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49 Stability in negotiation games and the emergence
50 of cooperation†

51 Peter D. Taylor* and Troy Day
52 Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

53 Consider a two-player game in which each player contributes a costly resource to the common good of
54 the pair. For such contests, the Nash equilibrium contribution, x∗, is one for which neither player can
55 increase its pay-off by unilaterally altering its contribution from x∗. We study an elaboration of this game,
56 which allows the players to exchange x-offers back and forth in a negotiation phase until they converge
57 to a final pair of contributions, x̂1 and x̂2. A significant feature of such negotiation games, hitherto unrecog-
58 nized, is the existence of a set of neutrally stable equilibrium points in negotiation phase space. To explore
59 the long-term evolutionary outcome of such games, we simulate populations containing various mixtures
60 of negotiation strategies and, contrary to previous results, we often find convergence to a contribution
61 that is more cooperative than the Nash equilibrium. Mathematical analysis suggests why this might be
62 happening, and provides a novel and robust explanation for cooperation, that negotiation can facilitate
63 the evolution of cooperative behaviour.

64 Keywords: cooperation; negotiation strategy; evolutionary stability
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67 1. INTRODUCTION

68 The development of a theory to explain the evolution of
69 cooperative behaviour between unrelated individuals has
70 proved to be a demanding task. What is needed is a mech-
71 anism through which cooperative individuals can bestow
72 the benefits of altruism on one another without being
73 taken advantage of by selfish individuals. One early idea
74 (Wilson 1975) is that this might occur when the effects of
75 altruism itself tend to group altruistic individuals together
76 more often than might occur by chance. Another idea
77 (Axelrod & Hamilton 1981) hinges on reciprocity: individ-
78 uals cooperate if there is some chance of meeting again in
79 the future, to repay the good deeds and punish the bad.
80 More recent developments have focused on the evolution
81 of cooperation through indirect reciprocity via mech-
82 anisms such as reputation and image scoring (Nowak &
83 Sigmund 1998; Lotem et al. 1999; Riolo et al. 2001; Mil-
84 inski et al. 2002).
85 One feature common to all the above approaches is an
86 assumption that an individual’s action during an encoun-
87 ter is fixed and irreversible once chosen. Cooperative
88 behaviour is very often observed during relatively pro-
89 longed and complex interactions, however, and therefore
90 it is perhaps more reasonable to assume that some form
91 of ‘negotiation’ between individuals takes place before the
92 fitness-determining actions of each player are settled
93 upon. During the negotiation, each individual observes its
94 opponent and alters its own actions accordingly.
95 Focusing on the evolution of the negotiation strategy
96 itself rather than the evolution of the action settled upon
97 by an individual opens the door to the possibility of a
98 natural mechanism for the evolution of cooperation. In
99 this context, any player’s final action will depend on how
100 its negotiation strategy interacts with that of its opponent.
101 Perhaps natural selection can drive the evolution of1
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102negotiation strategies to a point where most individuals
103tend to negotiate cooperative outcomes with one another,
104but where such strategies nevertheless cannot be taken
105advantage of because they negotiate more guarded out-
106comes when interacting with individuals attempting to
107exploit them.

1082. ANALYSIS

109Analysing such games requires a fundamental change in
110the game-theoretic paradigm currently used in evolution-
111ary biology (McNamara et al. 1999). In particular, an indi-
112vidual’s negotiation strategy can be viewed as a reaction
113normal for its behaviour as a function of its opponent’s
114behaviour (Agrawal 2001). One then focuses on charac-
115terizing the evolutionary stability of behavioural reaction
116normals rather than the behaviours themselves. The
117observed behaviours are then an outcome of the interac-
118tion of evolutionarily stable behavioural reaction normals.
119Here, we investigate a simple approach for modelling such
120negotiation games and use it to provide a novel expla-
121nation for the emergence of cooperative behaviour. Our
122approach also reveals a fundamental feature of such
123games: the existence of a curve of neutral stability.
124Suppose that each player contributes a costly resource
125to the common good of the pair. If player i contributes xi,
126the fitness of player i will be

