three reproductive classes, eight nodes in the outer octagon, four nodes forming the middle
square and the central node. The symmetry in the drawing of the graph provides the isomorphisms. Thus, nodes may have the same number of connections but
may relate to the population as a whole differently. (c) An extreme example of this is represented by the Frucht graph [33] with 12 nodes. All nodes have degree 3,
yet this structure has no isomorphism (other than the identity); thus, each node is its own class. (Online version in colour.)

1 0 2

Figure 4. The star graph on three vertices. The single hub node 0 interacts
with the two leaf nodes 1 and 2, and vice versa; there is no primary inter-
action between the leaf nodes. Offspring from either leaf node disperse to the
hub, while hub offspring disperse to either leaf with probability 1/2 (tables 3
and 4). (Online version in colour.)
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9. Heterogeneous inclusive fitness
Our transformation above of Price’s formula into an inclus-

ive-fitness effect will also work with RV-weighted allele

frequency. In particular, the argument in appendix B which

leads to equation (5.5) remains valid with W replaced by

Ŵ : The analogue of equation (6.4) is

E[Dx̂] ¼ E
X

i
b̂ijGij

� �
var[x], (9:1)

where b̂ij is the effect of an A-allele at node j on the RV-

weighted fitness of individual i, and, following equation

(6.6), the inclusive-fitness effect is more generally defined as

WIF ¼ E
X

i
b̂ijRij

� �
, (9:2)

where Rij is again given by equation (6.6) with �G some suit-

able state-independent average CC value. We return to this

in the Discussion.

Now we generalize equation (6.8). In a heterogeneous

population, the expectation in equation (9.2) will be the same

for nodes j in the same reproductive class so that we can

in fact take the expectation over each class of actor using the

relative class size as a weight. We get

WIF ¼
X

J

NJ

N

X
i
b̂iJRiJ , (9:3)

where NJ is the size of class J, b̂iJ is effect of an A-allele at a class J
focal node on the RV-weighted fitness of individual i, and RiJ is

the relatedness of the class J focal actor to recipient i. One

further comment: the J-sum in equation (9.3) needs only be

taken over these classes, which exhibit the behaviour being

studied. We return to this in the Discussion.
10. Example. The star graph with N ¼ 3 nodes
The graph (figure 4) has a hub and two leaves; the hub is con-

nected to both leaves such that in each time step the hub has

two interactions and each leaf has one. Offspring dispersal

from a leaf is only to the hub and from the hub is to each

leaf with neutral probability 1/2. There are clearly two repro-

ductive classes, class H containing the hub and class L
containing the two leaves. In tables 3 and 4, we present the

inclusive-fitness analyses for both BD and DB updating.

Both follow the pattern found in the homogeneous case of

table 1 with a few notable differences.
— Focal actors. As we have two reproductive classes, we need

two focal actors, a hub actor and a leaf actor. We do the

analysis for each actor class separately and then add the

results with each class weighted by its size (the number

of actors in the class).

— RV. Fitness effects are weighted with RV—a death

weighted by the RV of its node and a birth weighted by

the RV of the node the offspring occupies. The way we

have set up the calculations facilitates this weighting:

each fitness effect occupies its own line and displays

both the primary and secondary relatedness coefficients.

The RVs differ for BD and DB updating, being pro-

portional to either the degree (DB) or the reciprocal of

the degree (BD) of the node [34].

— Relatedness. Perhaps the first thing to note is that the related-

ness coefficients change between BD and DB updating.

This is not the case in a homogeneous graph. The difference

can be seen in the structure of the recursive equations. To

form a recursive equation for Gij, the CC between nodes i
and j, we look at where the most recent offspring replace-

ment came from. In a homogeneous graph, the symmetry

between nodes i and j means that we need only look at

one of them. But in a heterogeneous graph, not only will

the new CC depend on which node is replaced (dies) but

the death probability can also be different between the

http://rstb.royalsocietypublishing.org/
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nodes. Take for example, the CC G1 between hub and leaf.

