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a b s t r a c t

I study the evolution of a pair of competing behavioural alleles in a finite graph-structured population

when there are non-additive or ‘‘synergistic’’ fitness effects. I begin with the Price equation and extend

it to both a personal-fitness and an inclusive-fitness formulation. I thereby obtain an extension of

‘‘Hamilton’s Rule’’ to synergistic effects and I calculate and interpret the generalized relatedness

coefficients. I present an example of the analysis in a cycle graph with 4 nodes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An enormous body of significant work constructs analy-
tical models for the genetical evolution of social behavior.
The key relationship here is the dependence of focal fitness on
the behaviour (phenotype) of a number of interactants. These
phenotypes are typically correlated with individual genotypes
which may in turn be correlated among interactants. When this is
fed into the covariance formula of Price (1970) for allele-
frequency change, we get an expression each term of which can
be ‘‘factored’’ as a product of a fitness effect and a relatedness
between interactants. There are many particular variations of this
formulation, but they all go back to Hamilton’s path-breaking
inclusive-fitness analysis.

In these models, the relatedness coefficients emerge from the
dependence of focal fitness W0 on the genotypic values xi of
various primary and secondary interactants. When this depen-
dence can be assumed to be linear, these coefficients have the
form cov(x0, xi) and they deliver the classic coefficients of
relatedness (Michod and Hamilton, 1980), but in non-linear

models, the covariances, for example cov(x0, xixj), are more
difficult both to calculate and to interpret (Queller, 1985;
Lehmann and Keller 2006; Tarnita et al., 2009; Ohtsuki, 2010).

Here, I study a two-player evolutionary game (Maynard Smith,
1982; Queller, 1985; Nowak and May, 1992; Nowak et al., 2004)
in a finite population structured as a graph (Lieberman et al.,
2005) in which there are synergistic fitness effects (Queller, 1985)
leading to a quadratic dependence of fitness on neighbouring
genotypes. I study carefully the relationship between the
personal-fitness and the inclusive-fitness formulations, and I
show that these provide equivalent interpretations of the
components of the Price equation in terms of fitness effects and
coefficients of consanguinity (Michod and Hamilton, 1980).
I illustrate the method with a cyclic graph of size 4.

2. Population structure

The first thing to say is that I am going to try to be systematic
in my use of subscripts. The analysis will be switching from
a recipient-centred point of view (personal fitness) to an
actor-centred point of view (inclusive fitness). To help the reader
keep track of this, I will choose a subscript notation which will
distinguish actor and recipient.
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2.1. Demographics

I work with a finite structured population represented as a
graph, a set of nodes, indexed by i and j, etc., each occupied by a
single asexual haploid breeder, together with edges between each
pair of nodes (Lieberman et al., 2005). Each edge (i, j) carries two
different pieces of information. The first is the probability eij that
the individual on node i, as actor, will engage in a ‘‘primary’’
interaction (play the game) with the individual on node j, as
recipient. The second is the probability dij that an offspring from
node i will displace the individual at node j. I assume that
interactions are symmetric (that is, eij¼eji) but I do not require
offspring dispersal to be symmetric. I allow dii to be non-zero.

To keep the analysis simple I assume that the graph is
homogeneous or transitive (Taylor et al., 2007b). What that means
is that given any pair i0, j0 of nodes there is a bijection of the node
set mapping i0 to j0 which preserves the dij and the eij (such
bijections are called isomorphisms). With this assumption, the
graph ‘‘looks the same’’ from every node and that allows us to
work with a single ‘‘focal’’ node to which I will generally assign
the index 0. The extension of these results to non-transitive
graphs is discussed later.

I work with a continuous-time population process (Moran)
with a birth–death (BD) updating (Ohtsuki and Nowak, 2006;
Taylor, 2010).

2.2. A two-allele model

I suppose that there are two alleles A and B assorting at a fixed
locus and let the genotypic value xi of the breeder on node i be the
frequency of A in its genotype. I suppose that mutation occurs at
birth with a small probability m and both A and B mutate to an A
form with probability p and to a B form with probability 1�p.
Thus the effective (phenotypic) rate of mutation is m(1�p) from A
to B and mp from B to A, but the genotypic rate m is higher than
either of these. The reason for modeling genetic mutation in this
manner is that it gives us the following critical property (Taylor
et al., 2007a): if the breeders at two nodes are IBD (identical by
descent), they are both A with probability p, and if they are not
IBD, they are each independently A with probability p. Here,
individuals are IBD if they have a common ancestor with no
intervening mutation. When making IBD arguments, we tend to
assume automatically that these properties hold, but it is impor-
tant to note that they will not unless we use the mutation rate m
(instead of m(1�p) or mp) as the IBD ‘‘breaker.’’ Note that under
this process, the neutral (no selection) equilibrium allele
frequency (the frequency of A) will be p.

