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We investigate the conflict between queen and worker over sex allocation, specifically the allocation of the

queen’s eggs between workers and reproductives and the allocation of the reproductive eggs between male

and female. In contrast to previous models, we allow workers to observe and use information about the

strategy of the queen. We consider three conflict models: simultaneous (no information exchange),

sequential (a one-way information exchange) and negotiated (an iterated two-way information exchange).

We find that the first model produces sex ratios intermediate between the classic queen (1 : 1) and worker

(1 : 3) optima. The second model, in which the worker has information about the queen’s decisions,

produces a different result and one that is somewhat counter-intuitive in that the sex ratios are less female-

biased than for the other two models, and in fact are often male-biased. The third model predicts sex ratios

intermediate between the first two models. We discuss how these findings may shed new light on observed

sex allocation patterns in social insects and we suggest some experimental tests.
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1. INTRODUCTION
It was probably Hamilton (1967) who first drew attention

to the effect that genetic asymmetries between males and

females could have on the ‘unbeatable’ sex ratio. However,

it was not until nine years later that Trivers & Hare (1976)

applied these ideas to hymenopteran eusocial insects in

which both queen and workers might have a say in colony

sex allocation decisions. In these decisions, the queen and

the workers have different genetic interests, the queen

being equally related to sons and daughters, but the

workers being more closely related to the queen’s

daughters than to her sons. This causes the workers to

favour a higher proportion of females among the

reproductives than the queen. Under the simplest of

assumptions, such as the queen being singly mated, the

queen’s preference is a 1 : 1 male : female ratio and the

workers prefer 1 : 3. Trivers and Hare felt that workers are

more likely to win the conflict, and until recently many

studies of hymenopteran sex allocation supported this

view. However, several new studies give examples of sex

ratios close to the queen’s optimum (e.g. Helms 1999;

Jemielity & Keller 2003; Duchateau et al. 2004). In order

to understand these contradictory results, Mehdiabadi

et al. (2003) call for more sophisticated shared-control

conflict models to encompass the dynamic balance

between queen andworker power over the colony sex ratio.

Previous models of worker–queen conflict that allow

both parties some control over aspects of sex allocation

typically conclude that a more or less ‘fair’ compromise

between theworkers’ optimumand the queen’s optimum is

reached, the precise location of which depends on specific

model assumptions (Bulmer 1981; Bulmer & Taylor 1981;

Matessi & Eshel 1992; Reuter & Keller 2001).
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A potentially important aspect of the worker–queen

interaction that has not been addressed in models so far,

concerns the flow of information between queen and

workers. Indeed, Trivers & Hare (1976) argued that since

workers in some sense might seem to have ‘the last say’,

they should win the conflict and wemight expect sex ratios

to more closely match the workers’ optimum than that of

the queen. Similarly, Beekman et al. (2003) argue that

‘Because the workers act after the queen, this probably

gives them greater power than the queen’. If it is true that

the workers have ‘the last say’, the workers might be able

to observe the queen’s actions and use this information to

determine their own actions. Here we present a model of

shared worker–queen control which explicitly allows

workers to do just that and adjust their allocation to the

queen’s allocation. As we shall see, this leads to some

surprising predictions.
2. THE MODEL
(a) Allocation decisions and control

The notation is given in table 1. We work with an outbred

haplodiploid population, which is monogynous, mono-

androus and has non-reproductive workers. We assume

that the queen lays an arbitrary fixed number N of eggs,

which are then raised by the workers. In this process there

are three trade-off decisions to be made (figure 1). The

first is the proportion x of males among the eggs and we

give control of this to the queen. The second trade-off

concerns the proportion y of female eggs made into

workers (the rest to be gynes), and we give control of that

to the workers (but see § 4). Finally there is the proportion

z of worker resources allocated to the raising of males as

opposed to gynes, and we also give control of that to the

workers. Our models provide evolutionarily stable values

of these three primary variables, x, y and z. Whenever
q 2005 The Royal Society
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Table 1. Notation.

