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Introduction

Given a population housed in a fixed physical structure

(e.g. a configuration of breeding sites with some notion

of proximity), it is known that different demographic

assumptions (life-history variation, birth and death

protocols, dispersal patterns) can have significant effects

on the evolution of a social trait. Assumptions found in

recent theoretical work, to be discussed in more detail

later, have focused on two distinctions – first whether

social interactions primarily affect fecundity or survival,

and second whether death is primarily driven by the

birth rate or birth is primarily occasioned by death. Of

course, both alternatives generally operate together, but

insights can be had by looking at their effects separately.

As an example, Ohtsuki et al. (2006) used a model of

continuous reproduction, with fecundity effects of social

interaction, and compared the evolution of cooperation

(fecundity benefit b to a neighbour at cost c) under a

birth–death (BD) and a death–birth (DB) protocol.

These terms are defined below but essentially birth

causes death in the first and death allows birth in the

second. They showed that under DB, costly altruism

could evolve on a graph provided b ⁄ c > k, where k was

the average degree of the graph (number of edges

incident at a node), and in view of Hamilton’s (1964)

classic rule br > c, they conjectured a relationship

between relatedness r and 1 ⁄ k. However, under a BD

protocol, no such evolution was possible. A theoretical

result of Taylor et al. (2007b) subsequently confirmed

the condition b ⁄ c > k for large homogeneous graphs for

the DB protocol and confirmed that under BD no

amount of benefit could overcome the cost of an

altruistic interaction.

My purpose here is first to attempt to better understand

the relationship between these two fundamental dichot-

omies, fecundity vs. survival selection and BD vs. DB

protocols, and I begin by pointing to a simple symmetry

between them. Second, I derive a significant simplification

of the inclusive fitness expressions in a homogeneous

population and illustrate the results in a population

structured as a five-cycle. The results are established using

the formalism of mathematical group theory developed in

Taylor, Lillicrap and Cownden (unpublished work).

Finally I attempt to draw some general conclusions.

For the most part I draw on two central strands of

investigation, first the huge literature on the formulation

of inclusive fitness models (Hamilton, 1964) in structured

populations, and second the study of the interaction
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Abstract

Studies of the evolution of a social trait often make ecological assumptions (of

population structure, life history), and thus a trait can be studied many

different times with different assumptions. Here, I consider a Moran model of

continuous reproduction and use an inclusive fitness analysis to investigate

the relationships between fecundity or survival selection and birth–death (BD)

or death–birth (DB) demography on the evolution of a social trait. A simple

symmetry obtains: fecundity (respectively survival) effects under BD behave

the same as survival (respectively fecundity) effects under DB. When these

results are specialized to a homogeneous population, greatly simplified

conditions for a positive inclusive fitness effect are obtained in both a finite

and an infinite population. The results are established using the elegant

formalism of mathematical group theory and are illustrated with an example

of a finite population arranged in a cycle with asymmetric offspring dispersal.
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between the immediate fitness effects of a social trait and

the competitive effects that derive from the population

structure (Taylor, 1992a,b; Queller, 1994; West et al.,

2002; Taylor et al., 2007a; Grafen & Archetti, 2008).

The Moran model – fecundity and survival
vs. BD and DB

Increasingly, studies of the evolution of behaviour are set

in a structured population. Although this means that the

results obtained are particular to a certain structure,

these so-called closed models gain a measure of reliability

in the sense that critical parameters such as relatedness

between interactants can be derived from the demo-

graphic assumptions rather than given ad hoc values.

Gardner & West (2006) provide a more extended com-

parison of these two modelling approaches. Here, I use a

simple graph structure, the nodes i representing breeding

sites and the arcs between nodes bearing the dispersal

probabilities d(i, j) defined as the neutral (no selection)

probability an offspring born at node i displaces the

breeder at node j (the effects of selection on these will be

made precise below). I assume that these are symmetric

and I include only successful offspring in the count. Thus:

dði; jÞ ¼ dðj; iÞ ð1ÞX
j
dði; jÞ ¼ 1 ð2Þ

I work with a haploid asexual population and use a

Moran model of continuous reproduction. The individual

fitness effects wi at node i will be taken to be the

difference between fecundity and mortality, and these

will be determined in different ways under the two

different demographic protocols, BD and DB (Ohtsuki &

Nowak, 2006). Under BD, births drive the process and

death results from the pressure generated by birth. Under

DB, deaths drive the process and birth results from the

openings generated by death.

I let baseline fecundity and survival both be 1, but

suppose that there might be incremental changes Fi and

Si at node i. Following West & Gardner (2010), I call

these increments ‘primary’ and use the term ‘secondary’

for all subsequent competitive effects these increments

might have on other breeders. In terms of these, I take

the node i fitness wi to be the difference between the

birth rate and death rate specified as follows:

BD : wi ¼ ð1þ FiÞ �
X

j

ð1þ FjÞ
dðj; iÞð1� SiÞP
k dðj; kÞð1� SkÞ

ð3Þ

DB : wi ¼
X

j

ð1� SjÞ
dði; jÞð1þ FiÞP
k dðk; jÞð1þ FkÞ

� ð1� SiÞ ð4Þ

Under BD, breeder i gives birth at rate 1 + Fi and dies

when replaced by an offspring. In this process, an

offspring born at node j replaces the node i breeder with

relative probability d(j, i)(1 ) Si), the product of the

dispersal rate and the node i mortality. Under DB,

breeder i dies at rate 1 ) Si and attempts to gain an

offspring whenever a neighbouring node is vacated by

the death of the breeder. More precisely, a breeder death

at node j will be replaced by an offspring born at node i

with relative probability d(i, j)(1 + Fi), the product of the

dispersal rate and the node i fecundity. Note that in the

neutral population (Fj = Sj = 0), birth rates and death

rates are both 1 under both processes.