Under DB (table 4), the two nodes have equal probability of

death, but under BD (table 3) the hub is replaced four times

as often as is the leaf, giving us probabilities of 4/5 and 1/5

in the G1 recursion.

— Secondary effects. As is the case for homogeneous graphs,

when the primary effects are on fecundity, the secondary

effects act on survival under BD and on fecundity

under DB.

11. Discussion
(a) Class-specific behaviour
In early models of heterogeneous populations, the classes were

role based and actors typically belonged to only one class.

More precisely, even when studying interaction between

classes the behaviours belonged to different sets of genes. For

example, in parent–offspring conflict the genes for offspring

begging were different from the genes for parental resistance.

In studying the coevolution of these traits, we would work

with two inclusive-fitness effects, WIF(P) and WIF(O), each

depending upon the level of behaviour of both, and we

would set them both to zero and solve this system for the equi-

librium for both behaviours. Thus, the problem of how to

combine the two effects into one did not arise. Indeed, both

the general class-structured analysis in Taylor & Frank [17]

and the model of helping at the nest of Pen & Weissing [31]

assumed that there was only one actor class, although

recipients belonged to different classes. Even in more general

studies of altruism, one might generally suppose that the

altruism of a parent was different from that of an offspring.

In evolutionary graph studies, it has been often the case

that all nodes had the same behavioural repertoire and this

was determined at the same locus or loci. In that case, the

inclusive-fitness effects belonging to different actor classes

would be added together, weighted by class size (equation

(9.3)) and that is the assumption presented in tables 3

and 4. One can of course suppose that facultative behaviour

is possible and a hub-dweller might want to use a different

level of altruism (or spite) from a leaf-dweller. In that case,

we would have a system of two interacting equations as in

the parent–offspring example above.

(b) The calculation of WIF
The calculations we have presented here are ‘heuristic’ and a

careful analysis is needed to justify them. For example, our

analysis presented in table 1 of the 5-cycle (figure 1)

worked directly with the fecundity effects b and c rather

than using the realized fecundity (the probability of reprodu-

cing). Is that valid? Suppose that with BD updating node 1

gets a fecundity gift of b and all others have only their neutral

fecundity. In that case, the realized fecundity (probability of

reproducing) of node 1 is (1þ b)/(5þ b) � (1þ 4b)/5 to first

order in b, while the other four nodes have realized fecun-

dity (1� b)/5, again to first order. Thus, the effective

fecundity increase to node 1 is only 4b/5 while the others

have an effective loss of b/5. The adjustment can be regarded

as a secondary fecundity effect of the original gift, but in our

analysis of table 1 we do not bother to account for that. In fact

it turns out that, in the analysis, one does not need to take

account of effects which apply equally to all individuals in

the population, but one needs to ‘know’ that this is the case
or else at some point to do a calculation to verify it. It turns

out that in a heterogeneous population this principle, that

one does not need to account for effects that apply to all

individuals, need not hold if fitness effects are not weighted

by RV and it is the RV-weighting that allows us to ignore

such effects [35]. The take-home message is that there is a

‘lore’ surrounding the formulation of inclusive fitness and

one must think carefully. Hamilton himself (PDT Hamilton

1987, personal communication) said that he is not absolutely

sure an inclusive-fitness calculation is correct until he can

check his calculations by making them another way.

(c) Relatedness
What should we use for coefficients of relatedness in a het-

erogeneous graph? The problem is what to choose for �G in

equation (6.5). In a homogeneous population, a standard

choice is the average CC of a focal node to the whole

population, but in a heterogeneous population this will

generally be different for focal nodes in different classes.

