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Peter Taylor opens his linear algebra course at Queen’s University by having the stu-
dents play and analyze a simple dice game called Skunk Redux. This is a variation of a
common game known as Skunk or Pig. The dialogue below is an account of what hap-
pened last fall, when David, one of Peter’s students, asked some intriguing questions
which prompted the two of them to wrestle with an unexpected problem.

Skunk is a dice game played in elementary classrooms to illustrate the fundamentals
of probability [1]. Players are given a table with the letters SKUNK across the top
like this:

S K U N K

Each column is used to record the results from one of the five identical rounds. Several
players play simultaneously. The objective is to have the highest cumulative payoff
(the sum of the payoffs from the five rounds) at the end of the game. This is how
points are earned in each round:

1. At the beginning of the round, you stand.

2. Two dice are thrown.

3. If at least one 1 appears, the round is over and you have payoff 0. Otherwise you
begin with a score equal to the total showing on the dice.

4. If you wish, you may sit down. If you do, your payoff is your score.

5. Otherwise, the dice are thrown again.

6. If at least one 1 appears, the round is over and your payoff for the round is 0.

7. Otherwise you add to your score the total showing on the dice. This gives you a
new, larger score.

8. Go back to 4.

Eventually a 1 appears and the round is over.
For example, for the sequence of rolls (2, 5), (4, 2), (6, 1), if you sit after the first

roll you get payoff 7, if you sit after the second roll you get payoff 13, and if you stay
standing for the third roll you get payoff 0.

Extensive work has been done on variations of this game, most notably a 2-person
game where an optimal strategy must take into account the opponent’s score and strate-
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gies [2]. For example, the player in second place would likely use a riskier strategy than
the player in first place.

This paper is concerned with a 1-person game—one person and a single round.
Our analysis focuses on optimizing the expected payoff for this single round—hence,
“Skunk Redux.”

The first day of class

PETER: I open my linear algebra course with this game because it creates a fun envi-
ronment, generates a lively discussion, and encapsulates many of the important con-
cepts in the course—strategy, probability, movement between states, taking an average,
and so on.

After playing something like 10 rounds in a row, I have the students average their
10 payoffs. This serves as an estimate of “average payoff per game.” Naturally there
is a tendency to see who receives the highest payoff, or more precisely, once we start
talking about strategies, what strategy receives the highest payoff.

I want to get a good class discussion going about the different types of strategies.
First of all, what is a strategy? It is a rule that tells you whether to sit or stand in any
situation. Any situation in this game can be specified in terms of two variables: the
number of times the dice have been rolled, and the current score.

I find that students have differing opinions on how to make use of these two vari-
ables. Some strategies are highly intuitive and students sit when they “feel” the time
has come. Some sit after a certain number of rolls while others pay attention only to
the score (e.g., “sit when I get above 25”). Still others use a mixture (e.g., “sit after 25
or after the third roll, whichever comes first”).

DAVID: Surely the number of rolls is irrelevant and should not be a factor in any
optimal strategy. The rolls are independent events! The only quantity of relevance is
the current score.

PETER: David is, of course, correct. But this issue always generates a fascinating and
surprising debate. A number of students will argue quite vociferously that if the dice
have been thrown, say, ten times without showing a 1, the chances are increased that a
1 will appear on the next roll.

Moving on, we restrict attention to strategies that take account only of the current
score. Such a strategy must specify, for each possible score s, whether you should
stand or sit.

DAVID: Let’s begin by defining s as your current score. If you decide to sit, your
payoff will be s. If you decide to stand, your score will be either better or worse. If,
on average, your new score is greater than s, you should stand for the next roll; if it is
less, you should sit.