notation description

the mathematical analysis works with three primary variables
x the proportion of males among the eggs (queen controlled)
y the proportion of female eggs made into workers (worker controlled)
z the proportion of workers allocated to the raising of males (worker controlled)

~yðxÞ, ~zðxÞ optimal values of y and z in response to queen’s x value (model 2)
x1Zx proportion male eggs
x2Z(1Kx)(1Ky) proportion gyne eggs
rZx1/(x1Cx2) sex ratio among reproductive eggs
z1Zzy(1Kx) proportion worker resources devoted to the raising of males
z2Z(1Kz)y(1Kx) proportion worker resources devoted to the raising of gynes
h(zi) amount of resources devoted to raising sex i reproductives
uiZh(zi)/xi amount of resources per egg devoted to the raising of sex i reproductives
si(u) probability of survival to adulthood of sex i egg if allocated u (equation 1)
ki the point at which sex i egg survival per worker, si(u)/u, is maximized
XiZxisi(ui) # sex i reproductive adults
RZX1/(X1CX2) sex ratio among reproductive adults

ÊZX̂2=X̂1
population-wide reproductive adult female : male ratio. The ^ signifies a population-wide average

Q inclusive fitness of queen
W inclusive fitness of workers
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possible we present analytical results, but most of our

results are based on numerical calculations. In addition,

we have used individual-based simulations to verify the

analytical and numerical work. In these simulations, each

decision variable is determined by a single genetic locus,

unlinked to the other loci, and allelic values undergo small

mutational modifications with a fixed small probability.
x2 (1–x)y

z1 z2

workers

males gynes

z 1–z

x2s (z2/x2)x1s (z1/x1)

Figure 1. Allocation strategies. The queen controls the
allocation x of eggs between haploid and diploid and the
workers control the allocation y of diploid eggs between gynes
and workers and the allocation z of workers between the
raising of male and female reproductives.
(b) Consequences of allocation decisions

It is notationally and conceptually useful to work with the

secondary variables xi, the proportion of sex i reproductive

eggs, and zi, the proportion of resources allocated by

workers to the rearing of sex i reproductive eggs, so that

x1Cx2Cz1Cz2Z1. Expressions for these in terms of the

primary variables are found in table 1. The total amount of

resources invested by workers in the raising of sex i

offspring is an increasing function h(zi) with diminishing

returns. This reflects an assumption that per capita

productivity of workers declines when more workers are

present (see also Reuter & Keller 2001). In examples we

use hðziÞZzi=ð1CziÞ.

We further suppose that the survival of the sex i eggs to

adulthood is a function, s(ui), of the amount of resources

uiZhðziÞ=xi invested per sex i egg. The function s is

assumed to be increasing and sigmoidal. In our examples

we use the functional form

sðuÞZ
u2

u2 Ck2
: ð2:1Þ

The parameter k is the value of u at which egg survival per

unit investment, s(u)/u, is maximized. Thus the parameter

k acts as a scaling factor for the u-axis. We consider only

sufficiently small values of k, since for large values of k the

survival function s(u) is concave-up (increasing marginal

return) for a relatively large part of the u-domain with the

result that selection favours specialization in either males

(x!1 and zZ1) or females (xZ0 and zZ0), as result

obtained in the model of Roisin & Aron (2003). That this

should happen is expected from Jensen’s inequality

EðsðuÞR sðEðuÞÞwhich holds for all convex functions s(u),

and this behavior is confirmed by our simulations.
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(c) Inclusive fitness

We suppose that the queen and workers choose the

parameters under their control to maximize their inclusive

fitness. Though they are engaged in the cooperative

rearing of the same brood, their genetic interests are

slightly different as the workers are more closely related

than the queen to female reproductives and less closely

related to males. Indeed, under outbreeding, the inclusive

fitness of queen and worker are (Bulmer 1994 p. 222):