I now take Fi and Si to be close to zero and ignore terms

of order higher than 1. This provides a simplification of

the fitness expressions. To first order in the increments Fi

and Si, the fitness effects wi can be written:

BD : wi ¼ Fi þ Si �
X

j

dðj; iÞFj �
X

j;k

dðj; iÞdðj; kÞSk: ð5Þ

DB : wi ¼ Fi þ Si �
X

j

dði; jÞSj �
X
j;k

dði; jÞdðk; jÞFk: ð6Þ

In both eqns 5 and 6, the first two terms, Fi + Si,

represent the primary effect on i, whereas the next two

terms represent the secondary competitive effects on i of

primary increments to other breeders j and k. Under BD,

these secondary effects are on survival, and under DB,

they are on fecundity.

Intuitive analysis of the DB equation

An intuition for the wi expressions can be had from eqn

6. It is best to consider the primary increments Fj and Sj

separately and I begin with the Sj (setting all Fj = 0). The

second term Si represents the primary effect of increased

survival to i. The third term �
P

j dði; jÞSj represents the

secondary effect on the fecundity of i of increased survival

to all individuals j, as under DB, i produces an offspring

only when a neighbour j dies, and in that case, d(i, j)

provides the probability the spot will be won by i.

Now consider the Fj (setting all Sj = 0). Again the first

term Fi represents the primary effect of increased fecun-

dity to i. To realize this fecundity increase of course,

someone has to die, but this occurs at a fixed rate of

one per breeder per unit time. The fourth term

�
P

j;k dði; jÞdðk; jÞFk represents the secondary effect on

the fecundity of i of increased fecundity to all individuals

k. Such an increase will cause the death of neighbour j of

k with probability d(k, j), and in this case, the spot will be

won by i with probability d(i, j).

Now I observe that there is a striking symmetry

between the two fitness expressions in (5) and (6) –

they are obtained from each other by interchanging F

and S, and switching the arguments of d. Thus, the

analysis above of the DB eqn 6 carries directly over to

the BD eqn 5 with the corresponding changes. I note that

the purpose of my assumption (1) of symmetric dispersal

rates was to obtain this BD–DB symmetry.
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My purpose is to use eqns 5 and 6 to track the

evolution of a behavioural trait. I will assume that this

trait is caused by an allele segregating at a particular locus

and its behavioural effects will cause a selective change in

its frequency. I will use an inclusive fitness approach

(Hamilton, 1964) to track this change in frequency. It is

known (Rousset, 2004; Taylor et al., 2007a) that if

selection is weak (small selective effects of the increments

F and S) and fitness effects are additive, the sign of the

inclusive fitness effect will give the direction of frequency

change of the allele. These effects are tabulated in Table 1.

It turns out that in populations with a high level of

internal symmetry, or homogeneity, the Table 1 expres-

sions can be greatly simplified. We look at that now.

Application to homogeneous populations

The term ‘homogeneous’ is used with many different

meanings. Here, I will use it in the sense of Taylor et al.

(2007b), that the population ‘look the same’ from each

node where what is being observed are the dispersal

probabilities and the frequencies of interaction. Formally,

an isomorphism of the node set is a bijection T with the

property that for every pair of nodes i and j,

dðTðiÞ; TðjÞÞ ¼ dði; jÞ ð7Þ
and node T(i) interacts with node T(j) in the same way

that node i interacts with node j. Given this, a population

is homogeneous if for every pair of nodes i and j, there is an

isomorphism T such that T(i) = j.

Many of the population structures studied in the

literature have enough internal symmetry to make them

homogeneous. Examples include island models, cycles

and lattice or stepping-stone structures. We can mix

these examples to produce more complex homogeneous

populations such as an island model whose demes are

finite cycles. Examples are found in Taylor et al. (2007b).

Now we let R(i, j) denote the average relatedness

between the breeders at nodes i and j calculated in the

neutral population. If selection is weak, and these neutral

coefficients are used in the analysis, the inclusive fitness

effect will be correct to first order in the fitness effects

(Rousset, 2004; Taylor et al., 2007a). At equilibrium, the

R(i, j) are determined as the solutions to a system of

recursive equations involving only the dispersal proba-

bilities d(h, k) (Appendix) and it follows from eqn 7 that

an isomorphism T will also preserve the relatedness

coefficients (Michod & Hamilton, 1980):

RðTðiÞ; TðjÞÞ ¼ Rði; jÞ: ð8Þ
P. Taylor, T. Lillicrap and D. Cownden (unpublished

work) provide an elegant formalism for the study of

homogeneous populations using mathematical group

theory (Fig. 1). They conjecture that every homoge-

neous population can be structured as a mathematical

group (certainly there are no known counterexamples)

and thus these methods seem to be always available for

establishing results that depend on homogeneity. Many

of the arguments are simpler if one can assume that

the underlying group is abelian (multiplication is

commutative: ij = ji) and I make that assumption in

the proof of the proposition below, although the

proposition holds without this assumption [the

question of the abelian assumption is of little biological

interest as all ‘standard’ homogeneous structures

can be represented as abelian groups. But see Fig. 1c

for an example of a homogeneous structured popula-

tion with six nodes which requires a nonabelian

group]. Another assumption that is often (but not

always) needed is that dispersal be symmetric (eqn 1)

and that turns out to be necessary for the following

proposition to hold.