To calculate your average new score, note that with probability 25/36 (see TABLE 1
below) your score increases by the dice sum and with probability 11/36 your score
drops to 0. Now the average dice sum, given that a 1 does not appear, is 8. (This is
nicely seen in TABLE 1 by pairing each entry with its mirror image in the diagonal
of 8’s.) The average new score from standing is then:

11

36
(0)+

25

36
(s + 8).
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TABLE 1: Addition to the score for each of
the 36 possibilities

1 2 3 4 5 6

1

2 4 5 6 7 8

3 5 6 7 8 9

4 6 7 8 9 10

5 7 8 9 10 11

6 8 9 10 11 12

You should remain standing when this exceeds s, and that happens when

25(s + 8) > 36s

s < 200/11 ≈ 18.2.

Thus you should remain standing as long as s ≤ 18 and sit when s ≥ 19.
Peter started rolling the dice on that first day of class. As usual, I did not bring

anything to class, not even a calculator, so I had to ballpark it. “How much would I be
willing to risk to get an average reward of 8?” Somehow I came up with the number
20, which in hindsight was fairly close to the actual answer. From there, I rigorously
abided by my strategy, sitting when the score surpassed that critical value. It took
some willpower not to allow my emotions to steer me toward the standard freshman
crowd—the eternal optimists who luckily see the world as their oyster, untainted by
the rationality I sometimes wish I could do away with. There were times when I would
begrudgingly sit from the sidelines while the most risk-friendly participants racked up
unimaginable sums. But in the long haul, my strategy paid off.

First day of class and already an interesting (yet accessible) problem. I was truly
excited for university. What I did not realize at this point was that I was soon to be led
to something even more interesting.

The assignment

PETER: For their first assignment, I usually give the students an extension of the game
to analyze. For example, the dice may be replaced by a few coins. One of my favorite
(and most demanding) extensions has been the following:

Suppose that, before each roll, you are able to specify the number of dice that are
to be rolled, and you can change this number from roll to roll based on your score. As
before, the round is over with zero payoff, if you are standing and any of the dice show
a 1. A strategy must now specify, for each score s, whether to remain standing and if
so, how many dice to use. Find the optimal strategy.

DAVID: Now that’s an enticing problem! Rolling more dice at a time will help you
increase your score more quickly, but it also increases the probability of rolling a 1.
The key difference between this problem and the simpler one is that now there are two
decisions to make for each value of s—whether to remain standing, and if so, how
many dice to roll. But I expected the solution not to be much different than before.
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PETER: Like David, most students find this problem challenging. Not many manage
to come up with a good argument. But there are always a few students who produce
the following solution and for some years I have always accepted it as being correct.
It is based on the idea that we employed in the solution for the original game, that the
correct decision at each step is the one that maximizes the expected new score.

The A(n) strategy. Let A(n) be your expected new score if you stay standing and
choose to roll n dice. Note that the probability of not throwing a 1 is (5/6)n and (as
above) the average outcome on a single die is 4. Then:

A(n) = (5/6)n(s + 4n).

DAVID: I got the above equation for A(n) without much difficulty. Now the problem
was to find the maximum value of A(n). When in doubt, a first-year student differenti-
ates. The result was correct enough but it was ugly with logarithms and decimals. A bit
later, I found a much nicer algebraic solution. I thought of it as discrete maximization,
and it worked beautifully. The idea was that for A(n) to be a maximum at a particular
n, it must be at least as great as the neighboring A(n) values, A(n − 1) and A(n + 1).

A(n − 1) ≤ A(n) ≥ A(n + 1)

The first part is:

A(n − 1) ≤ A(n)

(5/6)n−1(s + 4(n − 1)) ≤ (5/6)n(s + 4n)

s + 4(n − 1) ≤ (5/6)(s + 4n)

4n ≤ 24− s

and the same for the second:

A(n) ≥ A(n + 1)

(5/6)n(s + 4n) ≥ (5/6)n+1(s + 4(n + 1))

(s + 4n) ≥ (5/6)s + (5/6)4(n + 1)

4n ≥ 20− s

Putting these together, the condition for a maximum A(n) is that

20− s ≤ 4n ≤ 24− s

For example, given the score s = 10, there is only one integer value (n = 3) that
satisfies this inequality.