Qðx; y; z; x̂; ŷ; ẑÞZ
1

2
X2 C

1

2
X1Ê ð2:2Þ

W ðx; y; z; x̂; ŷ; ẑÞZ
3

4
X2 C

1

4
X1Ê ð2:3Þ

Here XiZxis(ui) is the number of sex i reproductive adults,

and ÊZX̂2=X̂1 is the population-wide adult female : male

ratio. The ^ signals that variables are to be given their

population-wide values. Thus Q and Ware functions of six

variables: the individual values of the three primary



0 0.10 0.20 0.30 0.40 0.50 0 0.10 0.20 0.30 0.40 0.50
0.2

0.3

0.4

0.5

0.6

k

z

r

R

simultaneous sequential(a) (b)

Figure 2. Primary allocation to males (r, solid line) and allocation of workers (z, small dashed line) and adult sex ratio (R, big
dashed line). (a) Results of model 1 and (b) those of model 2. Results of the negotiation game (model 3) are intermediate.
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variables, x, y and z (table 1) and, through Ê, the

population-wide values of these variables, x̂; ŷ and ẑ.

Note that the inclusive fitness expressions do not

contain terms that correspond to colony survival. Our

models therefore apply to annual colonies, but also to

perennial colonies as long as x, y and z do not affect colony

survival. The latter assumption may sometimes be

questionable, but we keep it for the sake of simplicity

and because we see no reason why our main qualitative

results would be changed by this complication.
(d) Information flow

We consider three models which embody different

opportunities for the two parties to receive and respond

to information about the other.

Model 1 Simultaneous moves. There is no chance for

either party to get advance information about the other’s

moves.

Model 2 Sequential moves. The queen acts first; the

workers can observe the queen’s strategy and respond.

Model 3 Negotiation. The queen and workers negotiate

with a sequence of offers and responses converging to a

final strategy pair (McNamara et al. 1999; Taylor and Day

2004).

Mathematically, in model 1, we assume that each party

acts to maximize its inclusive fitness given that the other

acts according to the population. The conflict is resolved

at Nash equilibrium for the game. All previous shared-

control models of the worker–queen conflict are of this

type (e.g. Bulmer 1981; Bulmer & Taylor 1981; Matessi &

Eshel 1992; Reuter & Keller 2001). In model 2, the

workers act to maximize their inclusive fitness given the

behavior of the queen, and the queen acts to maximize her

inclusive fitness given that the worker will respond

optimally to her decisions. The conflict arrives at what is

called a Stackelberg equilibrium (e.g. Fudenberg & Tirole

1991; Abe et al. 2003). In model 3, each party chooses, not

its allocation strategy but its negotiation strategy, and as in

model 1, each party acts to maximize its inclusive fitness

given that the other acts according to the population. Here

we arrive at a Nash equilibrium in the negotiation strategy

variables.
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(e) Equilibria and their stability

In each model, the three equilibrium conditions are

obtained by setting to zero the partial derivatives of

each actor’s inclusive fitness with respect to her variables

of control. The resulting equations can be found in

Appendix A. The evolutionary and convergence stability

of equilibria has been checked according to the criteria in

Appendix B.We present results for models 1 and 2 only, as

the results of model 3 were always intermediate.
3. RESULTS
The main results are shown in figure 2 for a range of

k-values. Sex ratio theory concerns the allocation of

reproductive resources between the raising of male and

female offspring. Since in our model, there are different

types of allocation decisions made, there are different

possible measures of sex ratio one might use. First of all

there is the primary sex ratio r among the reproductive

eggs, determined by the joint decisions of queen and

workers. Second there is the proportion z of worker

resources allocated to the raising of males and females,

and third there is the resulting secondary ratio R among

the reproductive adults. The latter is always intermediate

between the first two, as the shift from the first (r) to the

third (R) is produced by the relative bias in z.