Proposition

Suppose we have a finite or infinite homogeneous

population structured as an abelian group under a Moran

process with either a BD or a DB demography and with

Table 1 Inclusive fitness analysis of a single primary effect of focal behaviour on breeder j.

Fitness increment Primary effect on j Competitive effect on i Inclusive fitness effect

BD

Fecundity Fj )d(j, i)Fj Rj �
P

i Ridðj; iÞ
� �

Fj

Survival Sj �
P

k dðk; iÞdðk; jÞSj Rj �
P

i

P
k Ridðk; iÞdðk; jÞ

� �
Sj

DB

Survival Sj )d(i, j)Sj Rj �
P

i Ridði; jÞ
� �

Sj

Fecundity Fj �
P

k dði; kÞdðj; kÞFj Rj �
P

i

P
k Ridði; kÞdðj; kÞ

� �
Fj

BD, birth–death; DB, death–birth.

Here we are supposing that the behaviour of a focal actor has a primary fitness effect on the fecundity or the survival of a single breeder j. Then

the calculation of the inclusive fitness effect of this behaviour includes this primary effect (col. 2), along with any secondary competitive effects

on other breeders i (col 3). Under BD, these competitive effects are on survival, whereas under DB they will be on fecundity (see eqns 3 and 4).

In the inclusive fitness calculation (col. 4) these effects on i are weighted by the focal relatedness (either Rj or Ri) to the affected breeder. Note

that I use here the simpler notation Rj = R(e, j). Again I remark on the striking ‘anti-symmetry’ between the inclusive fitness effects under BD

and DB. These expressions for WI apply to both a finite and an infinite population.
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symmetric offspring dispersal. Suppose a focal actor at

node e gives a primary fitness increment, either of

fecundity or survival, to breeder j (who is allowed to be

the actor). Then the inclusive fitness effect in each of

23 = 8 cases is tabulated in Table 2.

The proof of this proposition is found in the Appendix.

Table 2 presents the inclusive fitness effect of an inter-

action with a primary fitness effect on the focal actor e

and a single recipient j „ e for both a BD and a DB

demography with primary effects on either fecundity or

survival in a finite or an infinite population. The

homogeneity of the population provides a remarkable

simplification of the general expressions for WI found in

Table 1. In particular, the summations of Table 1, which

capture the secondary competitive effects of the single

interaction, disappear leaving only a residue of the

primary effect. In particular, to obtain the sign of WI,

no calculations of relatedness are required. A noteworthy

observation is that for fecundity effects under BD and for

survival effects under DB, the inclusive fitness effect of a

fitness increment to breeder j „ e is independent of j.

Otherwise, for survival effects under BD and for fecun-

dity effects under DB, WI depends only on d(e, j), the

probability that a focal offspring displaces breeder j.

For a finite population, a good check on the entries of

Table 2 is available. If everyone in the population is given

the same primary increment, the inclusive fitness effect

should be zero. For example for row 6 (survival incre-

ment in BD), if all the Sj are set equal to S, the sum of the

j = e entry and N ) 1 times the j „ e entry should be

zero. That is we should have:

ba

p g

r

e

j–1

j

ij

e

i

k j

jkij

e

i

(a)

(b) 

(c) 

(ij)k=i(jk)

Fig. 1 Mathematical groups. A group G is a set of elements i with

a binary operation (which we represent multiplicatively) which

satisfies the following three axioms: 1. There is an identity element e

with the property ei = ie = i for all i. 2. Every element i has an inverse

(denoted i)1) such that ii)1 = i)1i = e. 3. The operation is associative:

i(jk) = (ij)k for all i, j and k. The group is abelian if multiplication is

commutative ij = ji. Now the wonderful thing about groups is that

we have a natural set of bijections that can serve as our isomor-

phisms, and these are the group multiplications. Indeed, given two

elements j and k of the group, multiplication on the left by i = kj)1

is a bijection T of the group that maps j into k. Indeed, T(j) = ij =

(kj)1)j = k(j)1j) = ke = k. Thus, if our breeding sites are the elements

of a group, we can use these left multiplications as a natural transitive

set of maps preserving our two critical relationships – offspring

dispersal and fecundity effects: d(j, k) = d(ij, ik) and ij interacts with

ik in the same way that j interacts with k. All homogeneous

populations that have appeared in the literature (island models, cycles,

and lattice or stepping-stone structures) can be represented as

groups. Details on the representation of a homogeneous population

as a group can be found in (P. Taylor, T. Lillicrap and D. Cownden,

unpublished work). (a) ij is the node that looks the same from i as j

looks from e. (b) Illustration of associativity. (c) For the reader’s

curiosity, the smallest nonabelian group is depicted. It is isomorphic

to the group S3 of all permutations on three objects. Multiplication

proceeds by following the appropriate edges. Thus, ag = p because

if we follow the green (dotted) edge from a we get to p. On the

other hand, ga = r because the arrow leaving g leads to r.