127Fi(x1, x2) = Bi(x1 � x2) � Ki(xi), (2.1) 128

129where the benefits Bi(z) are assumed to depend on the
130total contribution z = x1 � x2 and Ki(xi) is the cost to
131player i of contributing xi. We assume that benefit
132increases with total contribution with diminishing returns,
133and that costs increase with contribution in an accelerat-
134ing manner. For the game without negotiation (Houston &
135Davies 1985), the Nash equilibria are determined by the
136two conditions

137∂Fi/∂xi = 0 (i = 1, 2). (2.2) 138
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466 Figure 1. The negotiation process is illustrated for players
467 with linear response rules (player 1, x1, has �1 = 2/3 and
468 �1 = 0.4 and player 2, x2, has �2 = 1/2 and �2 = 0.3 in
469 equation (2.1)). Note that the x2-response line uses the x1-
470 axis as the abscissa, and it projects any x1 offer onto the x2-
471 axis. Similarly, the x1-response line uses the x2-axis as the
472 abscissa, and projects any x2 offer onto the x1-axis. In the
473 negotiation illustrated, x1 begins, and its successive offers are
474 given by successive vertical lines moving from left to right.
475 The responses by x2 are given by successive horizontal lines
476 moving from top to bottom. The final contributions are at
477 the intersection of the response lines, at x̂1 = 0.3 and
478 x̂2 = 0.15.

139 To incorporate negotiation, we employ response rules
140 (McNamara et al. 1999). In our context, player i’s
141 response rule ri(x) specifies its resource ‘offer’, given that
142 its opponent has offered resource level x (i.e. ri(x) is its
143 behavioural reaction normal). The negotiation phase
144 involves an iteration of back-and-forth responses between
145 the two players (each using their fixed response rule) and
146 the equilibrium values of x are obtained for both players
147 where the two response rules intersect (figure 1). Instead
148 of seeking the Nash equilibrium level of resources offered
149 (i.e. x), we now seek the Nash equilibrium response rules,
150 ri(x) (i.e. the Nash equilibrium behavioural reaction
151 normals). Using a local analysis at a fixed equilibrium,
152 McNamara et al. (1999) argue that no player can do better
153 than to use a linear response rule of the form

154 ri(x) = �i � �i x, (2.3)155

156 where the responsiveness �i measures the degree to which
157 an individual responds to a change in x from its partner.
158 In this version, a player’s strategy is determined by the
159 pair (�, �). If player i plays (�i, �i), its fitness is

160 Wi(�1, �1, �2, �2) = Fi(x̂1, x̂2), (2.4)161

162 where x̂1 and x̂2 are the limit points of the recursive equa-
163 tions

164 x1 = �1 � �1x2,165

166

167 x2 = �2 � �2x1, (2.5)168

169 and this gives us

170 x̂1 =
�1 � �2�1

1 � �1�2
and x̂2 =

�2 � �1�2

1 � �1�2
, (2.6)

171
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484Figure 2. The (�, �) equilibrium curve for the functions
485B(z) = z/z � 1 and K (x) = x2. This curve has general
486equation F1 � �F2 = 0 which in this case becomes
487(1 � �)(1 � �)3 = 2�(2� � 1��)2. The neutral line is drawn
488for the point �∗ = 0.5, �∗ = 0.223. Note that the Nash
489equilibrium for the game without negotiation (Houston &
490Davies 1985) is the value of x∗ at which the F-level curve
491crosses the diagonal with slope zero, and therefore it
492corresponds to the � = 0 point of the equilibrium curve
493(where it crosses the �-axis). This value of x is signalled by a
494horizontal line in figure 3.