In model 1 (simultaneous action) all sex ratios are

female-biased and somewhere in the middle between the

classic queen optimum of 50% male and the classic

worker optimum of 25% male. The adult ratios are

slightly more female-biased than the primary ratios, and

this reflects the efforts of the workers to invest relatively

more in females than would be the preference of the

queen.

The striking thing about model 2 (sequential action) is

that there are many more males than in model 1, and

indeed the primary ratio r is often male-biased. In terms of

figure 2, the curves in figure 2b are higher than the curves

in figure 2a. For small k both the primary and the

secondary sex ratios approach the classic queen optimum

of 50% male. These calculations are supported by

individual-based simulations in which we assume that

the worker response functions ~yðxÞ and ~zðxÞ are linear

functions of the queen’s proportion of haploid eggs x.
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Colony output, as measured by the number of

emerging adult females is substantially higher for model

1 than model 2. The colony pays a cost for the information

flow from queen to worker. The cause of this lower

efficiency is the greater difference between the queen’s

allocation strategy r and the worker’s allocation strategy z.

This can be seen in the greater spread between the two

curves in the right panel of figure 2 than in the left panel.

This greater spread causes a greater difference between u1
and u2 and thus (since the s-graph is concave down) lower

average survival.
4. DISCUSSION
In terms of the classic sex ratio conflict between queen

and worker, which has the queen favouring a 1 : 1 male :

female ratio while the workers favour 1 : 3, model 1

predicts sex ratios close to the halfway point between the

two parties’ optima, so there is no clear ‘winner’ of the

conflict. Earlier theoretical studies that, like our model 1,

assume that workers do not take the queens’ actions into

account, usually reach the same conclusion. Bulmer &

Taylor (1981) conclude that the queen may have

considerable control over the investment ratio, but that

the realistic possibility of variable investment in a new

queen by the workers (comparable to our z) gives back

much of that control to the workers. The analysis of

Matessi & Eshel (1992) also shows that when conflict

between queen and workers exist, ESSs are intermediate

between 1 : 1 and 1 : 3. Reuter & Keller (2001) examine

a model somewhat similar to our model 1. In their

‘mixed control’ model, the queen determines the

proportion x of eggs that are male and the workers, not

knowing the queen’s decisions, determine the proportion

y of diploid eggs that become workers. Their model stops

there and assumes that the workers allocate equal

resources per egg to males and gynes. In our models,

we give the workers a chance to bias this allocation

through determination of z. The model of Reuter &

Keller (2001) also yields ratios between the classic queen

and worker optima, but because their workers allocate

equally to male and female eggs, allocation is less female-

biased than in our model 1.

The unexpected outcome is that model 2 appears to be

‘won’ by the queen, even though the workers are the party

with increased information and the ability to act upon

that information. This result is at first counter-intuitive,

as one might think that the information gained by the

workers would give them more control, and that this

should result in a greater female bias than in model 1. The

key to understanding this result is to realize that natural

selection acts on the queen’s decision as if the queen

knows that the workers will respond optimally, thus

placing her in some sense in the driver’s seat in being able

to make the first move. This general phenomenon has

been studied for some time in the game theory literature.

Maynard Smith (1982) devotes a chapter to ‘honesty,

bargaining and commitment,’ and gives a number of

examples of simple games in which the player who is

permitted to declare first his strategy can improve his

payoff and reduce that of his opponent. Other examples

show that the possibility of back-and-forth bargaining can

lead to more cooperative outcomes (Taylor & Day 2004).

In a standard economics text, Fudenberg & Tirole (1991)
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comment that ‘By committing himself to a given sequence

of actions a player may be able to alter the play of his

opponents.’ They call this effect ‘paradoxical’ and observe

more generally that ‘A player can gain by reducing his

action set or decreasing his payoff to some outcomes,

provided his opponents are aware of the change.’

