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The evolution of dispersal in spatially
varying environments
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ABSTRACT

We consider the evolution of dispersal in an environment that varies spatially but that is con-
stant in time. We allow an age structure with dispersal possible in all life-stages. We suppose that
demes are large enough that kin effects can be ignored. It has previously been shown that cost-
free dispersal can persist over evolutionary time. However, several studies have shown that
costly dispersal must in general be selected against. Here, we establish a fundamental result
about stage-structured populations with stage-specific dispersal rates — that is, at evolutionary
equilibrium, over each time step, the total reproductive value of the emigrants leaving each
deme must equal the total reproductive value of the immigrants entering that deme. A simple
consequence of this principle is that, if migration is restricted to a single stage — the same stage
for all demes — then costly dispersal cannot evolve. Another corollary is that, with a ‘sequential’
age structure, over a complete life-cycle, the proportionate flow of genes out of a deme must
equal the flow in. Finally, we present an example to show that dispersal may be evolutionarily
stable, even when costly, if individuals can disperse more than once during their life-cycle.
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INTRODUCTION

Why disperse when dispersal is costly? This question has been asked many times and the
discussion has centred around three main factors that may promote costly dispersal. The
first of these requires kin effects: the cost to the disperser is offset by the increase in fitness,
due to reduced competition, of relatives who are left behind (Hamilton and May, 1977,
Motro, 1982, 1991; Frank, 1986; Taylor, 1988; Morris et al., 2001). The second relies on
environmental variation in both time and space (e.g. Levin and Paine, 1974; McPeek and
Holt, 1992; Olivieri et al., 1995). For example, stochastic variation in the carrying capacities
of populations can result in selection for dispersal. Individuals are better off in populations
with positive growth rates and should disperse from populations with negative growth
rates. The third factor is environmental variation in space only, which appears more
problematical. If the environment is constant over time, and if populations are large enough
that kin effects can be ignored, can spatial heterogeneity support an evolutionarily stable
dispersal pattern? This is the question we address here.
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Consider an assemblage of finite demes in a spatially variable but temporally constant
terrain so that the conditions for survival or reproduction might be different from deme to
deme but are constant in time. In each deme, consider a stage-structured population with
the possibility of stage-specific dispersal. We will show that at evolutionary equilibrium
rates of dispersal, the total reproductive value of the emigrants leaving each deme during
each time step, must equal the total reproductive value of the immigrants entering that
deme.

A simple corollary of this principle is that, if migration is restricted to a single stage — the
same stage for all demes — then the number of emigrants who leave each deme must be equal
to the number of immigrants who arrive. It follows from this that, by setting the sum of all
the emigrants equal to the sum of all the immigrants, there can be no cost to dispersal. Thus
a single bout of costly dispersal cannot be maintained at evolutionary equilibrium by
spatial variation. Versions of this result have been obtained, for example, by Karlin and
McGregor (1974), Hastings (1983), Holt (1985) and Lemel et al. (1997). McPeek and Holt
(1992) looked at cost-free dispersal with a logistic model of population growth, and two
habitats at carrying capacity. They obtained the result that, at evolutionary equilibrium, the
number of immigrants into each habitat must equal the number of emigrants who leave.
Their equilibrium was only neutrally stable in that the dispersal rates could drift.

Another corollary applies to ‘sequential’ life histories that consist of # stages, each with
a single successor so that a complete life-cycle follows a sequence, stage 1, stage 2, stage 3,
... stage n, stage 1, and so on. In this case, the proportion of the stage-1 genes that emigrate
at some point during the life-cycle (or whose descendants emigrate) is equal to the propor-
tion of the stage-1' genes (one cycle later) that entered the deme at some stage during the
cycle (possibly having left the deme and returned). Loosely put, the flow of genes out of a
deme must equal the flow of genes in.

Finally, we provide an example of costly dispersal that is evolutionarily stable in an
environment that varies in space but that is constant in time. The environment consists of
two different habitats, one better suited for growth and the other better suited for repro-
duction. At equilibrium, some individuals in the growth phase of the life-cycle disperse to
the prime growth habitat with dispersal in the opposite direction by individuals in the
reproductive phase of the life-cycle.

THE MODEL

Consider an environment that consists of a finite number of discrete habitats, each sup-
porting a single finite deme. These demes can be of variable size, although we assume that
they are large enough that average within-deme relatedness can be set to zero and thus the
effects of kin selection can be ignored.