PETER: David’s analysis so far is the one I have always accepted, and posted on the
website for the class. It says that 4n has to be between 20 − s and 24 − s. We can
summarize this condition with TABLE 2. When s is a multiple of 4, there are two
values of n that give the same average score. [At s = 20, the “other” value is n = 0,
which means sit.] And by the way, it can easily be verified directly for s < 20, that
A(n) > s for the indicated n, signifying that you gain on average by standing.

And then David came up to me after class. . .

DAVID: I had the solution outlined above and it seemed really elegant (isn’t that table
beautiful?) but it worried me. Maximizing A(n) only maximizes the score after the
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TABLE 2: The A(n) strategy: Roll n dice
with score s

score s roll n dice

s = 0 n = 6

0 ≤ s ≤ 4 n = 5

4 ≤ s ≤ 8 n = 4

8 ≤ s ≤ 12 n = 3

12 ≤ s ≤ 16 n = 2

16 ≤ s ≤ 20 n = 1

s ≥ 20 n = 0

next roll, whereas the objective of the game is to have the highest possible payoff,
which is your score at the moment you sit down. Do we need to worry about this dis-
tinction? It is tempting to think that they lead to the same outcome—if you put yourself
ahead in the immediate future, wouldn’t that also put you ahead in the long run? But
I could see no valid argument for this. I spent an entire night (my first university all-
nighter) tangled with this question.

At some point I decided that my only hope was to look for a strategy that outper-
formed the A(n) strategy. I became interested in the strategy of always using one die
because it was the simplest strategy around. I decided to “put it to the test,” using EX-
CEL to compare it with the A(n)-strategy I had developed so far. After 50,000 Monte
Carlo iterations, the differences were insignificant and inconclusive.

The breakthrough occurred when I looked at the case of s = 15. I made a few
calculations that put the issue to rest.

A counterexample to the A(n)-strategy. Take the case of s = 15. The A(n) strategy
tells you to use n = 2 dice. If double 2s are rolled you stand for one more round using
1 die. Otherwise, you sit. The result is summarized in TABLE 3. The average score is
approximately 15.98.

Now compare this with the strategy that uses only one die and stands whenever the
score is less than 20 (TABLE 4).

TABLE 3: How the A(n) strategy plays out at s = 15

0

19

20

21

22

23

24

25

26

27

15

0

23

2/361/
36

11
/3

6

3/36

4/36
5/36
4/36
3/362/361/36

1/6
5/6

prob. score = X

5/216 23
2/36 20
3/36 21
4/36 22
5/36 23
4/36 24
3/36 25
2/36 26
1/36 27

E(X) 15.97685
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TABLE 4: How the 1-die strategy plays out at s = 15

0

19

20

21

22

23

0

22

0

23

0

17

18

19

20

21

0

23

15

1/6

1/
6

1/6
1/6
1/6

1/6
5/6

1/6
5/6

1/6
1/6

1/6
5/6

1/
6

1/6

1/6

1/6
1/61/6

prob. score = X

5/216 23
1/36 20
1/36 21
1/36 22
1/36 23
5/36 22
5/36 23
1/6 20
1/6 21

E(X ) 16.00463

The average score is a bit above 16, and higher than was obtained starting with 2
dice. For this particular s-value, the 1-die strategy outperforms the A(n) strategy!

PETER: David’s 1-die strategy was a revelation to me and for a time I had a bit of
trouble thinking clearly about the situation. The example above of s = 15 certainly
shows that the A(n) strategy is not optimal. But is the 1-die strategy optimal? Are
there situations when it might be better to roll more than 1 die? And suppose that the
1-die strategy is optimal. When do we stop? Is s = 20 the right place to sit? I was
thrown for a bit of a loop and decided to go back to the beginning.

It is surprisingly easy to get confused, particularly when there is more than one
question buzzing around. What’s needed is to focus on one thing at a time, and hope
that it’s the right thing to begin with. The next day David came to me with a ridicu-
lously simple argument that nothing could possibly outperform the 1-die strategy.