The existence of synergistic effects will introduce quadratic
genotype expressions xixj and I will find it useful to express these
with a double subscript xixj¼xij. This notation has some conceptual
as well as technical value in that in the inclusive fitness framework,
synergistic effects are created by a pair of actors i and j and it makes
sense to consider them as a single generalized actor ij.

2.3. Primary and secondary fitness effects

I assume that in each time-step individuals engage in pairwise
interactions, playing the game with payoff matrix

b�cþd �c

b 0

� �
ð1Þ

(Maynard Smith, 1982; Queller, 1985; Nowak and May, 1992;
Nowak et al., 2004) where the first row gives the payoffs to an
A-player (with an A or B partner) and the second row belongs
similarly to B. This matrix form provides the following interpreta-
tion of an actor-recipient interaction. Each A-individual, as actor,

gives benefit b to its partner at cost c, but if the partner is also A, it
gives a synergistic bonus d. I assume that the payoffs represent
small increments in fecundity, small enough that we can ignore
second-order effects in these payoffs. The payoffs are added to the
baseline fecundity of 1 for the next reproductive bout.

It must be noted that in a structured population, these primary
interactions will typically have ‘‘secondary’’ fitness effects (Taylor,
1992; Grafen and Archetti, 2008—I use the terminology of West
and Gardner (2010)) which must also be accounted for, and the
overall fitness effect on an individual will combine the primary
effects with the secondary effects from primary interactions in
the neighbourhood. Indeed since breeder i interacts with j with
probability eij, the primary fitness effect of these interactions on
any breeder j is:

wj ¼�cxjþ
X
ia j

eijðbxiþdxijÞ ð2Þ

and the overall fitness effect on the breeder at node k is

Wk ¼wk�
X

j

djkwj

¼�cxkþ
X
iak

eikðbxiþdxikÞ�
X

i

�cxidikþ
X
ja i

eijðbxiþdxijÞdjk

2
4

3
5
ð3Þ

I remark, that my actor-recipient interpretation of the ordering
of the subscripts will help us in the interpretation of the terms in
Eq. (3). Here, i is an actor and k is a recipient. The first two terms
describe the primary effects of the game i plays with k. The final
summation over i describes the secondary effects of i’s actions
due to the dispersal of offspring to k. In the first term in the
square brackets, i acts on itself and dik carries the mortality effect
to k. In the second term i acts on j and djk carries the effect to k.

3. Price’s formula for allele-frequency change

We begin with Price’s (1970) covariance formula for allele-
frequency change over a single time step (the time between single
reproductive events). The classic version of Price’s theorem is that
the selective change in average allele frequency x is equal to the
covariance over the population of individual fitness W with
individual genotype x: Dx¼ covðW ,xÞ. Note that I am concerned
here with the selective change so that I ignore the effects of
mutation. Price’s original formulation added a separate term to
account for such changes.

Here I will specialize this formula in two important ways. The
first of these starts with the observation that the change in x will
depend on the population-wide configuration of the alleles A and B,
that is on the state of the population. If the population is large, we
tend not to worry about this as the ‘‘average’’ state will change very
little over time. But in a small population, the selective change Dx

can be quite different in different states and what we do is take a
long-term average of Dx, effectively an average of its value over all
states, each state weighted by its frequency of occurrence (Rousset
and Billiard, 2000). This gives us the formulation:

Dx¼
X

S
pScovðW ,xÞ ð4Þ

Here, pS is the long-term frequency of state S, and the covariance
is taken over the population in each state.