Our aim is to determine the conditions for evolutionarily stable dispersal between demes.
An important concept in our analysis is reproductive value. The reproductive value, v, of an
individual in any deme at any stage will be its genetic contribution to a distant (limiting)
future generation. Now, for this to make sense, we need to make some assumptions about
future population size and structure and for this we need to assume that the population has
attained an ecological equilibrium. We then look for a dispersal strategy that is at evo-
lutionary equilibrium in the sense that a mutant individual with an altered dispersal strategy
cannot increase its reproductive value. We assume that dispersal behaviour is determined by
the genotype of the disperser.
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Our population is both stage- and deme-structured with # stages (e.g. age classes) and N
demes. We suppose that, during each time step, there is a phase of migration between demes
followed by a stage-transition phase within each deme. In the migration phase, migration
rates and costs are deme- and stage-specific and a stage i migrant who succeeds in finding
a destination deme becomes a stage i individual in its new deme. Stage transitions within
each deme k are determined by an n X n stage transition matrix A, whose entries a;; give
the number of stage j ‘offspring’ of a stage i ‘parent’ in deme k. In the standard example of
age structure, the a; represent either survival probabilities or fecundities. The entries of
A, will generally be density dependent. The main point to note is the dependence of A, on
k — different demes can have different stage matrices. For example, one deme may have
higher juvenile survival and lower adult fecundity than another.

We let

U=y, Uy, oo, Uy) = (U, gy oo Uy Upgy Uy oo Uy, oy Uy, Uy, - o Uyy) (1)

be the column vector whose ikth entry, u,, is the total number of stage i individuals in
deme k at the start of each time step. Then, the discrete time dynamics of the u, follow an
equation of the form

u' =Wu (2)

where the prime denotes numbers after one time step. The nN X nN transition matrix W
encapsulates all the migration and stage transition information. Its jk column tabulates the
one time-step output of a stage j individual in deme k through migration, survival and/or
fecundity. It can be written as the product of a stage matrix A and a migration matrix M
as follows:

A 0 L. oMM, M, .. M,
WoAMo| 0 A0 0|My, M, ... My )
0 0 ... Ay||My, My ... M,

where the blocks in the above matrices are n X n. The matrix M, specifies the migration
pattern from deme k to deme 4. Our assumption that individuals do not change stages
during dispersal implies that M, is diagonal:

My 0 0
0 m 0 0
M, = . :Mk .. . 4)
0 0 e My

Its entry m,,;, gives the proportion of the stage i population in deme k that is found in
deme £ after dispersal.

Our assumption of ecological equilibrium implies, from equation (2), that W has a
dominant eigenvalue equal to 1 with right eigenvector u:

u=Wu ®)

The corresponding left eigenvector is the vector v=(v,, v,, ..., vy) of individual repro-
ductive values in the equilibrium population. Here v, =(v;) is the vector of average
reproductive value of a stage i individual in deme k at the beginning of a time step. The left
eigenvector equation is:
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v=vW (6)

Equation (6) tells us that the reproductive value v, of a stage j individual in deme & is equal
to the total reproductive value of her next stage output in each deme: vy = Z;,v;,Wu.

In the following proposition, we assume that dispersal behaviour has reached an
evolutionary equilibrium. By this we mean that an individual who disperses from a deme
would not increase her reproductive value by staying at home, and an individual who stays
at home would not increase her reproductive value by dispersing.

Proposition. Suppose that the population has reached an ecological equilibrium and that
the dispersal behaviour from each deme at each stage is at evolutionary equilibrium and is
not complete in the sense that m,,;, is never zero. Then the following must hold:

(i) The reproductive value v; of a stage j individual in deme k is equal to the total repro-
ductive value of her ‘offspring’ under the stage transition matrix A,. Technically, this tells us
that v, is a left eigenvector of the matrix A, for the eigenvalue 4= 1.

(i1) During each time step, the total reproductive value of the emigrants from deme k is
equal to the total reproductive value of the immigrants into deme k.

Proof. (i) Consider an individual at stage j in deme k. If there are no stage j migrants from
deme k, then (i) follows immediately from (6) since w;,; = 0 unless 7 = k and wy,; = a;. If
there are stage j migrants from deme k, then the v, is the average of the reproductive value
of those stage j individuals who disperse and those who remain at home. By our assumption
of evolutionary equilibrium of dispersal, this is the average of two equal quantities, and
thus vy is the conditional reproductive value of a stage j individual who remains at home.
But this is equal to X,v;a;;. In vector form, this means that

Vi = Vi Ay (7
and this says that v is a left eigenvector of A for the eigenvalue 4= 1.
(i1) Let o, =(ay) be the vector of numbers of stage i individuals who emigrate from
deme k during a single cycle o, = (1 — my;)u,, and let B, = (f,) be the number of stage i
individuals in deme k (after migration, before stage transition) who have immigrated into

deme k during that cycle g, = X,m;,u,. With this notation, the transition equation (2) can
be written as

u/ = A(u— oy +By) (8

for each k.
Set u; =u, in (8), hit both sides with the reproductive value vector v,, and use (7):

Ve =V Ay (we — oy + B) = v (u — o + B)
This implies that
Vi 0 =V, By )

which gives us (ii).
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Corollary 1. Suppose that migration is restricted to a single stage, the same stage for all
demes. Then it can be at evolutionary equilibrium only if it is cost-free.