Table 2 Inclusive fitness effect of a fitness increment from focal

actor e to breeder j – the case of a homogeneous population.

Fitness

increment

Inclusive fitness effect

increment to focal j = e

Inclusive fitness effect

increment to neighbour

j „ e

Infinite population

BD

Fecundity Fj KFe Zero

Survival Sj K(1 + d(e, e))Se Kd(e, j)Sj

DB

Survival Sj KSe Zero

Fecundity Fj K(1 + d(e, e))Fe Kd(e, j)Fj

Finite population

BD

Fecundity Fj
K

N�1 ½N� 1�Fe � K
N�1 Fj

Survival Sj
K

N�1 Nð1þ dðe; eÞÞ � 2½ �Se
K

N�1 Ndðe; jÞ � 2½ �Sj

DB

Survival Sj
K

N�1 ½N� 1�Se � K
N�1 Sj

Fecundity Fj
K

N�1 N� 2þ Ndðe; eÞ½ �Fe
K

N�1 Ndðe; jÞ � 2½ �Fj

BD, birth–death; DB, death–birth.

This specializes the inclusive fitness effects tabulated in the last

column of Table 1 to the case of a homogeneous (group-structured)

population. The key technical result is eqn A4 of the Appendix

which assumes symmetric dispersal rates and an abelian group. Here,

the focal actor is breeder e and we obtain different expressions for the

case of a focal (j = e) and nonfocal (j „ e) recipient. Note that every

entry has the same common positive multiplier K ¼ 1�
P

i Ridðe; iÞ
where Ri is focal relatedness to i. In our application to altruistic

behaviour, we take Fe = )c and Fj = b.
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K

N � 1
Nð1þ dðe; eÞÞ � 2þ N

X
j6¼e

dðe; jÞ � 2ðN � 1Þ
" #

S ¼ 0

and this can be verified to hold.

Altruistic behaviour

What does Table 2 tell us in terms of how to go about

helping your neighbour? The first thing to decide is

whether we are operating with a BD or a DB protocol.

Fundamentally, this is a question of what ‘drives’ the life

history. The driver is fecundity if mortality tends to come

about through offspring pressure for establishment. The

driver is mortality if offspring can only obtain a foothold

when a breeder runs out of steam. In the first case (BD), the

offspring call the shots; in the second (DB), the ‘old guard’

are in charge. Of course, in reality both forces will be at

work and we can expect to have some mixture of the two.

But let’s suppose we can identify the dominant driver.

For the remainder of this section, I assume we have a

BD demography, noting that Table 2 allows us to

translate all BD results to a DB demography. Suppose

the focal actor e gives a breeder j „ e a primary fitness

benefit b at cost c, each of these measured in either

fecundity or survival. The interaction is termed altruism if

both b and c are positive and is called spiteful if c is positive

but b is negative. From Table 2, we deduce the condition

for a positive inclusive fitness effect:

Infinite population

Fecundity selection : 0 > c ð9Þ

Survival selection : dðe; jÞb > ½1þ dðe; eÞ�c ð10Þ

Finite population

Fecundity selection : �b > ðN � 1Þc ð11Þ

Survival selection : ½Ndðe; jÞ � 2�b > ½Nð1þ dðe; eÞÞ � 2�c
ð12Þ

For a finite population, these results have been obtained

by Taylor et al. (2007b) and by Grafen & Archetti (2008)

(except instead of BD survival selection they worked

with DB fecundity selection). Under fecundity selection,

altruism can never be selected, and in fact in a finite

population, spite can be selected if the harm inflicted on

j exceeds N ) 1 times the cost. It is worth noting that the

conditions in this case are independent of j – no matter

who receives the ‘gift’, the inclusive fitness effect is the

same. Under survival selection, altruism can be selected

in an infinite population if b is large enough. Notice that

it helps if d(e, j) is large. One should be more likely to be

altruistic the greater is the probability that ones offspring

settle at node j.

The results summarized earlier assume that b and c

are measured in the same units, both fecundity or both

survival. In practice, they could be different – one could

deliver food to a neighbour, increasing her fecundity,

but at a survival cost. In fact, one might even have a

choice. The food could be taken from ones own supply,

thus reducing fecundity, or gathered with an additional

foraging excursion, reducing survival. Although it is

generally problematic to compare fecundity and survival

costs, we might ask, all things being equal, which would

be better. In an infinite population, the answer from

Table 2 seems clear enough: the benefit should defi-

nitely be in survival and, all things being equal, the cost

should be in fecundity – although it should be pointed

out that if d(e, e) = 0 (offspring never displace the

parent), there is no cost difference between the two.

The condition is:

Infinite population, fecundity cost, survival benefit:

dðe; jÞb > c ð13Þ
In a finite population, a fecundity gift can never be

selected, but a survival gift can be favoured if d(e, j), the

probability that a focal offspring inhabits node j exceeds

2 ⁄ N. Looking at costs (which need to be kept small), the

survival cost has the smaller coefficient when d(e,

e) < 1 ⁄ N, that is, focal offspring are less likely to displace

their parent than to displace a random breeder. Given

this, we might conclude that in finite populations,

altruism is more likely to be seen when the interaction

affects the survival of both parties. In this case, we might

see protection offered to others at an increased risk to

self.