DAVID: Peter is right—it’s so easy to miss simple things. And this is one of them.
Suppose your score is s and you are using a strategy that tells you to roll 3 dice. Then
you would have exactly the same outcome by standing for the next 3 turns and rolling
1 die each time. The reason for this is that the condition for the game to end with a
zero payoff is the same in each case—getting a 1 on any of the three dice. So the 1-die
strategy will do just as well as the one you are using. But furthermore, it might even
do better because it gives you the option of stopping before the third turn.

PETER: Indeed that’s exactly why the 1-die strategy outperformed the A(n) strategy
at s = 15. If you happen to roll a 6 on your first die (giving you s = 21) the 1-die
strategy lets you stop and sit down, whereas the A(n) strategy rolls again. Now if you
stop, your payoff is 21, but if you roll again, your average score becomes

s =
0+ 23+ 24+ 25+ 26+ 27

6
=

125

6
≈ 20.833

which is less than 21.

DAVID: Always roll one die.
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The meeting

After the revelation about a pure 1-die strategy, the final challenge was to determine
and prove the critical s-value for when to sit. This appeared obvious enough but a
formal proof took quite a while to formulate. We sat down for a final meeting to dis-
cuss this.

PETER: So the only question left is, when do you sit?

DAVID: At s = 20.

PETER: How do we know?

DAVID: Use the same calculation we made above at s = 21. It works for any s > 20.
Your expected score after one roll will always be less than s.

PETER: Right. It is worth emphasizing that. The A(1) strategy (which is optimal) asks
you to compare:

s and
(s + 2)+ (s + 3)+ (s + 4)+ (s + 5)+ (s + 6)

6

On the left is the payoff if you sit and on the right is your expected new score if you
stand. For s < 20 the right side is bigger, for s > 20 the left side is bigger, and for
s = 20 they are equal. So the strategy says sit when s > 20. But as you pointed out
long ago, this only considers the next roll instead of the indefinite future. What we
really need on the right is some indication of your payoff at the end of the game, given
that you stand and play optimally.

DAVID: We need the notion of what a strategy is “worth.” If you have score 19, you
can expect to increase that on average by staying in the game, so having a score of 19
is actually worth more than 19. However, if you have 21 you can’t do any better (in
fact, by staying in the game you’ll do worse on average), so 21 is only worth 21.

PETER: We could formalize that. Define v(s), the value of s, to be the expected pay-
off for a player who currently has score s and who plays optimally. For example,
v(19) > 19 and v(21) = 21.

DAVID: In fact

v(19) =
v(21)+ v(22)+ v(23)+ v(24)+ v(25)

6
,

and v(s) in general would be

v(s) = max

(
s,
v(s + 2)+ v(s + 3)+ v(s + 4)+ v(s + 5)+ v(s + 6)

6

)
.

The first term represents the payoff if you sit. The second term represents the average
payoff if you stand and play optimally. You choose whichever one is greater. If we
knew that v(s) = s for big enough s, say for all s ≥ 100, then we could use the re-
cursive equation to work backwards. We would get v(99) = 99, then v(98) = 98, and
that would keep on working all the way to v(20) = 20. The first time s would be less
than the expression on the right would be at s = 19.
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PETER: So what we need to do is to find some large enough s∗ for which we can show
that v(s) = s for all s ≥ s∗.

Pretty Black Cat. One way in which Peter creates exercises for the students is to con-
struct variations on what happens when a 1 is rolled. One such variation seems at first
quite uninteresting, but in fact it holds the key to a lovely proof of the result we are
searching for.

PETER: I’ve been thinking about a modification called Pretty Black Cat (“PBC”) in
which you always roll one die, and when a 1 is rolled, the game ends but you do not
lose your current score.

DAVID: Not very interesting, of course, because you’d simply always stay in the
game.