Proof. If only stage i individuals migrate, then (9) implies that o, = S, for each deme k. If
we sum over all &k, the total numbers of emigrants and immigrants are equal, and this
implies there can be no mortality during migration.

Corollary 2. Suppose that each stage has a unique successor, so that the life-cycle
follows a sequence, stage 1, stage 2, stage 3, ... stage n, stage 1, and so on. Then the
proportion of the stage-1 genes that emigrate at some point during the life-cycle (or whose
descendents emigrate) is equal to the proportion of the stage-1’ genes (one cycle later) that
have entered the deme at some stage during the life-cycle (possibly having left the deme and
returned).

Proof. Fasten attention on a fixed deme and drop the subscript k so that u; is the number of
individuals in the deme at the start of stage i, v, is the reproductive value of each of these
individuals, and o, and f5; are the numbers of stage i individuals who emigrate from the deme
and immigrate into the deme at stage i respectively. A consequence of our assumption that
the life-cycle follows a sequence is that

Vil = v; (U;— 0, + ) (10)

Indeed, by our assumption of evolutionary equilibrium, the u,—a; + f5; stage-i indi-
viduals in the deme after dispersal all have reproductive value v; and the total reproductive
value of their stage i+ 1 ‘offspring’ is v, ,u;,, and by (i) of the Proposition these must
be equal. [Equation (10) also follows directly from (8) if we use the ‘subdiagonal’ form
of A,.]

Now for each i, the proportion of the u; individuals at the start of stage i who are still in
the deme (or whose ‘offspring’ are still in the deme) at the start of stage i + 1 is

i (11)

u; —

i

a

u:

1

Thus the proportion of the u, individuals at the start of stage 1 who are still in the deme (or
whose ‘offspring’ are still in the deme) at the start of stage 1’ (one cycle later) is the product
of the above terms over all i from 1 to n. Similarly, for each i, the proportion of the u;, ,
individuals at the start of stage i + 1 who were in the deme (or whose ‘parents’ were in the
deme) at the start of stage i is

u—o; U= 0; v (12)

U=+ B Uy Vi

(using equation 10), and thus the proportion of the u, individuals at the start of stage 1’
who were in the deme (or whose ‘parents’ were in the deme) at the start of stage 1 (one cycle
ago) is the product of the above terms over all i from 1 to n. Now, since u, . ; = u; and v,, ;= v,
(by ecological equilibrium), the products of the terms in (11) and (12) are the same and we
have the result.
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An example of an evolutionarily stable dispersal pattern

We now construct an example of an evolutionarily stable dispersal pattern with cost. To do
s0, it is necessary to include at least two stages of dispersal. We choose the simplest scenario,
which involves dispersal between two demes with two stages. At evolutionary equilibrium,
an individual that does not disperse must have the same reproductive value as one that does.
Thus, since we have only two demes, it follows that, at evolutionary equilibrium, dispersal
must be one-way at each stage. For simplicity, we consider a haploid, asexual organism. The
two demes we work with have a similar life-history pattern with a juvenile and an adult
stage, and a single bout of dispersal at each stage. In deme k, the probability that a juvenile
survives to adulthood is given by the density-dependent function S,, and the expected
number of offspring per adult is given by the density-dependent function Fj. The idea is
that, in the absence of dispersal, juvenile survival to adulthood is higher in deme 2, whereas
adult fecundity is higher in deme 1. As a result, it is advantageous for juveniles to disperse
from deme 1 to deme 2 and for adults to disperse from deme 2 to deme 1. For ease of
notation, we denote these dispersal rates by d, (juveniles from deme 1 to deme 2) and d,
(adults from deme 2 to deme 1), and we denote the deme k juvenile population sizes as
uy, =J, before migration and J, after migration, and the adult population size as u,, =
A, before migration and A, after migration. The configuration is shown in Fig. 1 and a
numerical example is provided in Fig. 2.