The problem with this formulation is that it is difficult to work
with directly unless the population is very small, as the covar-
iance is hard to calculate in any particular state. What Hamilton’s
(1964) seminal analysis provided was a formulation which
essentially interchanged the within- and between-population
processes. A recipient-centred formulation of his approach would
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work with the equation:

Dx¼
1

N

X
k
cov ½Wk,xk� ð5Þ

In Eq. (5), we take a fixed node k in a fixed state and calculate
its fitness Wk, and then we calculate the ‘‘longterm’’ covariance
between Wk and xk over all states. I use square brackets for the
covariance to signal that this is not a covariance over a popula-
tion, but rather correlates changes in genotype and fitness at a
fixed node over a long interval of time. That is, the covariance is
taken over all states S with each state weighted by its frequency
pS. Finally we take the average of this over all nodes k. It turns out
that there are powerful recursive methods using identity by
descent to calculate the covariance in Eq. (5) (see the example
below) and that is what makes the analysis tractable. The
transition from Eq. (4) to Eq. (5) is essentially an interchange of
summations and the steps of the analysis are shown in Appendix 1.

The second specialization takes off from the observation that
the frequency with which different population states occurs
depends on the selective regime. To eliminate this problem, we
calculate the covariance in the Price equation using the neutral

equilibrium state frequencies, that is, we use the equilibrium
attained when A has the same behaviour as B, that is, we set
b¼c¼d¼0, so that although the game is played, the payoffs are
zero and there is no selective difference between the alleles. It
turns out that the error introduced by using the neutral distribu-
tion will be second order in the selective effects b, c, and d, so that
we will still get the correct first-order conditions. (Taylor et al.,
2007a, Tarnita and Taylor, in preparation).

Finally we observe that in a homogeneous population, cov[Wk,
xk] is independent of the node k (all nodes will exhibit the same
long-term behavior), and we can dispense with the average over
k, and simply work with a ‘‘focal’’ node. This gives us our final
form:

Dx¼ cov½W0,x0� ð6Þ

where the covariance is taken over all population states. Eq. (6) is
the form of the Price equation I will work with. Just to summar-
ize: we take a focal node 0 and calculate the covariance between
its fitness and genotype over all population states, using the
neutral values of the equilibrium state frequency pS.

4. Personal fitness

Henceforth, I will take W to be the selective fitness effect rather
than the fitness itself. These differ by the constant 1 so will have
the same covariance with x. When we put Eq. (3) into the
covariance Eq. (5), the terms xi, and xik and xij in Eq. (3) becomes
covariances: cov[xi, xk], cov[xik, xk] and cov[xij, xk]. The personal-
fitness formulation is obtained from the Price equation by con-
verting these genotypic covariances into coefficients of related-
ness defined as follows:

actor i to recipient j : Ri�j ¼
cov½xi,xj�

var½x�
ð7Þ

actor ik to recipient k : Rik�k ¼
cov½xik,xk�

var½x�
ð8Þ

actor ij to recipient k : Rij�k ¼
cov½xij,xk�

var½x�
ð9Þ

For example, in Eq. (9), we think of i and j working as joint
actors to produce the synergistic effect d. These coefficients
provide precise measures of the genetic similarity between two
(or among three) individuals and will be discussed more fully later.
Using these in the expansion of Eq. (6) (in which k has been replaced

by 0) gives us what is called the personal-fitness effect WPF:

WPF ¼�cR0�0þ
X
ia0

ei0ðbRi�0þdRi0�0Þ

�
X

i

�cRi�0di0þ
X
ja i

eijðbRi�0þdRij�0Þdj0

2
4

3
5 ð10Þ

Essentially, xi has been replaced by the relatedness of i to the
focal 0 and xij has been replaced by the relatedness of ij to the
focal 0. Eqs. (6)–(9) tell us that WPF in Eq. (10) is the one-step
change in allele frequency divided by the genetic variance:

WPF ¼
Dx

varðxÞ
ð11Þ

To summarize, Price’s formula takes a focal node and follows
the genotype and fitness of the individual at that node over time,
and tells us that the allele A will increase in frequency under the
action of selection if there is a positive correlation between the
genotype and the fitness. Personal fitness takes this and drills
down to the level of the social partners. It says that for the allele
to increase in frequency, it must be more highly correlated with
the genes of those social partners whose behaviour has a positive
effect on fitness than with the genes of those social partners
whose behaviour does not. And it is the relatedness coefficients
that measure this correlation.

5. Inclusive fitness

Personal fitness formulates the fitness of a focal recipient as it
is affected by the behaviour of a number of actors. Inclusive
fitness turns the tables around and takes the focal individual to be
the actor focusing on how its behaviour affects the fitness of a
number of recipients. In this process it applies a weight to these
recipients which corresponds to how closely they are related to
the focal actor. These weights are essentially the relatedness
coefficients. The conceptual advantage of this formulation is that
the focal individual is placed in the driver’s seat in the sense that
we can imagine it choosing its behaviour to maximize an average
measure of community fitness where the average is constructed
using relatedness as weights (Grafen, 2006; West and Gardner,
2013). This average is called the inclusive fitness of the focal
individual.