If the behaviour is expressed by only one class K, then

the specification:

Rij ¼
Gij � �GK

1� �GK
, (11:1)

for j, a focal class K node [37], will serve well where �GK is

the average CC of a focal node of class K to the whole

population. In this case, the average relatedness of a class

K actor to the whole population will be zero. But if there

are several classes acting from the same allele, we cannot

use these class-specific coefficients and still combine the

contributions of different classes of actors in the simple

additive way given in tables 3 and 4. A reasonable solution

is to use the average of the �GK and define

�G ¼
X

K

NK �GK

N
,

where NK is the size of class K. This is what we have done

for the calculations presented in tables 3 and 4 (appendix A).

(d) Inclusive-fitness effect and fixation probability
The fixation probability rA (or rB) of the allele A (or B) is the

probability that an A-mutation (or B-mutation) arising in a

pure B-state (or A-state) will colonize the next pure state. In

a homogeneous (transitive) population, it has been shown

[12,22] that the inclusive-fitness effect of the allele A has the

same sign as the difference rA – rB in the fixation probabilities,

but as yet no parallel result has been obtained for heterogeneous

populations. Tarnita and Taylor have a forthcoming paper that

investigates this interesting question.

(e) Inclusive fitness at age 50
The theoretical development of inclusive fitness over the past

50 years has enhanced and sharpened many of its positive fea-

tures and has clarified its limitations. The essence of the method

is to turn the standard (direct) way of calculating allele-

frequency change inside–out. For example, Price’s equation

(equations (5.1) and (8.1)) adds up the fitness effects on a

focal allele of the behaviour of many actors, whereas inclusive

fitness adds up the behavioural effects of a focal allele on the

fitness of many recipients, each effect weighted by a measure

of genetic closeness to the actor. A powerful consequence of

http://rstb.royalsocietypublishing.org/
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this point of view is its construction of a ‘maximizing agent’

[38], whereby an actor is able to attach to its own fitness various

fractions of the effects of a proposed action, and thereby obtain

a quantity that its behaviour should maximize.

For us, the most interesting challenge that inclusive fitness

has faced in its 50-year journey has been the incorporation of

population structure, and this is the main theme of our paper.

Already in 1964 Hamilton speculated that population struc-

ture could well have a moderating effect on the fitness

benefits and costs of a trait, particularly in what he called

‘viscous’ populations [1,39] but it was only many years

later [25,40–42] that a more formal study of the ‘secondary’

effects of population structure began. Later still, a formal dis-

tinction between homogeneous and heterogeneous structures

was made and it was realized that general results on evol-

utionary stability could be formulated for all homogeneous

populations [13,16]. These results also suggested how a

class-structure could be formally defined in abstract popu-

lations (graphs) that mirrored in some sense the traditional

structure based on ‘roles’ (male–female, parent–offspring,

breeder–helper) and that Fisher’s original concept of RV

can be incorporated into the formulation of inclusive fitness

such that it is able to predict changes in allele frequency

under heterogeneity [17]. Currently, the effect of heterogen-

eity on the formulation and nature of inclusive fitness is

one of its most active areas of investigation and it is giving

us new insights into the evolutionary process.
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Appendix A. Relatedness
The coefficient of consanguinity (CC) between two nodes is

the probability that they are identical by descent (IBD), that

is, that they are descended from a common ancestor with-

out an intervening mutation. To first order in the mutation

rate u, these are expected to have the form G ¼ 1 – gu,

where g is the coefficient of the first-order term in u, as

when u ¼ 0, the population will drift to a state in which

all nodes are IBD.

A significant property of G is that it can be readily cal-

culated recursively and examples are found in tables 1, 3

and 4. (But see Maciejewski [43] for an interesting alternative

approach that uses established results from the theory of

random walks.) The equations are obtained by asking for the

G-coefficient just before the most recent replacement affecting

the pair. For example, for G1 in the 5-cycle (below), the replace-

ment offspring came from one of the pair or from a neighbour

on the other side, each with probability 1/2 such that the aver-

age previous coefficient was (G0 þ G2)/2. Of course, that

applies only if the replacement did not mutate, and in that

case the coefficient is zero.