Below we investigate the dynamic stability of the system, but first we examine the equi-
librium conditions (5) and (6). At evolutionary equilibrium, it must be that the total repro-
ductive value of the emigrants from deme k is equal to the total reproductive value of the
immigrants into deme k. This gives us:

diJyvy = (1= c))dr Ay (13a)
dryAyvy = (1= c)dJ,vy, (13b)

(1-c2)daA>

Fig. 1. Population size at different stages in deme 1 and deme 2 showing individual reproductive value
v, at each stage.
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Fy=10/8

dispersal of

adults
=025
vy =0.75
dispersal of
juveniles
¢=0.5
vy, = 0.6

Fig. 2. A numerical example of a stable two-stage dispersal pattern. Numbers shown in the circles are
population sizes. The dispersal rates are d, = 0.4 and d, = 0.25. The small circles at the beginning of the
arrows represent the number of migrants leaving the population of origin, and the small circles at the
end of the arrow represent the number of migrants that arrive at the destination population. Observe
that these numbers illustrate our main results. The total reproductive value of those leaving deme
1 is 20(0.3)=6 and the total reproductive value of those entering deme 1 is 6(1.0)=6, giving
us Proposition (ii). Also, we have the sequential life-cycle of Corollary 2 and we observe that
20/50 =40% of the genes of deme 1 leave as juveniles and 6/15=40% of the adult genes of deme
1 have immigrated.

Also, at evolutionary equilibrium, S;v,, = v;; and S,v,, = v}, [by (7) and (16) below]. If we
combine the two expressions from (13), we have that

S (1 =) =c) =S5, (14)

Note that there are two ways for a deme-1 juvenile to become a deme-1 adult — either to stay
at home or to disperse twice — and condition (14) says that its survival must be the same
along both paths. Using the symmetry of the population structure, we interchange 1 and 2
and S and F to get

F,=(1-¢)(-c)F (15)

This says that, at evolutionary equilibrium, the fecundity of a deme-2 adult is the same
whether it remains in deme 2 to breed or disperses to deme 1 with all its offspring migrating
back to deme 2 as juveniles.

Evolutionary dynamics

There are a number of different formulations of evolutionary dynamics with two inter-
acting traits. The standard approach we use here (Abrams ez al., 1993) considers a rare
mutant strategy (d,, d,) in an essentially monomorphic (d;*, d;¥) population, obtains a
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fitness function and constructs the trait dynamic from the fitness gradient. The stability
conditions are then obtained by requiring the Jacobian matrix of the system to be a stability
matrix.

We begin by writing the matrices A and M of (3):

Al = 0 Fl A2 = O in
1-d, 0 0 0 |
1o 1 0 d(l-0¢)
M=lad=c) 0 1 0
0 0 0 1-d, |
0 F, 0  d(l-c)F
(1-d)S, 0 0 0
W =AM =
0 0 0 (1-d,)F, 16)
d(1-c)S, 0 S, 0

Here, we assume that survival S, and fecundity F, depend only on the d*, but we have
not displayed this dependence. The mutant’s fitness is given by the dominant eigenvalue
of W, A(d,, d,, d¥, d¥) (Metz et al., 1992), and the dynamic system by

aat] [

dt |_ | 9d 17
dd% G a_xl a7
dt dd, 1%

(Abrams et al., 1993), where G is the additive covariance matrix between the dispersal rates,
and the partial derivatives of W are evaluated at d; = d*. Our argument requires that the
additive covariance between d, and d, is small compared with the additive variance in each
trait.

In the Appendix, we show that equations (14) and (13b) determine a unique dynamically
stable evolutionary equilibrium (d*, d,*) provided the S, are negatively density dependent
(an increase in J; causes a decrease in S)). In fact, for the stability of this equilibrium, all
we need is that the quotient S,/S, is a decreasing function of d,. Alternatively, using
the symmetry of life-cycle as described above, one can show that a stable evolutionary
equilibrium is determined by equations (15) and (13a).

This stability result has a simple heuristic argument. Suppose that the S, are negatively
density dependent. Consider the effect of increasing the juvenile dispersal rate ¢, (Fig. 1).
This will decrease the juvenile population J; in deme 1 and increase the juvenile population
J, in deme 2. This results in an increase in S}, increasing the reproductive value of a deme-1
juvenile, and a decrease in S,, decreasing the reproductive value of a deme-2 juvenile. This
makes juvenile dispersal from deme 1 less advantageous, and the dispersal rate should
decrease. Similarly, if the adult dispersal rate d, is increased, this will decrease the adult
population A4, in deme 2 and increase the adult population 4, in deme 1. Since the starting
populations J, are fixed, the fecundity and hence the reproductive value of a deme-2 adult
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will increase, and the fecundity and hence the reproductive value of a deme-1 adult will
decrease. This makes adult dispersal from deme 2 less advantageous, and the dispersal rate
should decrease. In summary, juvenile dispersal is stabilized by density-dependent survival
rates, and adult dispersal is stabilized by density-dependent fecundity rates.