PETER: Indeed. But the game is so simple that we ought to be able to calculate its
v(s) values easily.

DAVID: No doubt. But I’m wondering where this is headed.

PETER: I’m thinking that whatever strategy you choose to use in Skunk, the same
strategy used in PBC will give you a payoff that is at least as high. It surely follows
that the v(s) values for PBC will always be at least as big as those for Skunk Redux, so
PBC’s v(s) will give us an upper bound on Skunk’s v(s). . . and that might be useful.

DAVID: Indeed it might. Let’s see. . . in PBC a player with score s would get exactly
one more roll with probability 1/6, exactly two more with probability (5/6)(1/6),
exactly three more with probability (5/6)2(1/6), etc., and the average payoffs would
be, s, s + 4, s + 8, etc. We just have to add a bunch of terms.

PETER: Or perhaps we could try a recursive argument.

DAVID: Yes. I might have thought of that, as it is one of the big themes of the course.
Let k be the amount you gain on average by continuing to play. Then, if your next roll
is a 1, k is zero, and otherwise, you gain 4 on average and you are able to keep playing
so your overall gain is on average 4+ k. This gives us the recursive equation:

k = (1/6)(0)+ (5/6)(4+ k)

and that solves to give k = 20.

PETER: Nicely done. So for Pretty Black Cat, the value of having a score s is v(s) =
s + 20.

DAVID: We can conclude that for Skunk Redux, v(s) ≤ s + 20.

PETER: Maybe that will be enough to find a score s for which v(s) = s.

DAVID: Let’s see. Returning to Skunk Redux, v(s) = s if

v(s + 2)+ v(s + 3)+ v(s + 4)+ v(s + 5)+ v(s + 6)

6
≤ s
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and since v(x) ≤ x + 20, that will hold if

(s + 22)+ (s + 23)+ (s + 24)+ (s + 25)+ (s + 26)

6
≤ s

and that simplifies to s ≥ 120.

PETER: Wow.

DAVID: We conclude that v(s) = s for every s ≥ 120.

PETER: That elusive but utterly unsurprising conclusion is just what we need to start
the backwards recursion and make all of our deductions legitimate. Finally, we can
safely say that 20 is indeed the place to sit.

Epilogue

And thus the four-month journey concludes with the astounding realization that our
initial reasoning is flawed. For the (n = 2)-dice game we discussed at the beginning,
a comparison of the expected immediate gains by sitting and by standing fails to take
account of the long-term possibilities. The answer to sit when s > 200/11 is correct
but requires a more rigorous argument involving v(s).

The reason the 1-die strategy is optimal in an n-dice game, as previously mentioned,
is that any gain you can make by rolling n dice can be obtained by rolling 1 die n times.
Also, it is important to notice that while the 1-die strategy is optimal, it is not the only
optimal strategy. For example, since you will never leave the game with s < 20, and 3
dice can only take you to 18, you might just as well throw 4 dice at the very beginning.
The same reasoning continues to apply. For example, an optional strategy allows a
play of 2 dice for 8 ≤ s ≤ 14, and so on.

An interesting problem arises if we exclude the option of using 1 die, that is, you
can roll any number of dice except 1. In this case your effective choices become sit,
stand with 2 dice, or stand with 3 dice. This is because any number n > 3 can be
written as a linear combination of 2 and 3. The optimal strategy for this game (found
with EXCEL) is displayed in TABLE 5. It has an intriguing pattern.

TABLE 5: An optimal strategy when 1
die is forbidden

score s optimal n

s = 0 n = 3
1 ≤ s ≤ 6 n = 2
7 ≤ s ≤ 11 n = 3

12 ≤ s ≤ 18 n = 2
s > 18 n = 0

More generally, suppose there is a given set of available numbers of dice to roll:
{n1, n2, . . . , nk, . . .}, where no n j is a nonnegative-integer linear combination of the
other ni . We invite others to conduct further research on optimal strategies for this and
other variations.
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