Elsewhere we study this phenomenon more generally in

the context of models of conflict and cooperation in

biology and derive conditions under which the party that

makes the first move gains a certain advantage over the

party with the second move (P. D. Taylor and I. Pen,

personal observation). The argument of Trivers & Hare

(1976) that workers should win the conflict because they

have the ‘last say’ does not always work.

If this is paradoxical, then a similar paradox is found

in a sex ratio model of Eshel & Sansone (1994) in which

there is parent–offspring conflict over the sex ratio. If

males are more costly than females, then the parent

wants a more female-biased sex ratio than do the

offspring. Suppose the offspring have control of their

own sex, but the parent can manipulate the overall ratio

by transforming males to females with success that

depends on how receptive the individual is. Then the

more information the parent has on the receptivity of

different males to sex-change, the less control of the sex

ratio she apparently gets. It turns out that an increase in

parental discrimination causes an evolutionary decrease

in receptivity, thus decreasing the manipulative ability of

the parent.

A sex-ratio model in which this paradox does not occur

is found in Pen &Weissing (2002). This study looks at the

conflict between mother and father when male offspring

have a different cost than female and where the father

determines the sex ratio (say proportion sons r) and the

mother the number n of eggs. The mother’s investments

per son and daughter are fixed at Em and Ef and her

survival depends negatively on her total investment

ETZn(rEmC(1Kr)E f). The father favours rZ1/2 whereas

the mother favours equal allocation, rEmZ(1Kr)Ef. If the

mother cannot observe the r produced by the father, we

get the father’s optimum rZ1/2, but if she can we get the

mother’s optimum of equal allocation.

Is our model 2 capable of explaining the cases where

sex ratios close to the queen’s optimum have been found

(Mehdiabadi et al. 2003)? So far, very few species have

been studied in sufficient detail to verify the assumptions

of our models. However, there is one species of ant, Lasius

niger, whose sex allocation and potential control mechan-

isms have received considerable study. This species seems

to fit the assumptions of our model 2 quite closely. There

is clear evidence that the workers of L. niger can detect the

sex of individual eggs ( Jemielity & Keller 2003): only

either male or female larvae are placed in the uppermost

chambers of the nest. It is therefore conceivable that

workers could adjust their behavior (our variables y and z)

to the fraction of haploid eggs (our variable x). Indeed,

spatial segregation of the sexes seems a very effective way

for workers to adjust how much they feed to each sex (our

variable z). In agreement with the predictions of model 2,

it has been found that L. niger has sex ratios very close to

the ‘queen’s optimum’ (Fjerdingstad et al. 2002), and that

this relatively high proportion of males cannot be

attributed to worker reproduction. What is unknown is

whether L. niger workers have the crucial mechanism that
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is needed to make model 2 work: observing the queen’s

strategy and using this information to adjust their own

decisions. It might be interesting to experimentally alter

the number of haploid eggs in the nest and to observe

whether this changes the workers’ allocation decisions in

the expected direction.

In our models we assumed that workers are in control

of y, the fraction of diploid eggs that become workers. So

far little is known about which party tends to be in control

of y (Reuter & Keller 2001), but in the ant Lepthotorax

acervorum it appears that workers can selectively bias the

final caste of developing females (Hammond et al. 2001).

Just to compare, we have examined the case in which the

queen has control of both x and y and the workers can

only determine z. This seems to make little difference in

the outcome. All sex-ratio measures are close to their

values in figure 2, (within 5% in model 1, and within 2%

in model 2).

One might object to our models in that workers do not

have the option of killing males as a means to achieve a

more female-biased allocation. However, we did allow for

this possibility but saw that there are no stable equilibria

where workers kill a certain fraction of the males. The

reason is that the queen could then increase her fitness by

laying fewer haploid eggs and more diploid eggs. Of

course, male-killing does occur sometimes (Sundström

et al. 1996; Chapuisat et al. 1997; Foster & Ratnieks

2000), raising the question under what conditions (that

are apparently not in our models) such behavior might be

stable after all. An interesting possibility is that workers

consuming haploid eggs actually gain some benefit from

them, something, which we did not allow for. This has in

fact been reported (Foster & Ratnieks 2001, and

references therein).