So far we have only considered interior equilibria in which we have partial dispersal.
However, under our scenario it is possible that dispersal can be selected against or, alter-
natively, that there is selection for complete juvenile dispersal. Suppose the cost of dispersal
is high enough (at one stage or the other) that it cannot be offset by the increase in juvenile
survival or adult fecundity. Our intuition tells us that, in such circumstances, dispersal
should not evolve. And, of course, following our first result, if there is no dispersal at one
stage there can be none at the other. In fact, we show in the Appendix that (0,0) will be a
stable point provided that S, > (1 — ¢;)(1 — ¢,)S, at this point. Second, we look at the cases
d;= 1. First, we expect a stable point with d, = 1 if at this point S, is small enough compared
to S, and the costs of dispersal are small. In fact, we show in the Appendix that a sufficient
condition for this is that S; < (1 -¢))(1 —¢,)S, when d, =1. On the other hand, because
we have fixed the values J, of the starting populations, we never expect a stable point with
d, =1, because a small number of non-dispersing individuals in 4, would have very high
reproductive value.

DISCUSSION

Our results here concern a large randomly mating population in an environment that is
spatially heterogeneous but temporally constant. We suppose the population is broken up
into demes, among which there might be some dispersal. We show that, at evolutionary
equilibrium, the total reproductive value of the emigrants leaving a given deme must equal
the total reproductive value of the immigrants entering that deme. This result should be
interpreted as a gene flow result. However, it is more complicated than just saying that the
flow of genes into a deme must be equal to the flow of genes out of that deme. Rather, it says
that the genetic contribution to a distant (limiting) future generation of those individuals
that emigrate from a given deme must equal the contribution to a distant (limiting) future
generation of those individuals that immigrate to that deme.

As a corollary, we show that, if there is only one bout of dispersal in each generation,
then dispersal can occur only if it has no cost. Now, one must be careful when interpreting
our notion of cost. Here, cost is simply the reduction in an individual’s reproductive
value measured after dispersal. It is possible to partition cost into separate components
measuring survival and competitive ability. For example, consider the case where a disperser
survives with probability s and has competitive weighting r, relative to a native of the
kth deme, so that its reproductive value measured after dispersal to the kth deme is sr.v,
(Lemel et al., 1997). Then, our result says that, at evolutionary equilibrium, sr, = 1. Thus if
there is a survival cost (0 < s < 1), then there will be selection for philopatry unless immi-
grants have a higher competitive weighting than natives. In nature, this might occur when
male immigrants are unlike natives and, as a result, are chosen preferentially by females, but
in most cases we expect immigrants to have an equal or lesser competitive weighting. Thus,
at evolutionary equilibrium, we can have a single bout of dispersal per cycle only when
immigrants have equal competitive weighting and guaranteed survival (s =1). And, in this
case, dispersal can have no effect on deme size in the sense that, in each deme, the number of
immigrants must equal the number of emigrants.
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It is important to note the generality of this result. It assumes only that the environment
is at ecological equilibrium, that there is only a single bout of dispersal per cycle and that
immigrants and residents are indistinguishable. We make no assumptions about the
dispersal pattern or environmental landscape; dispersal may be either passive or directed.

For life histories that consist of # stages, each with a single successor so that the life-cycle
follows a sequence, stage 1, stage 2, stage 3, ... stage n, stage 1, and so on, we have a
stronger result — the proportion of genetic material that emigrates from the deme during
a complete cycle (including any genes that might emigrate but then return) must equal the
proportion of the genetic material at the end of the cycle that has immigrated to the deme at
some point during the cycle.

If dispersal is allowed at more than one stage, then costly dispersal can exist and be
evolutionarily stable. The idea is simple enough and can be viewed as a type of optimal
habitat use. If the life-history parameters differ among demes in such a way that at certain
stages different demes have different individual reproductive value, and if these differences
are great enough (with respect to the dispersal cost), there will be selective pressure for
individuals to move to a deme with a higher reproductive value during that life-history
stage. Under density-dependent fitness, this movement will be self-damping and a stable
equilibrium will be attained. This sounds plausible enough, but can it actually work? We
demonstrate that it can by constructing an example of two-staged dispersal between two
demes. In one deme juvenile survival is much higher than in the other and this leads to
juvenile migration. This raises the size of the adult population in the ‘receiving’ deme and
thus lowers its individual fecundity, and this prompts a migration of adults in the direction
opposite to the juvenile migration.