An important remark is that these recursive equations

do not take account of small selective variations in fecundity

or survival, that is, they assume a neutral distribution of alleles.

That introduces an error in the coefficients, which is first order

in the pay-offs b and c, but it is clear from the form of the

equation for the inclusive-fitness effect WIF that the resulting

error will then be of second order and can be ignored.
(a) The 5-cycle ( figure 1 and table 1)
Let Gk (and Rk) be the CC (and relatedness) between nodes at

distance k. We have the recursive equations

G1 ¼ (1� u)
G0 þ G2

2

� �
and G2 ¼ (1� u)

G1 þ G2

2

� �
:

These solve to give G1 ¼ 1–4u and G2 ¼ 1–6u.

Then,

�G ¼ G0 þ 2G1 þ 2G2

5

� �
¼ 1� 4u:

Finally, Ri ¼ (Gi � �G)/(G0 � �G), giving us R0 ¼ 1, R1 ¼ 0,

R2 ¼ –1/2.

(b) The N ¼ 3 star (figure 4)
Let G1 (and R1) be the hub–leaf CC (and relatedness) and G2

(and R2) be the CC (and relatedness) between leaves.

(i) Birth – death updating (table 3)
The recursive equations are

G1 ¼ (1� u)
4

5

G0 þ G2

2
þ 1

5
G0

� �
and G2 ¼ (1� u)G1:

These solve to give G1 ¼ 1� (7/3)u and G2 ¼ 1� (10/3)u:
Then, the average CCs are

for the hub: �GH ¼
G0 þ 2G1

3

� �
¼ 1� 14

9
u,

for the leaf: �GL ¼
G0 þ G1 þ G2

3

� �
¼ 1� 17

9
u,

giving an overall average: �G ¼
�GH þ 2�GL

3

� �
¼ 1� 16

9
u:

Finally, Ri ¼ (Gi � �G)/(G0 � �G), giving us R0 ¼ 1, R1 ¼ –5/

16, R2 ¼ –7/8.

(ii) Death – birth updating (table 4)
The recursive equations are

G1 ¼ (1� u)
1

2

G0 þ G2

2
þ 1

2
G0

� �
and G2 ¼ (1� u)G1:

These solve to give G1 ¼ 1� (5/3)u and G2 ¼ 1� (8/3)u.

Then, the average CCs are

for the hub: �GH ¼
G0 þ 2G1

3

� �
¼ 1� 10

9
u,

for the leaf: �GL ¼
G0 þ G1 þ G2

3

� �
¼ 1� 13

9
u,

giving an overall average: �G ¼
�GH þ 2�GL

3

� �
¼ 1� 4

3
u:

Finally, Ri ¼ (Gi � �G)/(G0 � �G), giving us R0 ¼ 1, R1 ¼ –1/4,

R2 ¼ –1.
Appendix B
Let fitness W and genotype x depend on both node i and

population state S. We use round brackets to represent an

average or a covariance over all nodes in the population,

and square brackets to represent an average or a covariance

over all population states endowed with the neutral distribution.

http://rstb.royalsocietypublishing.org/
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Theorem B.1. Suppose that for each node the genotype value aver-
aged over all states with the neutral distribution is pN: E[x] ¼ pN,

and in each state S, the average fitness effect is zero: E(W ) ¼ 0. The
latter will hold in a population of constant size. Then,

E[cov(W , x)] ¼ E(cov[W , x]).
ypublishing.org
Proof:

E[cov(W , x)]

¼ E[E(Wx)� E(W)E(x)]

¼ E[E(Wx)] as in each state E(W) ¼ 0
¼ E(E[Wx])

¼ E(cov[W , x]þ E[W]E[x])

¼ E(cov[W , x]þ E[W]pN) since E[x] ¼ pN for every node

¼ E(cov[W , x])þ pNE(E[W])

¼ E(cov[W , x])þ pNE[E(W)]

¼ E(cov[W , x]) as again, E(W) ¼ 0: B
Phil.Tran
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