I have been focusing on altruism, but possibilities also

exist for the evolution of spiteful behaviour (S and F

negative), but from Table 2, this could only gives us a

positive inclusive fitness effect in a finite population and

N better not be too large (Hamilton, 1970; Gardner &

West, 2004). Consider a fecundity selection under BD.

Equation 11 tells us that if I can cause at least c units of

harm to every other individual in the population at cost c,

I will have WI ‡ 0. That’s no surprise of course as with

exactly c units of harm; everyone in the population has

the same primary fitness change. Of greater interest is

survival selection (eqn 12). Suppose my offspring never

displace me and I chose another recipient j whom my

offspring also never displace. In that case, the Table 2

condition for WI > 0 is (N ) 2)Se ) 2Sj > 0. With Se = )c

and Sj = )b, the condition becomes 2b > (N ) 2)c. In a

population of size 6, the harm caused, b, has to be at least

twice the cost, c.

This analysis has assumed a BD demography, and I

have pointed out that, by interchanging F and S, they can

be translated to death–birth. But in both cases, it’s not

birth or death per se that are significant, but rather what I

have called the ‘driving’ mode of the demography, the

other being the ‘reactive’ mode. For the evolution of

altruism, the general conclusion I have drawn is that, all
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things being equal, in an infinite population, the benefit

should be set in the reactive mode of the life history and

the cost in the driving mode, whereas in a finite

population, both benefit and cost should be set in the

reactive mode.

Example. Altruism to a neighbour in a
five-cycle with asymmetric dispersal

I consider a finite population with N = 5 breeders

arranged in a cycle with offspring dispersal a to the

immediate clockwise neighbour, b to the counter-clock-

wise neighbour, and c = 1 ) a ) b to remain home.

Dispersal is symmetric if a = b. The population is illus-

trated in Fig. 2. To obtain the group structure, number

the nodes from 0 to 4, clockwise and then the group

operation is addition modulo 5, e.g. 2 + 4 = 6 = 1 (cast

out 5). Essentially, we have the rotation group generated

by the clockwise rotation through one-fifth of a revolu-

tion. This group is clearly abelian. I will investigate a

Moran process with a BD demography.

I study an altruistic or spiteful trait whereby a breeder

gives primary fitness increment b to her clockwise

neighbour at fitness cost c, where fitness might measure

either fecundity or survival effects. In Table 3, the

primary and secondary effects are tabulated for both

fecundity selection and survival selection.

Now let Ri denote the relatedness coefficient between

breeders 0 and i. Then, the inclusive fitness effects are:

Fecundity selection : WI ¼ ð�c þ cc � bbÞR0

þ ðbþ ac � cbÞR1 þ ð�abÞR2 þ bcR4

Survival selection : WI ¼ ½�c þ ða2 þ b2 þ c2Þc
� cðaþ bÞb�R0 þ ½bþ cðaþ bÞc � ða2 þ b2 þ c2Þb�R1

þ ½abc � cðaþ bÞb�R2 þ ½abc � abb�R3

þ ½cðaþ bÞc � abb�R4

A standard recursive argument (Taylor et al. manuscript)

gives the relatedness coefficients:

R0 ¼ 1; R1 ¼ R4 ¼ 0; R2 ¼ R3 ¼ �1=2:

If these are put into the equations above, with c = 1 )
a ) b, we obtain:

Fecundity selection : WI¼ ða=2�bÞb� ðaþbÞc:

Survival selection : WI ¼
b

2
a2 þ 3abþ b2 � a� b
� �

� c 2a2 þ abþ 2b2 � 2a� 2b
� �

For the case of symmetric dispersal (a = b) this

becomes:

Fecundity selection : WI ¼
a
2
ð�b� 4cÞ

Survival selection : WI ¼
a
2
ð5a� 2Þb� ð8� 10aÞc½ �:

Now compare these with the Table 2 results for a finite

population under BD with N = 5. We set Fe = Se = )c

and Fj = Sj = b. We obtain:

Fecundity selection : WI ¼
K

4
4ð�cÞ � bð Þ

0

1

23

4

β

γ

α

Fig. 2 A five-cycle with asymmetric dispersal. The dispersal rates are

shown only for breeder 0, but the other breeders follow the same

pattern, dispersal a to the clockwise neighbour, b to the counter-

clockwise neighbour and c to self.

Table 3 Selection in five-cycle: Moran process BD.

Breeder

Primary effect Secondary effect

Fecundity Survival

0 )c cc ) bb

1 b ac ) cb

2 0 )ab

3 0 0

4 0 bc

Survival Survival

0 )c (a2 + b2 + c2)c ) c(a + b)b

1 b c(a + b)c ) (a2 + b2 + c2)b

2 0 abc ) c(a + b)b

3 0 abc ) abb

4 0 c(a + b)c ) abb

BD, birth–death.

This provides the fitness effects of an interaction in the five-cycle

depicted in Fig. 2 with a BD demography. The actor is breeder 0 and

the recipient is breeder 1. The primary effect can be of either

fecundity or survival but in both cases the secondary effects will be

on survival. The secondary survival effects can be intuitively derived.