I now show how this IF formulation relates to the PF formula
of Eq. (10). Start with Eq. (3) and imagine all the summations
expanded, so that all terms are written out. To get the PF
formulation we classify the terms according to the value of the
recipient index k and group all those with the same k. We then
use the transitivity of the graph to argue that the groups are really
all the same (i.e., the k¼1 group has the same set of terms as the
k¼2 group, etc.) and then we take only one of those groups and
set the index k to 0. To get the IF formulation we take the same
expanded form of Eq. (3), but now we classify the terms according
to the value of the actor index i and group all those with the same
i. We again use the transitivity of the graph to argue that the
groups are all the same and we take only one of those groups and
set the index i to 0. When we replace genotypic values with
relatedness coefficients we get the formulation:

W IF ¼�cR0�0þ
X
ka0

e0kðbR0�kþdR0k�kÞ

�
X

k

�cR0�kd0kþ
X
ja0

e0jðbR0�kþdR0j�kÞdjk

2
4

3
5 ð12Þ

It should be clear from this analysis that Eqs. (10) and (12)
have the same set of terms but just differently organized, so that
WIF¼WPF.
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The quantity WIF is called the inclusive-fitness effect of the
action of allele A, and as I have suggested above, it has a powerful
agent-based interpretation. We can imagine a focal individual
who bears a silent allele A asking what the fitness effect might be
of activating that allele, the effect, not only on its own fitness, but
on the fitness of all others affected by the focal behaviour who

might also bear the allele A. That is the job of the relatedness
coefficients, to measure the probability that an affected individual
will indeed carry A, conditional on the focal having A. Of course
what we are really measuring here is the effect of the focal
behaviour on the allele A itself, more precisely the effect of the

action of the allele on its own frequency. Indeed, Price’s formula
tells us that that is exactly what both Eqs. (10) and (12) are
measuring.

6. The interpretation of relatedness

The relatedness coefficients can be calculated in terms of the
coefficients of consanguinity G (Michod and Hamilton, 1980)
defined as follows. Let Gij be the probability that the individuals
on nodes i and j are IBD and let Gijk be the probability that the
individuals on nodes i, j and k are all IBD. [Recall that individuals
are IBD (identical by descent) if they have a common ancestor
with no intervening mutation.] Then:

Ri�j ¼ Gij ð13aÞ

Rij�i ¼ Gijþð12GijÞp ð13bÞ

Rij�k ¼ GijkþðGik2GijkÞpþðGjk2GijkÞp ð13cÞ

Eq. (13a) is straightforward. If a pair of nodes i and j are IBD
then they have the same allele and that is A with probability p, B
with probability 1�p. If they are not IBD, they are each
independently A with probability p. Thus cov[xi,xj]¼Gijvar[x]þ
(1�Gij)(0)¼Gijvar[x]. A similar but more complex argument for
Eq. (13c) is found in Appendix 2, and Eq. (13b) is a special case
(set k¼ i) of Eq. (13c).

The G-coefficients can be calculated with a standard recursive
argument (Ohtsuki, 2010) and an example is provided in
Appendix 3. My objective here is to interpret these IBD expres-
sions and see that they square with our intuition of what
relatedness ought to be measuring. Before doing this, I must
point out that a standard way to normalize relatedness is to set
the relatedness of an actor to an average node in the population to
be zero (Michod and Hamilton, 1980; Rousset and Billiard, 2000;
Taylor et al., 2007a; Taylor 2008), but I have not done this in Eq.
(13). When mean fitness is zero (or simply constant) this does not
affect final result and it is more transparent for us to work with
the unnormalized form. I remark however that Eq. (13a) does
provide the other standard normalization, that an individual has
relatedness 1 to itself.

I now turn to the interpretation of the R-expressions and I
begin by noting that Eq. (10) and (12) provide a different story for
PF and IF. With PF we have a focal recipient and the job of WPF is
simply to tell us how its fitness as an A-individual compares with
its fitness as a B-individual. More precisely WPF measures the
difference between the two. The IF story is a bit more complicated
but also a bit more interesting. Here we have a focal actor and the
job of WIF is to measure the effect of its A-behaviour on the overall
frequency of A. That is the approach I use for the analysis in Fig. 1.