172provided |�i| � 1 for i = 1, 2 (an assumption we now
173make).
174In (�, �) phase space, the Nash conditions for player
175i are

176
∂Wi

∂�i
=

1
1 � �1�2

�∂Fi

∂xi
� � j

∂Fi

∂x j
� = 0,

177

178

179
∂Wi

∂�i
=

�x̂ j

1 � �1�2
�∂Fi

∂xi
� � j

∂Fi

∂x j
� = 0, (2.7)

180

181where j�i and the partial derivatives of the Fi are evaluated
182at (x̂1, x̂2). We see that these two conditions both yield the
183same equation:

184
∂Fi

∂xi
� � j∗

∂Fi

∂x j |
x = x̂∗

= 0 (i = 1, 2, j � i), (2.8)
185

186and thus the equilibrium conditions for both players give
187us two equations in (�1, �1, �2, �2) and this specifies a two-
188dimensional equilibrium surface in four-space. To sim-
189plify matters here we will ignore any differences between
190the two players in features such as their inherent quality
191(see, for example, McNamara et al. 1999) and restrict
192attention to a symmetric version of the game. In this case
193we have only one function F(x1, x2) = B(x1 � x2) �
194K(x1), and we let W(�̃, �̃, �, �) = F(x̂1, x̂2) be the fitness
195of a (�̃, �̃) mutant in a (�, �) population. The Nash con-
196ditions (equation (2.8)) give us one equation in (�, �) and
197this specifies an equilibrium curve in the (�, �) plane. An
198example of such a curve is shown in figure 2. One can
199show (Appendix A) that the curve is neutrally stable in
200the sense that in a resident population at a point on the
201curve, no mutant strategy has greater than resident fitness,
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501 Figure 3. Change over time from simulation studies of the negotiation game under the joint forces of selection and mutation,
502 starting with a uniform distribution in a rectangular region of (�, �) strategy space. The population distribution of
503 contributions x is plotted against log time (generations). (a) With the benefit and cost functions used for the graphs of this
504 paper (figure 2 caption). (b) As in (a) except with linear benefit B(z) = 2z. The Nash equilibrium contribution for the game
505 without negotiation (equation (2.2)) is shown as a horizontal line. We see convergence to a more cooperative contribution, the
506 effect being more striking in (b). (c) The population of (a) recorded in (�, �) space under the joint forces of selection and
507 mutation. The region �1 � � � 1, 0 � � � 0.6 is partitioned as a 30 × 40 grid. The population size is 45 000 individuals.
508 Each generation, each individual has one random encounter and mutates with probability 0.005. The mutation range is
509 �� = 0.01, �� = 0.025.

202 though there are mutant strategies that have resident fit-
203 ness (see below).
204 McNamara et al. (1999) did not formulate the Nash
205 conditions (equation (2.7)) in (�, �) space and they there-
206 fore overlooked this key observation. As a result, their con-
207 clusion, that there exists a single evolutionarily stable
208 strategy (ESS) at which the level of care is lower than that
209 of non-negotiated outcomes, is incorrect. Rather, there is
210 a continuum of outcomes that are all ESSs, spanning a
211 range of levels of care that goes both lower and higher
212 than the level found in the non-negotiated outcome. The
213 above results illustrate that the existence of an equilibrium
214 surface (or curve in the case that the game is symmetric)
215 might be quite a general property of negotiation games.
216 It is useful to note that in a pure (�, �) population the
217 common contribution x̂ = �/1 � � is the slope of the line
218 (figure 2) drawn from (–1, 0) to the point (�, �). It follows
219 from this interpretation of x̂ that points on the left side of
220 the equilibrium curve are more cooperative than points on
221 the right. Interestingly, although the above results demon-
222 strate that all points on the equilibrium curve are weakly
223 evolutionarily stable, the dynamics of evolutionary change
224 actually tend to produce a relatively cooperative outcome,
225 as we detail next.
1
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2263. THE EMERGENCE OF COOPERATION