For example, consider the case of a primary fecundity loss of c to

breeder 0 (top half of the Table). Under the BD process, mortality is

caused by offspring production, so this reduced fecundity rate will be

experienced by breeders 1, 4 and 0 in proportion to a, b and c giving

them a survival boost of ac, bc and cc, and these appear in col. 3.

Secondly, consider the case of a primary survival loss of c to breeder

0 (bottom half of the Table). The effect of this is that a fraction bc of

breeder 1’s offspring will colonize node 0 who would otherwise

disperse normally to nodes 0, 1 and 2. These will provide survival

benefits to breeders 2, 0 and 1 in proportion to a, b and c, giving

survival effects of abc, bbc and cbc and these appear in col. 3.
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Survival selection : WI ¼
K

4
ð3þ 5cÞð�cÞ þ ð5a� 2Þbð Þ

¼ K

4
ð10a� 8Þc þ ð5a� 2Þbð Þ;

and these are the same expression up to a multiple.

With fecundity increments, altruism is never selected,

but with increments to survival, altruism will be

selected if a > 0.4. For example, for a = ½, the condi-

tion is: b > 6c. This example also shows that the

assumption of symmetric dispersal is necessary for the

proposition to hold.

Discussion

Many of the population models that have appeared in the

literature have a structure that is homogeneous or nearly

so. The reason is simple – we need some form of

structural regularity to perform the allele-frequency

analysis, for example, to obtain tractable recursive

equations for the relatedness coefficients. It turns out

that the same regularity can also deliver significant

simplifications to our expression for the inclusive fitness

effects. The reason for this is that in a structured

population of constant size, interactions with primary

fitness effects will have a multitude of secondary effects

because of alterations in the competitive landscape. The

‘map’ of these effects will follow the same dispersal

patterns that are encoded in the relatedness recursions

and under homogeneity, these recursion in effect provide

the simplifications.

These simplifications are well illustrated in a compar-

ison of Tables 1 and 2. The summations in Table 1 cover

a wide network of secondary effects, each of which

makes a contribution to WI. But in Table 2, none of these

are to be found; only fragments of the two primary effects

belonging to the two interactants remain. Somehow,

there has been a significant cancellation of the secondary

competitive effects. The example of the five-cycle well

illustrates the power of the proposition. Considerable

analysis is needed to track and record the many second-

ary effects found in Table 3, and in addition to these,

there is the calculation of the relatedness coefficients that

I have omitted. But the outcome of all this is easily found

from Table 2. The example does illustrate, however, that

without symmetric dispersal, the result will not hold.

The first computer analyses of behavioural interaction

in a spatially structured population seem to have

appeared in 1992. Nowak & May (1992) and Wilson

et al. (1992) both explored cooperation on a lattice and

pointed to the significant effect of the spatial structure on

the outcome. Wilson et al. made what I believe is the first

observation of the zero in the top right-hand corner of

Table 2, and this led to the original analyses of Taylor

(1992a,b). Since that time a huge body of literature has

arisen studying evolutionary games on graphs (see

Ohtsuki et al., 2007 for quite a good summary of the

development in this area), and of course most spatial

structures can be represented as graphs and most social

behaviours that are commonly studied can be repre-

sented by one or more two-player games.

Most of the early work on graphs (Nowak & May,

1992, 1993; Nowak et al., 1994) used fecundity selection

along with a variety of demographic systems (including

BD and DB). The first discussion of the relationship

between fecundity-selection and viability-selection

seems to be found in Nakamaru et al. (1997, 1998), work

that was extended by Nakamaru & Iwasa (2005). They

worked with the Prisoner’s Dilemma in a lattice model

using a version of a DB demography. In agreement with

the results of the analysis here, they find fecundity

selection (which they call score-dependent fertility) to be

more favourable to the evolution of cooperation. The

results obtained here of course suggest that they would

have found an analogous result with BD demography

favouring viability-selection.

Ohtsuki & Nowak (2006) provide an intuitive

explanation for the difference between these two

selection regimes in terms of a comparison between

the ‘scale of interaction’ and the ‘scale of competition’,

an idea that goes back to Queller’s (1994) ‘economic

neighbourhood’. The idea can be illustrated with a

comparison of fecundity selection in a BD and a DB

demography. If I give a fecundity gift to my neighbour,

then under BD I experience a direct decrease in my

survival rate. However, under DB, my survival rate is

unchanged, rather I experience decreased success in

competing for a site vacated by my neighbour’s

neighbour. In the first case, my economic neighbour-

hood is my interaction neighbourhood; in the second

case, it is the interaction neighbourhood of my inter-

action neighbourhood. The difference between these is

clearly exhibited in eqns 5 and 6 – in (5), the

competitive F-term is linear in the dispersal rates d;

whereas in (6), the competitive F-term is quadratic in

d. Of course (and this is the point of the paper) exactly

the same point can be made with a comparison of

fecundity- and viability-selection under BD using eqn 5

with the observation that whereas the competitive

F-term is linear in d, the competitive S-term is

quadratic. Grafen & Archetti (2008) provide a detailed

analysis of this scale of competition phenomenon in

terms of ‘circles of compensation’.