We thank L. Keller and three anonymous reviewers for very
useful comments on a previous draft, and we are grateful to
O. Leimar for bringing the Fudenberg & Tirole reference to
our attention.
APPENDIX A: EQUILIBRIUM CONDITIONS
In each model, the equilibrium equations are obtained by

setting to zero the partial derivatives of each actor’s

inclusive fitness with respect to the variables of control.

The queen has control variable x and the workers have the

control vector yZ( y,z)T. For each equilibrium condition

the variables x and y are to be evaluated at the population

values x̂ and ŷ. We use subscripted variables to denote

derivatives with respect to those variables (using the same

notiation for partial derivatives, gradient vectors and

Hessian matrices).

Model 1. Simultaneous moves. The equilibrium con-

ditions are

Qx Z0; ðA 1Þ

Wy Z 0: ðA 2Þ

Model 2. Sequential moves. The worker equations are

the same as model 1, but in the queen’s conditions

allowance has to be made for the response of the workers.

In formulating these, we suppose that the workers are able

to respond optimally (to maximize W ). We define the

function

~Qðx; x̂ÞZQðx; ~yðxÞ; x̂; ~yðx̂ÞÞ; ðA 3Þ
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where ~yðxÞ is the workers’ response to an x-decision from

the queen. Then the equilibrium conditions are

~Qx Z 0; ðA 4Þ

Wy Z 0: ðA 5Þ

Equation (A 5) defines implicitly the response function

~yðxÞ. The derivative ~yx is the rate of response of the

workers to x-changes by the queen and it is obtained by

differentiating (A 5) with respect to x and solving for ~yx:

~yx ZKðWyyÞ
K1Wxy: ðA 6Þ
APPENDIX B: STABILITY OF EQUILIBRIA
(a) Evolutionary stability

For models 1 and 2 we have verified numerically that the

following 3!3 matrix is a stability matrix (i.e. all

eigenvalues have negative real part), evaluated in equili-

brium:

Qxx QT
yx

Wxy Wyy

" #
: ðB 1Þ

For model 2, Q is replaced by ~Q and its second derivatives

are given by

~Qxx ZQxx C2QT
xy ~yC ~yT

x Qyy ~yx CQT
y ~yxx; ðB 2Þ

~Qyx ZQyx CQyy ~yx: ðB 3Þ

The ~yxx in (B 2) is obtained by differentiating (A 5) twice

with respect to x and solving:

~yxx ZKðWyyÞ
K1ðWxxy C2Wxyy ~yxÞ: ðB 4Þ

(b) Convergence stability

For both models we have checked numerically that the

standard evolutionary dynamic (Abrams et al. 1993;

Dieckmann & Law 1996; Geritz et al. 1998; Hofbauer &

Sigmund 1998) is stable, assuming no genetic correlation

among the three variables. For example, for model 2, at

population mean values x̂ and ŷZ ð ŷ; ẑÞ, the dynamic

equations for the population means are:

dx̂

dt
Z ~Qxjðx;yÞZðx̂;ŷÞ; ðB 5Þ

dŷ

dt
ZWyjðx;yÞZðx̂;ŷÞ: ðB 6Þ

From (A 4) and (A 5), an equilibrium point is a stationary

point of this system. Such a point is stable if the 3!3

matrix

v

vx̂

dx̂

dt

v

vŷ

dx̂

dt

0
@

1
AT

v

vx̂

dŷ

dt

v

vŷ

dŷ

dt

2
666664

3
777775; ðB 7Þ

is a stability matrix at that point. For model 1 we replace ~Q
in (B 5) with Q.
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