227We ran simulations of this game with individual vari-
228ation in the response rule, and with an individual’s repro-
229ductive success (and thus the representation of its
230response rule in the next generation) given by equation
231(2.1). Using two different benefit functions, our results
232reveal the evolution of negotiation rules that yield cooper-
233ative behaviour (figure 3).
234A mathematical analysis of the negotiation game helps
235to expose the mechanism through which this occurs
236(Appendix A). In a resident population playing any one
237of the Nash equilibrium rules, there is a line of ‘mutant’
238response rules that, when played against the resident or
239against one another, yield the same negotiated outcome as
240the residents, and therefore have resident fitness (figures 2
241and 4). Thus, none of the Nash equilibrium response rules
242is evolutionarily stable in the strict sense (Hofbauer & Sig-
243mund 1998). Crucially, however, the neutral mutant reac-
244tion normals will produce a different negotiated outcome
245than the resident reaction normal when played against
246something other than the resident. To see this, take figure
2475 and move the blue resident line and observe the change
248in its intersection with the dashed red mutant line. This
249exemplifies a key feature of the model; it provides a natu-
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515 Figure 4. (a) Some level curves of W. At points on the
516 diagonal x1 = x2 = x between x = 0 and x = xmax these curves
517 have slope between –1 and 1. (b) The (x1, x2) configuration
518 at the equilibrium point �∗ = 0.5, �∗ = 0.223 depicted in
519 figure 2. The response lines for players 1 (red) and 2 (blue)
520 both intersect the diagonal at x̂∗ = 0.1486 and the level curve
521 for the fitness F(x1, x2) is drawn through that point. The
522 response line for player 2 is tangent to that curve, indicating
523 that player 1 cannot increase its fitness by moving its
524 response line (red) to another location. The negotiated
525 contributions are determined at the intersections of the red
526 and blue lines.

250 ral mechanism through which an individual can ‘recog-
251 nize’ different types of opponents and the negotiated
252 outcome can differ depending upon the type of
253 opponent encountered.
254 Although the mathematical analysis demonstrates an
255 infinite number of Nash equilibrium negotiation stra-
256 tegies, our simulations demonstrate some form of direc-
257 tionality to evolutionary change towards a band of
258 strategies on the left side of the equilibrium curve that
259 result in cooperative behaviour. This can be investigated
260 analytically by using standard techniques for modelling
261 the evolutionary dynamics of �∗ and �∗ (Appendix B). For
262 tractability, these techniques typically assume that there is
263 very little genetic variation in the population at any given
264 time. The results of Appendix B show that points on the
265 equilibrium curve are neutrally (and thus not strictly) con-
1
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532Figure 5. Any response line for player 1 (dashed) which
533intersects the diagonal at x̂∗ will have resident fitness. These
534are the response lines that correspond to the neutral line in
535figure 2.