These conclusions are interesting but appear to be

quite special as they require the assumption of homoge-

neity. However, there are reasons to believe that they

might apply, in a qualitative sense, much more widely. In

any inclusive fitness analysis, we work with a focal actor

and a recipient and treat these as in some sense ‘generic’,

that is, we assume that the relationship between them is

mirrored in many other instances in the population, and

indeed our calculation of the relatedness between them is

an average of the allelic configurations at all these

instances. Thus, we work with populations that have a
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large amount of ‘approximate’ homogeneity, and it is

reasonable to assume that results that require strict

homogeneity would apply to a large extent to these. A

good example of this is found in the simulation studies of

Ohtsuki et al. (2006). They looked at a large number of

graphs with variable degree k but found their result

b ⁄ c > k to be quite robust with the use of the average

value of k.
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Appendix

Taylor et al. (submitted) provide an elegant way to

handle the isomorphisms of a homogeneous population

using mathematical group theory (Fig. 1). Essentially,

they put a product operation on the set of nodes in the

following way. Take a random node and label it e. It will

serve as an ‘identity’ node. Now take another node i. The

homogeneity property is that the population should look

the same from i as it does from e. In particular, for any

node j, there should be a node that looks the same from i

as j looks from e. We call that node ij, and this in fact

defines the multiplication operation on the node set. The

product node ij is the node that a breeder at i ‘sees’ if it thinks it

is located at e looking at j. For all of the homogeneous

population structures that I have encountered in the

theoretical literature (e.g. island models, cycles, and

lattice or stepping-stone structures), this operation satis-

fies the axioms of a group. In fact in all these examples,

the group is abelian, that is, the product operation is

commutative: ij = ji (but see Fig. 1b).

In terms of this product operation, the homogeneity

condition that the dispersal probabilities and thus the

relatedness coefficients are invariant under left multipli-

cation would be written:

dðj; kÞ ¼ dðij; ikÞ ðA1Þ

Rðj; kÞ ¼ Rðij; ikÞ ðA2Þ
In addition, breeders ij and ik should interact in the

same way as breeders j and k.

I assume that the population is homogeneous, struc-

tured as an abelian group with symmetric dispersal, with

a Moran demography with either a BD or a DB protocol.

My objective is to derive the 16 expressions in Table 2.

Infinite population. I begin with the case of an infinite

population, so that the relatedness between a pair of

nodes chosen at random will be zero. I make the

assumption that some dispersal to each node is from a

random node; it follows that we can ignore mutation

(assuming that it has small rate) and the analysis is

simplified.

I begin with the recursive equation for the relatedness

coefficients R. If k is a node distinct from the identity

node e, then at equilibrium:
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Rðe;kÞ¼1

2

X
j

Rðj;kÞdðj;eÞþ
X

j

Rðe;jÞdðj;kÞ
" #

ðk 6¼ eÞ ðA3Þ

As the alleles are neutral and the population is

homogeneous, the two nodes, e and k, will have equal

probability (½) to be the one most recently replaced. If

this was e, the breeder came from j with probability d(j,

e), and we obtain the first term in the square bracket of

(A3); if this was k, the breeder came from j with

probability d(j, k), and we obtain the second term in

the square bracket.

However, I now show that the two terms in the square

bracket are equal. The left-hand term is:X
j

Rðj; kÞdðj; eÞ

¼
X

j

Rðe; j�1kÞdðj; eÞ

ðinvariance under left multiplication A2Þ
¼
X

i

Rðe; iÞdðki�1; eÞ ði ¼ j�1k; so that j ¼ ki�1Þ

¼
X

i

Rðe; iÞdði�1k; eÞ

ðcommutativity of multiplicationÞ
¼
X

i

Rðe; iÞdðk; iÞ

ðinvariance under left multiplication A1Þ

and the symmetry of d gives us the right-hand term of

(A3). Thus, (A3) can be written:

Rk ¼
X

j

Rjdðj; kÞ ðk 6¼ eÞ ðA4Þ

where I have adopted the simpler notation of Table 1:

R(e, j) = Rj.

I now move to the proposition. I provide the proof for

the BD demography, and the DB results will follow from

the symmetry exhibited in Table 1. Begin with a fecun-

dity gift of Fj from the actor e to breeder j. From Table 1,

row 1, the inclusive fitness effect is Rj �
P

i Ridðj; iÞ
� �

Fj.

For j „ e, eqn A4 tells us that this is zero. For j = e, the

expression in the square brackets is 1�
P

i Ridðe; iÞ and

this is what, in Table 2, we have called K. This gives us

row 1 of Table 2.

Now consider a survival gift of Sj. Table 1, row 2, gives

us the inclusive fitness effect:

Rj �
X

i

X
k

Ridðk; iÞdðk; jÞ
h i

Sj ðA5Þ

The expression in the square brackets can be written:

Rj �
X

k

X
i
Ridðk; iÞ

h i
dðk; jÞ

¼ Rj �
X

k 6¼e

X
i
Ridðk; iÞ

h i
dðk; jÞ �

X
i
Ridðe; iÞdðe; jÞ

¼ Rj �
X

k 6¼e
Rkdðk; jÞ �

X
i
Ridðe; iÞdðe; jÞ

½using eqn A4��

¼ Rj �
X

k
Rkdðk; jÞ þ Redðe; jÞ �

X
i
Ridðe; iÞdðe; jÞ(A6)

For j „ e, eqns A4 and 1 tell us that the first two terms

give us zero, leaving us with:

¼ Redðe; jÞ �
X

i
Ridðe; iÞdðe; jÞ

¼ 1�
X

i
Ridðe; iÞ

h i
dðe; jÞ ¼ Kdðe; jÞ:

For j = e, eqn A6 is:

¼ 1�
X

k
Rkdðk; eÞ þ dðe; eÞ �

X
i
Ridðe; iÞdðe; eÞ

¼ 1�
X

k
Rkdðk; eÞ

h i
1þ dðe; eÞð Þ ¼ K 1þ dðe; eÞð Þ:

This gives us row 2 of Table 2.