7. Example: Calculation in a 4-cycle

The population consists of four nodes arranged on the vertices
of a square, numbered (around the square) as 0, 1, 2 and 3 (Fig. 2).

Individuals that share a common side are called neighbours.

In each time step each individual plays the
b�cþd �c

b 0

� �
game

with each of its two neighbours. Payoffs provide small increases in
fecundity. I use a BD updating rule so that changes in fecundity
produce mortality effects. Offspring disperse with equal prob-
ability to the two neighbouring nodes.

7.1. Personal fitness

I begin with a PF approach. I take node 0 as the focal recipient.
The fecundity increment of individual j is

wj ¼ ðbþdxjÞðxjþ1þxj�1Þ�2cxj ð14Þ

where we treat our indices ‘‘mod 4’’ so that 3þ1¼0, etc. These are
the effects of the primary interactions; the secondary effects are
the changes in mortality from fecundity changes of the two
neighbours. Focal fitness is then:

W0 ¼ fecundity2mortality¼w0�
w1þw3

2
ð15Þ

which simplifies to:

W0 ¼ bðx1þx3�x0�x2Þ�cð2x0�x1�x3Þ

Fig. 1. Analysis of the term eijdRij�kdjk. My objective here is to provide an intuitive

interpretation for the form of the relatedness coefficient Rij�k found in Eq. (13c). I

use an inclusive fitness interpretation. A parallel interpretation using personal

fitness is also available and is in fact a bit simpler. I begin with an actor i bearing

allele A. This affects the behaviour of i and the objective of inclusive fitness is to

measure the effect of this on the frequency of A. Now this effect will be realized

through many pathways, and I take as an example only one of these––the effect on

the mortality of k through a synergistic fecundity gift to j. First of all, the

probability that this pathway is available is eijdjk. I assume this is the case and

set this equal to 1. Second, j will receive the gift d only if it carries A so we need to

include the probability of that. Thirdly, to assess the effect of this on the frequency

of A through k we need to know whether k carries A or B. In the table, I list the

different IBD and allelic configurations in which j will receive d and I record the

probability of each. Here g0 is the probability there are no IBD relationships among

the three (Appendix 2). The effect through k on the frequency of A will be obtained

as the difference between the cases in which k carries A and B. The notation i� j

indicates that the breeders on nodes i and j are IBD, and the notation j¼A says that

the breeder on node i has allele A. Entries in the IBD column specify all the

relationships among the three, so that, for example, in case 2, j is not IBD to i and k.

The calculation of the probabilities relies on the result that if the breeders at two

nodes are IBD, they are both A with probability p, and if they are not IBD, they are

each independently A with probability p. Note that g0 in 5a and 5b is the

probability of no IBC relationship among the three nodes. Cases 1, 2 and 3 all

provide an effect on the frequency of A. Case 4 has two subcases, an effect 4a on A

and an effect 4b on B. The probabilities are in the ratio p/(1�p) and this is the

same as the ratio of the frequency of A to B. That tells us that the frequency effects

cancel each other. The same holds for cases 5a and 5b. Thus, the net effect on the

frequency of A is found in the top three cases and these are exactly the three IBD

components of the relatedness coefficient Rij�k in Eq. (13c).

Fig. 2. A 4-cycle.
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þd
x01þx03�x12�x23

2

� �
ð16Þ

To convert this to a PF formulation, we introduce the following
relatedness notation:

R1 to neighbour e.g., R0�1

R2 across diagonal e.g., R0�2

R3 neighbouring actors interacting within e.g., R01�1

R4 neighbouring actors interacting outside e.g., R01�2

Then Eq. (16) simplifies as:

WPF ¼ bð2R1�R0�R2Þ�cð2R0�2R1ÞþdðR3�R4Þ ð17Þ

7.2. Inclusive fitness

I take node 0 as the focal actor. This approach allows us to
write a version of Eq. (17) almost by inspection. We have a focal
fecundity gift of b to each neighbour (R1) but this also produces a
mortality effect felt equally at nodes 0 and 2 (R0 and R2). The
focal fecundity cost is 2c (R0) and this produces a mortality effect
felt equally at nodes 1 and 3 (R1). Finally the focal gift of d to
each neighbour is joint with that neighbour (R3) and the
mortality effect is felt equally at nodes 0 and 2 (R3 and R4). This
gives us:

W IF ¼ bð2R1�R0�R2Þ�cð2R0�2R1Þþd 2R3�2
R3þR4

2

� �
ð18Þ

and this is the same as Eq. (17).
It remains to calculate the relatedness coefficients and Eq. (13)

give us these in terms of the coefficients of consanguinity G. To
specialize G to the current example, I introduce:

G1 CC to neighbour e:g:, G01

G2 CC across diagonal e:g:, G02

G3 CC among any three nodes e:g:, G012

ð19Þ

Then Eq. (13) gives us:

R1 ¼ G1

R2 ¼ G2

R3 ¼ G1þð1�G1Þp

R4 ¼ G3þðG1�G3ÞpþðG2�G3Þp

ð20Þ

The G-coefficients are calculated recursively in terms of the
most recent replacement of a breeder by an offspring. In all cases,
a replacement offspring is a mutant with probability m and is then
not IBD to any breeder. Take nodes 0 and 1 and suppose 1 is most
recently replaced. The offspring came either from 0 (giving us
G0¼1) or from 2 (giving us G2). That gives us the first equation
below. Now take nodes 0 and 2, and suppose 2 is most recently
replaced. The offspring came either from 1or 3 (giving us in both
cases G1). That gives us the second equation below. Finally take
nodes 0, 1 and 2. If 2 is the most recently replaced, the offspring
came either from 1 (giving us G1) or from 3 (giving us G3).
A similar argument applies for node 0. If 1 is the most recently
replaced, the offspring came either from 0 or 2 (giving us in both
cases G2). That gives us the third equation below. We have:

G1 ¼ ð1�mÞ
G2þ1

2
G2 ¼ ð1�mÞG1

G3 ¼ ð1�mÞ
2

3

G1þG3

2
þ

1

3
G2

� �
ð21Þ

To first order in m, these solve to give

G1¼1�3m
G2¼1�4m
G3¼1�5m

and when these are put into Eq. (18), we get

WIF ¼ ð22b26cþ2dÞm: ð22Þ

Note that this has the form provided by Tarnita et al. (2009)
and Taylor and Maciejewski (2012):

W IF ¼ bb�gcþ
bþg

2
d

� �
m

and in particular (to first order in m) is independent of the long-
term allele frequency p.

8. Discussion

I have reformulated the Price formula (Eq. (4)) for allele-
frequency change with both a personal-fitness and an inclusive-
fitness approach. Historically this methodology emerged from
Hamilton’s original (1964) inclusive-fitness approach. The idea
was already out there (Wright, Fisher, Haldane, e.g., Haldane
1955) that the evolutionary success of a genetic trait which was
‘‘social’’ (affecting the fitness of others) would depend on the
fitness of a number of ‘‘related’’ interactants, but Hamilton (1964)
provided the first formal account of how this might be calculated.
Hamilton’s approach had the additional stunning property that all
the various fitness effects which needed to go into the calculation
could be credited, in a carefully weighted manner (the weights
being essentially the R’s), to a single focal ‘‘actor’’ who in principle
could use this ‘‘inclusive-fitness’’ quantity to decide whether a
potential action would be evolutionarily favoured. In that sense,
we could view the actor as a maximizing agent (Grafen 2006,
2009).

Inclusive fitness and personal fitness are in many ways
‘‘mirror-image’’ accounting schemes for calculating the genetic
fitness of an item of social behaviour (West and Gardner, 2013). In
the inclusive-fitness approach there is a single focal actor and the
calculation produces a weighted sum of the effects of its beha-
viour on the fitness of all related recipients. In the personal-
fitness approach there is a single focal recipient and the calcula-
tion produces a weighted sum of the effects on its fitness of the
behaviour of all related actors. A number of studies have shown
that, for additive interactions, these two approaches yield equiva-
lent calculations; indeed they are simply different ways of
classifying the many different pathways through which behaviour
affects fitness. One of my objectives in this work is to check that
the argument continues to work for non-additive interactions
such as those found in the game matrix (1).