266vergence stable��1�� (Eshel 1983; Christiansen 1991).
267However, this analysis fails to reveal any source of direc-
268tionality to the evolutionary dynamics.
269The above game-theoretic analyses follow standard
270techniques by examining a two-strategy population with
271an equilibrium resident strategy (�∗, �∗) of frequency 1–p
272and a mutant strategy (�, �) of frequency p and random
273interactions. One then calculates the fitness difference:
274	W = W(mutant) � W(resident) in the limit where p = 0.
275The fact that this approach reveals a line of neutral (	
276W = 0) mutant negotiation strategies, with all other
277mutant strategies having 	W � 0, suggests an examin-
278ation of the case where p is positive. In this case it can be
279shown that there is always a region adjacent to the neutral
280mutant line in which 	W 
 0 (figure 6) and the mutant
281can invade.
282This finding provides the key to understanding the evol-
283ution of negotiation strategies that result in cooperative
284behaviour. In the presence of variation, there are mutants
285that tend to produce cooperative outcomes (and thus have
286higher fitness) when played against themselves (or similar
287negotiation strategies) but that produce an outcome, and
288thus fitness, roughly equivalent to that of the resident
289when played against the resident. Therefore, in the pres-
290ence of variation, these mutants gain the benefits of
291cooperation without paying much of a cost when inter-
292acting with less cooperative negotiation strategies (figure
2936, region A).
294Interestingly, there are also mutants that can invade at
295a positive frequency that produces more selfish outcomes
296when played against themselves (or similar negotiation
297strategies; figure 6, region B). Analysis (P. D. Taylor and
298T. Day, unpublished results) reveals that these invade
299through a fundamentally different mechanism than the
300mutants mentioned above. Instead of gaining benefits
301when interacting among themselves and having approxi-
302mately resident fitness when interacting with a resident (as
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541 Figure 6. Curves of constant mutant fitness in a population
542 with resident strategy �∗ = 0.5, �∗ = 0.223 at frequency
543 p = 0.8 and mutant strategy (�, �) at frequency p = 0.2. The
544 level curve 	W = 0��4�� (red) consists of the neutral line
545 and a curve that starts at (–1, 0) on the left, rises above the
546 equilibrium curve, and then crosses it twice, the second time
547 at the equilibrium point (�∗, �∗). The region between this
548 curve and the neutral line is the region of positive 	W
549 ��4�� and consists of the two regions marked A and B. The
550 blue contours 	W = 0.005��4�� (outer) and 	W = 0.01
551 (inner) are also included.

303 above), these ‘selfish’ negotiation strategies have reduced
304 fitness when interacting with themselves (because they are
305 less cooperative) but they cause the resident negotiation
306 strategy to have even lower fitness when the two interact.
307 These mutants thereby gain their evolutionary advantage
308 through a form of spite, by hurting themselves but hurting
309 the resident type even more.
310 Overall, those negotiation strategies yielding a more
311 cooperative outcome tend to prevail over the strategies
312 yielding a more selfish outcome (figure 2). This is presum-
313 ably because the rare cooperative negotiators gain their
314 evolutionary advantage by helping themselves relative to
315 the residents, whereas the rare selfish negotiators gain
316 their evolutionary advantage by hurting the resident rela-
317 tive to themselves. Thus, the rare cooperative negotiators
318 have little effect on the selfish negotiators’ fitness, but the
319 selfish negotiators inadvertently further enhance the fit-
320 ness advantage of the cooperative negotiators by depress-
321 ing resident fitness.
322 In a sense these results bring us full circle, back to the
323 ideas of reciprocity, but at a different and potentially more
324 powerful level for explaining the emergence of cooperative
325 behaviour. Previous results on the evolution of
326 cooperation through reciprocity have revealed that stra-
327 tegies such as tit-for-tat are evolutionarily successful
328 because they are nice (by cooperating on first encounters),
329 they are retaliatory (by being selfish if they re-encounter
330 an opponent who was selfish in the past) and they are
331 forgiving (by returning to cooperative behaviour if pre-
332 viously selfish opponents become cooperative (Wilson
1
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3331975)). In these previous results, these strategies play out
334over several successive meetings of opponents, where each
335meeting produces a fitness outcome. In negotiation
336games, a similar process occurs. The evolutionarily stable
337behavioural reaction normal for such games is somewhat
338analogous to the tit-for-tat strategy from previous theory
339in that it produces a cooperative outcome when inter-
340acting with similar individuals, but it becomes less cooper-
341ative if its opponent does so. All of this happens within
342the context of a single meeting, however, and therefore it
343potentially provides a robust explanation for cooperative
344behaviour that requires few assumptions. Under this
345hypothesis for the evolution of cooperation, we expect a
346positive relationship between the level of cooperative
347behaviour observed between individuals, and the scope
348that exists for negotiation between them prior to their fit-
349ness outcomes being realized.
350

351This project was supported by the Natural Sciences and Engin-
352eering Research Council of Canada. Technical work, the art-
353work and the execution of the simulations, were performed by
354Daniel Nagy. Ido Pen provided several valuable comments and
355verified the simulations.