Holt and Barfield (2000) examine the relationship between the ideal free distribution
and the evolution of dispersal. They show that, for temporally constant environments with
cost-free dispersal, fitness is equalized across space such that, at evolutionary equilibrium,
all individuals have a fitness of 1. So how do the ideas of ideal free distribution relate to our
gene flow result for temporally constant environments? Typically, we think of a population
as being ideal-free distributed when individual fitness is equalized across space (see Fretwell
and Lucas, 1969). If we define the dominant eigenvalue, 4,, of the stage transition matrix A,
as a measure of overall fitness in deme k, then our theorem says that, at evolutionary
equilibrium, the overall fitness of deme k is unity (i.e. from equation 7, A, =1). In other
words, an individual that remains in its native habitat for its entire life has fitness equal to 1.
Now, since at evolutionary equilibrium a non-disperser and disperser must have equal
fitness, it follows that, at evolutionary equilibrium, an individual’s fitness is 1 regardless of
its birthplace or dispersal pattern. Thus, the set of evolutionarily stable dispersal strategies
results in an ideal free distribution with fitness equalized across space. The converse does
not hold. The presence of an ideal free distribution does not imply the presence of a set of
evolutionarily stable dispersal strategies. Indeed, philopatry always produces an ideal free
distribution but, as we have demonstrated, philopatry need not be evolutionarily stable.

Much attention has recently focused on source-sink population dynamics. Specifically,
there is growing literature addressing whether dispersal from source habitats to sink habitats
is adaptive (e.g. Pulliam, 1988; Watkinson and Sutherland, 1995; Morris et al., 2001).
Several authors have already noted that, for dispersal from source habitats to sink habitats
to be evolutionarily stable, there must be significant migration from sinks to sources
(Morris, 1991; Wilson, 2001). In fact, our result shows that the reproductive value of the
genetic material that has immigrated to the source in one generation must be equal to the
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reproductive value of genetic material that has left the source during that generation. Again,
as a corollary, we have that if there is only a single bout of dispersal per generation, and if
immigrants and natives are indistinguishable after dispersal, then dispersal from source
habitats to sink habitats will be selected against. If dispersal is undirected, then the mere
presence of a sink habitat will result in selection for philopatry in all source habitats. The
possibility of accidentally ending up in a sink habitat acts as a cost of dispersal and this
prevents dispersal at evolutionary equilibrium.

Can dispersal from source habitats to sink habitats be adaptive when the life-cycle con-
sists of two or more distinct life-stages, each with a distinct dispersal episode? Consider our
example of two-stage dispersal presented above. Now suppose that, in habitat 1, juvenile
survival to adulthood is low and adult fecundity is high, whereas in habitat 2 juvenile
survival to adulthood is high but the habitat lacks the necessary resources for successful
reproduction and thus adult fecundity is identically zero (that is, J,=0). Here we have
habitat 1 acting as a potential source and habitat 2 acting as a sink in the sense that the
habitat cannot support a population in the absence of dispersal. At evolutionary equi-
librium, juvenile dispersal from source to sink is observed as a result of the higher rate of
juvenile survival present in the sink. Now, since adult fecundity in the sink habitat is zero,
then at any time the sink population consists entirely of immigrants. Thus we observe all
adults dispersing from the sink to the source. The end result is that the sink habitat is
maintained through dispersal from the source to the sink. The key idea here is that indi-
viduals should make optimal use of all habitats. If the sink habitat is suited for a particular
life-history stage of a given organism, then there should be migration to the sink during that
life-history stage.

Note that the idea of optimal habitat use can be extended to consider the evolution of
seasonal migration among habitats. Again consider our example. We observe that, if the
disparity between the two habitats is large at a certain time, the corresponding dispersal
bout might be complete. Now, suppose that adult and juvenile dispersal occur at distinct
times during the year, say adult dispersal in the spring and juvenile dispersal in the fall.
Suppose that juvenile survival is zero in one of the habitats and adult fecundity is zero in the
other. Then complete adult dispersal is observed in the spring, followed by reproduction
and the subsequent death of adults. Complete juvenile dispersal is then observed in the fall.
The population can only exist if it moves back and forth between the two habitats at
different times of the season. This pattern is of particular interest because of its similarity to
that of large-scale seasonal migration observed in many natural populations. Seasonal
migration has typically been differentiated from dispersal because it involves the movement
of a complete population between two habitats. However, our model suggests that seasonal
migration may evolve as a result of the same selective pressures that produce dispersal
among demes.