Synergistic effects, in the first instance, challenge our notion of
the actor, and require us to allow a pair of individuals i and j to act
together, and I even regard the pair as ‘‘the actor ij.’’ However, this
also requires more complex relatedness coefficients and a second
objective of mine is to provide an interesting formula (Eq. (13c))
for the triple relatedness coefficient Rij�k in terms of coefficients
of consanguinity G, and to give an intuitive interpretation of the
terms of this formula. Along with this, I provide an example (Eq.
(21)) of the recursive calculation of the triple coefficients of
consanguinity Gijk. All this work derives in an essential way from
the insights of Michod and Hamilton (1980), Queller (1985),
Tarnita et al. (2009) and Ohtsuki (2010).

I have restricted attention here to transitive graphs Taylor
et al. (2007b), graphs for which the population structure looks the
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same from every node, but the arguments generalize readily to
non-transitive graphs. In this case we have a class-structure in the
graph, the classes being the orbits under the group of all graph
isomorphisms (bijections of the node set which preserve struc-
ture, in this case the eij and the djk). Here different classes can
have different reproductive value (RV) and we must incorporate
RV in our definition of fitness W (Taylor, 2008; Tarnita and Taylor,
in preparation). It is also the case that, in Eq. (6), one must choose
a focal individual from each relevant class (Taylor and Frank,
1996—here the term ‘‘direct fitness’’ was introduced, but ‘‘perso-
nal fitness’’ is now a common and much better term). That is, in
the PF approach we need a focal individual selected from each
recipient class and in the IF approach we need a focal individual
selected from each actor class.

I remark that in classic IF studies, the class structure typically
emerges from different roles in the social structure, e.g., male–
female, parent–offspring, and in this case behaviour is typically
class specific, e.g. parental care, so that we have a single actor
class (the parent), but more than one recipient class (parent and
offspring). In this case, in a PF approach requires more than one
focal recipient but an IF approach needs only one focal actor. Of
course, in these models we are often interested in two interacting
traits (parental provisioning and offspring begging) but these are
two traits, not one, and in an IF approach each are analyzed with a
single focal individual, though the WIF(parent) and the WIF(off-
spring) will each depend on the level of both traits.

I have ended with an illustration of the calculation in 4-cycle
population. In preparing this example I found myself discovering
that my technical approach to relatedness in a finite population
over the past decade was more complicated than it needed to be.
To explain this point more fully, I begin with Price’s formula (Eq.
(4)). In its original 1970 appearance, the covariance was thought
of (and explicitly presented!) as calculated over all individuals
(nodes) in the population. That works fine for a large population
in which all possible local configurations of alleles are repre-
sented somewhere, but in small populations this would not be the
case at any one time and the covariance might better be regarded
as taken over the ‘‘long-term’’ population. Well, let’s be careful:
selection happens at each particular time-step and we must use
the covariance over the population at a fixed time to give us the
allele-frequency change in the next step (so the 1970 formula
certainly works for both finite and infinite population models).
The problem is that in a small population, this covariance will
change over time and the reasonable way to accommodate that
(and this is the significant contribution of Rousset and Billiard,
2000) is to take a long-term average of the covariance and I write
that as E[cov(W, x)]. To help us keep our thinking clear, I adopt the
notation of using round brackets for expectation/covariance over
a population and square brackets for expectation/covariance over
the long-term. The problem is that it is difficult to explicitly
calculate this average.

What we can do, in a population of constant size, is effectively
interchange the order of the brackets and this is explained in
Appendix 1. Note that the new formulation we get from this,
cov[W0, x0], does correspond to the standard recursive approach
we use to calculate relatedness coefficients. Indeed, if W0 depends
on xi, that requires us to calculate cov[xi, x0] and the argument
that this is Gij� var[x] is essentially a calculation at a long-term
equilibrium.

One final remark: there is an important sense in which the
personal and inclusive fitness approaches do not require additive
interactions (e.g., Hamilton, 1970; Queller, 1992; Gardner et al.,
2011). The idea is to write fitness Wk (Eq. (3)) as a linear
regression in the genotypes xi and then let the regression
coefficients serve as the new fitness effects b̂ik in place of the
payoffs b, c, and d. Thus, Wk ¼Sib̂ikxiþek with cov(Wk, ek)¼0.