356APPENDIX A: ANALYSIS OF THE GAME

357Consider the family of level curves of F which have a
358slope between –1 and 1 where they cross the diagonal at
359(x∗, x∗) (figure 4a). Take any one of these and let the
360tangent at (x∗, x∗) have slope –�∗ and x2-intercept �∗ fit-
361ness (figure 4b). Because the level curve of F is concave-
362up (this follows from the assumptions that B� 
 0, B� �
3630, K� 
 0, K � 
 0) no rare mutant strategy in a (�∗, �∗)
364population can have greater than normal fitness. This pro-
365vides an infinite curve of negotiation strategies that are
366Nash equilibria: this is a type of population-wide neu-
367trality. In figure 2, this curve is displayed in (�, �) space.
368In the original game of Houston & Davies (1985) without
369negotiation the ESS contribution x∗ corresponds to the
370point at which the level curve of F crosses the diagonal
371horizontally (figure 4a). This corresponds to the point at
372which the equilibrium curve of figure 2 crosses the verti-
373cal axis.
374There is also a type of mutant neutrality that occurs at
375any of the above-mentioned Nash equilibrium negotiation
376strategies. Specifically, at any such strategy there are
377mutant strategies having fitness identical to the resident
378fitness. These have a response rule passing through (x∗,
379x∗) (figure 5). In figure 2, this set of strategies appears as
380a line in (�, �) space. Indeed, all points on this line have
381the same value of �/(1 � �) and if any two such points are
382put into the x̂-equation (2.6) they yield
383x̂1 = x̂2 = x∗ = �∗/1 � �∗.

384APPENDIX B

385If the strategy mix in the population is closely concen-
386trated about its mean value (�̄, �̄), then the fitness of a (�,
387�) individual can be reasonably approximated by
388W(�, �, �̄, �̄) and the direction and speed of evolutionary
389change of the population mean is modelled with the stan-
390dard evolutionary dynamic (Abrams et al. 1993; Dieck-
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391 mann & Law 1996; Geritz et al. 1998; Hofbauer &
392 Sigmund 1998):

393
d�̄

dt
= k

∂W
∂� |� = �̄

� = �̄

= �k
�̄

1 � �̄

F1 � �̄F2

1 � �̄2 ,

394

395

396
d�̄

dt
= k

∂W
∂� |� = �̄

� = �̄

= k
F1 � �̄F2

1 � �̄2 ,

397

398 where Fi is the partial derivative of F with respect to xi

399 evaluated at x1 = x2 = �̄/1 � �̄.
400 This dynamic has a simple geometric interpretation
401 (figure 7). Because the line through (–1, 0) and (�̄, �̄) has
402 slope �̄/1 � �̄, the vector field of the dynamic is orthogonal
403 to this line at any (�̄, �̄) and is directed up when below
404 the equilibrium curve (F1 
 �̄F2), down when above the
405 equilibrium curve (F1 � �̄F2) and is zero on the equilib-
406 rium curve (F1 = �̄F2). In particular, the equilibrium curve
407 is exactly the set of equilibrium points of the dynamic.
408 Not surprisingly, the system is neutrally stable at each
409 such point. [An equilibrium point of the dynamical system

1
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410is stable if the matrix A = ��̇� �̇�

�̇� �̇�

�� = �̄

� = �̄

is a stability matrix,

411where the dot denotes the time derivative and the
412subscripts denote partial differentiation. This will be the
413case if trace(A) � 0 and det(A) 
 0. A straightforward cal-
414culation shows that the first holds but that det(A) = 0.]
415It is clear from figure 7 that the dynamic points in
416opposite directions on either side of the equilibrium curve,
417and thus it is not clear in which direction the combined
418effects of local mutation and selection might cause the
419strategy mix to move.
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