Finally, a word about stability. The standard ESS treatment of continuous charac-
ters (Eshel, 1983; Taylor, 1989; Christiansen, 1991) considers two aspects: in the first (evo-
lutionary stability, ES), the population strategy is fixed and we look at the effect of changing
the mutant strategy; in the second (convergence stability, CS), we consider how varying
the population-wide strategy affects the fitness of different mutant strategies. In cases in
which fitness depends on individual strategy and the average population strategy, the first
can be thought of as changing the mutant strategy and the second as changing the mutant
numbers. In cases such as the model of this paper, when the strategy represents a probability
of one action or another, these alternatives exhibit a type of linearity — 100 mutants with a
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strategy deviation of § has exactly the same effect as 50 mutants with a deviation of 2. In
such a case, the ES condition is often neutral (as it is here) and the CS condition tells the
story (Abrams et al., 1993). That’s a question of the stability of the dynamic system (17),
and that’s the notion of stability we have pursued here.
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APPENDIX

If we reorder the vectors u and v so thatu=(J,, J,, 4,, 4,) and v = (v, V5, V51, ¥2,), then we can rewrite
W in (16) in the form:

0 0 F  dy(1-6)F
0 0 0  (l-d)F
W=l a-ays, o o 0
d(1-c)S, S, 0 0 (A1)

Evolutionary equilibrium

Referring to the dynamical system (17), if G is non-singular (and we assume it is), then at evolutionary
equilibrium the partial derivatives d4/dd, |, must equal zero.

In practice, it is difficult to solve for A(d,, d,, d*, d,;*). However, it is possible to solve for the partial
derivatives making use of the corresponding right and left eigenvectors of the dominant eigenvalue
J=1. We use the two-stage transition matrix W2 for our analysis of (Al). We have that
u(W? - 2%)v = 0. Differentiating both sides with respect to d; and then evaluating at d, = d* gives:

(aw2 91
v 9

« 3,

d,

)u =0 (A2)

At evolutionary equilibrium, dA/dd; | . = 0 and we must have that:

ad,

v

u=2J[(1 =)y = Syl =0 (A3)
*

and

2

Vod,

u=2A4,[(1 = ¢;)vy — Fov;)] =0 (A4)

*

Reproductive value

We now calculate reproductive value. The vector of individual reproductive values is given by the
dominant left eigenvector of the transition matrix W. Here we first calculate the class reproductive
value 7, of the jth class of deme k, and then derive the individual reproductive value vy from these. It
is convenient to define ¢, as the proportion of the adult class of deme 2 made up from the juvenile
class of deme 1 and ¢, as the proportion of the juvenile class of deme 1 made up from (offspring of)
the adult class of deme 2. Then
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_ dy(1 = ¢4,
A,

1

and

_ di(1-c)J;
J',

2

and Corollary 2 tells us that, at evolutionary equilibrium, e = d;*.
The equilibrium equations for class reproductive value are:

Iy =Tyt ey
ry=(1=e)ry
rp=(1-e)ry

Ip=rpter,

(A5)

For example, the first equation writes the total value of deme-1 juveniles as the sum of the total values
of their two possible destinations: adults in deme 1 and adults in deme 2. Substituting the last
expression of (A5) into the second last expression and simplifying gives:

_ (1-e)e S Aydy(1 =)
Fia= oY

e TJd(-c) A

AV

Now, let r;, = A1 (1 = ¢,)d,J, and r;, =J, (1 = ¢;)d,A,, then 1y, = A, (1 — ¢,)d,J; and r,, = J; (1 — ¢,)d,A4,.
Finally, the relative values of individual reproductive values are obtained from these by dividing by the
class size:

vy=A\d5(1-¢)

vy =(1—¢)Jd*

M= Ad¥(1 - ) (A6)
v =J5 (1 = ¢))d3

where the asterisk emphasizes that all this is at evolutionary equilibrium.

Evolutionary stability

We now examine the stability of the interior equilibrium. For notational simplicity, we will write
A; =dAldd;|,. The convergence stability (Eshel, 1983; Christiansen, 1991) conditions are obtained by
requiring the Jacobian matrix

3y
Ok 9y
ad*% od% |,

(AT)

to be a stability matrix, and this will hold if the trace of J is less than 0 and the determinant of J is
greater than zero (Edelstein-Keshet, 1988, p. 142). Let W, = v-0W?dd;u. From (A2) we have that, at
evolutionary equilibrium, W, = v(94%9d,)u = v(2A/,)u. Differentiate:
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oW,
ad*

_ oV

+ 0d*

(2/1/1) —v|24 /li —V(Zi")i
i A;
U A . u i .