However, we still have the task of calculating the b̂ik and the
resulting inclusive-fitness expression does not have the direct
physical interpretation in terms of the primary payoffs and
probabilities of interaction and dispersal that we gain with our
personal- and inclusive-fitness interpretations.
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Appendix 1. Price’s covariance formula for allele-frequency
change

The first thing to note about the formula Dz¼ covðW ,xÞ is that
the covariance will depend on the population state—the config-
uration of A and B among nodes. Traditional applications of the
formula have a large population in mind, large enough so that at
any moment all local configurations of the alleles are appropri-
ately represented, and Dz would not change much from genera-
tion to generation. But for a small population, this will not be the
case and to get a reasonable measure of allele frequency change,
we want to take a long-term average, i.e., an average over all
possible population states, each weighted by frequency of occur-
rence (Rousset and Billiard, 2000). We write this as

E½Dz� ¼ E½covðW ,xÞ� ð1:1Þ

Here we have adopted the bracket notation of Taylor et al.
(2007a), whereby round brackets signal expectation or covariance
over the population (that is, over the node set) and square
brackets signal expectation or covariance over all population
states (that is, over the long term).

In order to calculate this, we execute a sequence of steps
whose effect is to interchange the order of brackets, as follows.

E½covðW ,xÞ� ð1:1Þ

¼ cov½W ,x� ð1:2Þ

¼ Eðcov½Wi,xi�Þ ð1:3Þ

¼ cov½W0,x0� ð1:4Þ

The covariance in (1.2) is between the fitness and the genotype
of a random node in a random state. The equivalence of (1.1) and
(1.2) follows from the covariance decomposition theorem (Ross
1998) using the population state as the class:

cov½W ,x� ¼ E½covðW ,xÞ�þcov½EðWÞ,EðxÞ� ð1:5Þ

The first term on the left is the average within-state covariance
and the second is the covariance over all states of average fitness
with average genotype. This second term is zero as in a popula-
tion of constant size, average population fitness E(W) is constant.
And that gives us the equivalence.

In (1.3), the variables are subscripted to emphasize the inter-
pretation of the covariance. Here we take a fixed node i and
calculate the covariance between its fitness and its genotype as
time changes, that is over all population states. And then we
average the results over all nodes. The equation follows again
from the covariance decomposition theorem, but using the nodes
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as the classes:

cov½W ,x� ¼ Eðcov½Wi,xi�ÞþcovðE½Wi�,E½xi�Þ 1:6

The first term on the left is the average within-node covariance
and the second is the covariance over all nodes of long-term
average fitness with long-term average genotype. This second
term is zero as the long-term average E[xi] must equal p for all i,
since the covariance calculations use the neutral distribution. And
that gives us (1.3). Finally, we use the transitivity of the graph to
note that all nodes exhibit the same long-term behaviour, so that
the covariance in Eq. (1.3) is the same for all i and the expectation
is obtained from any fixed focal node.

Appendix 2. The triple IBD calculation

Suppose that we have three distinct nodes: 1, 2 and 3. Use the
notation i� j to indicate that the breeders on nodes i and j are IBD.
For convenience, I introduce the coherent notation:

g123¼G123¼Prob(1�2�3).
gij¼Gij�Gijk¼Prob(i� j but neither are IBD to the third node k).
g0¼Prob(no two of the three nodes are IBD).

Note that

g123þg12þg13þg23þg0 ¼ 1

as these are a complete set of the five disjoint conditions on the
IBD configuration for the three nodes. If we take these five
conditions to define the five possible IBD classes, then the
covariance decomposition theorem gives us

cov½x1,x23� ¼ ½g123cov123þg12cov12þg13cov13þg23cov23þg0cov0�

þcovðE½x1�, E½x23�Þ:

where each of the subscripted covariances on the right is the
long-term covariance of x1 with x23 conditional on the corre-
sponding IBD condition. Here the expression in the square
brackets is the average within class covariance, and the expression
at the right is the between class covariance where E[x] denotes the
long-term average taken over each class. But this last term is zero
as E[x1]¼p in each of the five classes.

Now I calculate the conditional covariances. Note first that
cov23¼cov0¼0 as in these classes, x1 and x2x3 are independent.
For cov12, x3 is independent of x1 and x2 and hence:

cov12½x1,x2x3� ¼ E½x3�cov12½x1,x2� ¼ p cov½x,x� ¼ pvar½x�

The same argument shows that cov23¼pvar[x]. Finally
cov123[x1, x2 x3]¼cov[x, xx]¼var[x].

Putting all this together:

cov½x1,x2x3� ¼ g123cov123þg12cov12þg13cov13

¼ ½G123þðG122G123ÞpþðG132G123Þp�var½x�

and this gives us Eq. (13c). Eq. (13b) is obtained by specializing
Eq. (13c) to the case k¼ i.
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