Note finally that K = 1�
P

i Ridðe; iÞ is positive as the

second term is < 1 being a weighted average relatedness

of the focal breeder to all breeders, where the weights are

the dispersal rates of a focal offspring.

Finite population. In a finite population of N breeding

sites, we must take mutation into account or the

recursive equations for relatedness will give us equilib-

rium coefficients that equal 1. This is most naturally done

working with the coefficients of consanguinity G(i, j)

being the probability that the genes at sites i and j are

identical by descent. Then, the relatedness coefficients

are calculated as

Rði; jÞ ¼ Gði; jÞ � �G

1� �G
; ðA7Þ

where �G is the population-wide average of the G(i, j). I

assume that the mutation rate l is small relative to 1 ⁄ N,

and work to first order in l. Thus, I set G(i, j) = 1 ) lg(i,

j) and to first order in l, relatedness is:

Rði; jÞ ¼
�g� gði; jÞ

�g
: ðA8Þ

The argument now follows the infinite population

analysis. The G-analogue of (A3) is

Gðe;kÞ¼1

2

X
j

Gðj;kÞdðj;eÞþ
X

j

Gðe;jÞdðj;kÞ
" #

ð1�lÞ ðk 6¼eÞ;

where the 1 ) l term is the probability that there was no

mutation in the most recent replacement. To first order

in l this is:

gðe; kÞ ¼ 1

2

X
j

gðj; kÞdðj; eÞ þ
X

j

gðe; jÞdðj; kÞ
" #

þ 1

Write this as:

�g� gðe; kÞ ¼

1

2

X
j

ð�g� gðj; kÞÞdðj; eÞ þ
X

j

ð�g� gðe; jÞÞdðj; kÞ
" #

� 1

and divide by �g:
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Rðe; kÞ ¼ 1

2

X
j

Rðj; kÞdðj; eÞ þ
X

j

Rðe; jÞdðj; kÞ
" #

� 1

�g
:

Following the infinite population argument to eqn A4,

we write this as:

Rk ¼
X

j

Rjdðj; kÞ �
1

�g
ðk 6¼ eÞ ðA9Þ

Now we rewrite the last term by summing (A9) over all

k „ e. As the sum over all k of Rk is zero and the sum

over all k of d(j, k) is one, the sum of (A9) is:

�Re ¼
X

j

Rjð1� dðj; eÞÞ � N � 1

�g
ðA10Þ

�1 ¼
X

j

Rjdðj; eÞ �
N � 1

�g

N � 1

�g
¼ K

(see Table 1)

1

�g
¼ K

N � 1

And we write (A9) as:

Rk ¼
X

j

Rjdðj; kÞ �
K

N � 1
ðk 6¼ eÞ ðA11Þ

I now move to the proposition. Again I provide the BD

proof, leaving the DB results to follow from the symme-

try. Begin with a fecundity gift of Fj from the actor e to

breeder j. From Table 1, row 1, the inclusive fitness effect

is Rj �
P

i Ridðj; iÞ
� �

Fj. For j „ e, eqn A11 tells us that

this is � KFj

N�1
. For j = e, the expression in the square

brackets is 1�
P

i Ridðe; iÞ and this is what, in Table 2, I

have called K. This gives us row 5 of Table 2.

Now consider a survival gift of Sj. Table 1, row 2, gives

us the inclusive fitness effect:

Rj �
X

i

X
k

Ridðk; iÞdðk; jÞ
h i

Sj ðA12Þ

The expression in the square brackets can be written

as:

Rj �
X

k6¼e

X
i
Ridðk; iÞ

h i
dðk; jÞ �

X
i
Ridðe; iÞdðe; jÞ

¼ Rj �
X

k6¼e
Rk þ

K

N � 1

� �
dðk; jÞ �

X
i
Ridðe; iÞdðe; jÞ

½using eqn A11�

¼ Rj �
X

k
Rkdðk; jÞ þ Redðe; jÞ �

K

N � 1
1� dðe; jÞð Þ

� ð1� KÞdðe; jÞ

¼ Rj �
X

k
Rkdðk; jÞ � K

N � 1
1� dðe; jÞð Þ þ Kdðe; jÞ

Rj �
X

k
Rkdðk; jÞ � K

N � 1
1� Ndðe; jÞð Þ ðA13Þ

For j „ e, using (A11), this is

� K

N � 1
2� Ndðe; jÞð Þ:

For j = e, (A13) is

1�
X

k
Rkdðk; eÞ � K

N � 1
1� Ndðe; eÞð Þ

¼ K � K

N � 1
1� Ndðe; eÞð Þ

¼ K

N � 1
N � 2þ Ndðe; eÞð Þ

This gives us row 6 of Table 2.
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