*

Since at evolutionary equilibrium 4,* = 0, it follows that

| 1w,
Let
oW, ow,
ad*  ad*
D=low, ow,
ad*  od

Then J = (1/v-u) D and the dynamical system (17) is stable if the trace of D < 0 and the determinant of
D > 0. We now show that this is true.

We begin with the substitution of the appropriate reproductive values into (A3) and (A4), noting
that 4, = S,J and that J, = F,4",. This gives us

S,(1=c))J,d*
W, =J.J} [Sz(l — (1 = ¢)d% — I(Jc‘)”} (A8)
2
and
Fy(1 —¢,) d*%A
W, = 4,4, [Fl(l—cz)(l—cl)d";—Z( ;2,) : 2] (A9)
1

from which we now obtain the entries of the matrix D. Again, we introduce another useful piece of
notation. Let Q = S,/S), then (A8) can be rewritten as:

1 =S5 | (1 =) = e)d%0 ~

Jh
Differentiating with respect to d*% and evaluating at evolutionary equilibrium, (d%, d%), gives

aw,
ad*

- SIJIJ;[(l (1 - e)Q'dY —“_"J)”} (A10)
* 2

In this calculation, we use the fact that the expression in the square brackets in the above formula
for W, is zero at equilibrium, and that the derivative of J} is (1 — ¢,) d%. Similarly,

aw,
ad*

=811 = ep(l = ) QJ3 = S, J1J3 (AL
*

since (1 — ¢;)(1 — ¢,)Q = 1. Because J, = Fi4/, A,=S,J, and J, = F,A4, (1 — d,), we can rewrite (A9) as:
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(1- Cz)sz#f:|

w,= SZJ/2|:(1 =) =) Jyd% - (1—d%)

A similar calculation to the above gives

oW,
ad=';2 = Sy(1=c)(1 =) Jy=S,J,J), (A12)
using (14). Finally,
oW, 1=e)J,
od*% | (1-d*%)

and since (Corollary 2) 1 —d¥=1 - e% = J,/J;, we can write

W,
ad*

_ Sy(1 = c)J3’

- (A13)
* S,

It is easy to verify that when Q' < 0 then the trace of D < 0. We now show that the determinant of
D > 0if, and only if, Q' < 0. By substitution we have

Det J = 5,7,/ [(1 - o)1 - epora- _22)]1]2] e s
Using the equilibrium condition (14) we have
Det J = - S1J,J; [(I_CZ)JW— J|J2’:| - SV
2
Finally, with some rearrangement we have
Deth_(l—cz)SleJ’fQ'd*; (A14)

J>

and it follows that the determinant of J > 0 if, and only if, Q' <0.

The stability argument has assumed that G is the identity matrix. A close look at the inequalities
will show they continue to hold if G is diagonal. Since the inequalities are strict, they will
also continue to hold for matrices G that are close to diagonal and, therefore, they will hold if the
covariance between d, and d, is small.

Finally, we consider points that fall along the boundary of the dispersal space (d,*,d,*) e
[0,1] x [0,1], and again we assume that G is the identity matrix. First, recall that if either d;* = 0, they
must both be zero and consider the point d,* = d,* = 0. We show that this will be stable provided that
S; > (1-¢)Sy(1—-c¢,) at this point. In (d,*, d,*) phase space, draw the curve e,* =d,*. Since
e,* = J,b\d,*IJ;, this curve will pass through the origin and the tangent at this point will have slope
J,b\/J,. Take any point (¢,, a,) on that curve near the origin and consider the box 0< d,* < a,,0< d,* < a,.
We assert that the dynamical system (17) cannot leave this box, and from the boundary always moves
inside. Indeed, on the top boundary e,* < d,*and from (A9) W, <0 and the trajectory points down
into the box, and on the right boundary e,* > d,*and from (A8) I, < 0 and the trajectory points left
into the box. And from the top right corner (a,, a,), the trajectory points left along the top boundary
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and thence moves down into the box. This is enough to at least establish the neutral stability of the
point.

Now we examine the line d,* = 1 and show that, if S, < (1 - ¢,)S, (1 — ¢,) on this line, then the point
(1, d,*) determined by the condition d,* = ¢,* will be a stable equilibrium. Indeed, from (A9) we get
that W, =0 [use equation (15) and the fact ¢;* = 1] and from (A13) dW,/dd,* < 0. Second, from (A8)
we get that W, > 0, noting that the last term in the brackets in that expression can be written
S,e,* and that establishes the stability of the point.

Finally, we argue that there can never be a stable point with ¢,* = 1. Indeed, in this case, 4, =0 and
since we fix J, as a constant, a mutant with d, < 1 will have arbitrarily high reproductive value and will
invade.






