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1. INTRODUCTION

The formalization of inclusive fitness theory by
W. D. Hamilton in 1964 (Hamilton, 1964) is a milestone
in the development of evolutionary biology. In par-
ticular, the principles of inclusive fitness and Hamilton's
Rule have offered tremendous insight into the evolution
of social behavior. Subsequent extensions of this theory
have demonstrated that the concepts of inclusive fitness
have a scope of applicability much larger than social
behavior. Theoretical work has progressed to the point
whereby quite sophisticated models can be routinely con-
structed that incorporate different classes of individuals
(e.g., age classes) as well as different forms of population
structure (e.g., patch structure, pairwise interactions,
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lattice structures) (Charlesworth and Charnov, 1981;
Bulmer, 1994; Taylor and Frank, 1996).

Parallel to this body of theory has been the develop-
ment of models for the evolution of dynamic characters,
i.e., characters that consist of a sequence of decisions. For
example, one of the most studied of such characters is the
lifetime pattern of resource allocation to growth and
reproduction (Roff, 1992; Stearns, 1992; Kozlowski,
1992). This is the so-called general life history problem
(Cohen, 1971; Leo� n, 1976; Schaffer, 1983) and it has
been addressed using the techniques of dynamic
optimization such as Pontryagin's maximum principle
(PMP) and dynamic programming (Kozlowski, 1992;
Perrin and Sibly, 1993). There are many other examples
of dynamic characters in behavioral ecology as well
(Houston and McNamara, 1987; Houston et al., 1988).

These two areas of theoretical evolutionary biology
have developed largely independently of one another,
although there have been some attempts at combining
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the insights gained from each. For example, McNamara
et al. (1994) have described how to construct dynamic
kin-selection models with interactions between two
related individuals using dynamic programming. Their
results were used to explore food provisioning in birds,
but because the method they developed was limited to
the case where only one individual makes ``decisions,'' it
cannot be used to explore the consequences of frequency-
dependent selection where all individuals exhibit the
character of interest.

To our knowledge, there is only one published
example of a model for the evolution of dynamic charac-
ters when selection is frequency-dependent and where
there are interactions among related individuals. This is
a model developed by Mirmirani and Oster (1978) to
explore the evolution of plant resource allocation
strategies under competition. Mirmirani and Oster for-
mulated their model as a differential game between two
plants. They included the effects of relatedness by con-
structing an expression for the inclusive fitness of each
plant by analogy with Hamilton's Rule (1964), and they
then used PMP to calculate the evolutionarily stable
strategy (ESS) of both plants. It is now known, however,
that even in simple univariate models, calculating the
ESS using an inclusive fitness expression can produce
incorrect results compared with those of explicit genetic
models (Grafen, 1979; Hines and Maynard-Smith, 1979;
Mesterton-Gibbons, 1996; Day and Taylor, 1998a).
Therefore, the genetic validity of Mirmirani and Oster's
(1978) results is unclear. Furthermore, Mirmirani and
Oster's model considered competition between two
plants, but it would be useful to be able to model situa-
tions where more than two individuals interact. Addi-
tionally, their model was tailored to plant life history
evolution, and it would also be useful to have a simple,
general modeling approach that works for the evolution
of any dynamic (i.e., time-dependent) character and that
is guaranteed to be genetically accurate in the context of
a single locus, diallelic, additive genetic model.

The purpose of this article is therefore to derive such
an approach. In particular, we prove two theorems that
generalize Pontryagin's maximum principle to the setting
of dynamic evolutionary games among genetically
related individuals (one of which was presented in sim-
plified form without proof in Day and Taylor, 1997).
These two theorems correspond to two different types of
interactions: interactions in patch-structured popula-
tions (metapopulations) and pairwise interactions (like
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those of the Mirmirani and Oster model). These
theorems are derived from an explicit, single-locus
genetic model, and they can be used to calculate ESSs of
evolutionary models for a very wide variety of dynamic
characters. One of our primary findings is that some
simple results analogous to Hamilton's Rule can be
derived in this dynamic setting. In particular, the
generalized maximum principle presented here is com-
pletely analogous to the standard maximum principle
and it can be applied in exactly the same way. As it turns
out, this generalized maximum principle involves a time-
dependent version of Hamilton's Rule. We also present
an example of how to apply these results by modeling the
evolution of lifetime resource allocation to growth and
reproduction in an annual plant when there is competi-
tion for resources among related individuals. In the dis-
cussion we also use these general theoretical results to
illustrate that, although Mirmirani and Oster's (1978)
modeling approach is not genetically correct, coinciden-
tally, it does happen to provide the correct results in that
instance.

Below are five remaining sections. In Section 2 an
example of an evolutionary model is presented to
motivate the theory. The third section gives a brief sum-
mary of the standard PMP. The fourth section then
presents the two theorems for modeling dynamic
evolutionary games between genetic relatives: one for
patch-structured populations and one for pairwise inter-
actions. The fifth section demonstrates how these mathe-
matical results can be used to analyze the model of
Section 2, and last Section 6 is a discussion.

2. A MOTIVATIONAL EXAMPLE

Consider an annual plant (e.g., Impatiens capensis)
that grows, reproduces, and dies within a single season of
length T. Often it will be the case that the performance of
a plant depends on the characteristics of a few plants
within its immediate surrounding area (Kelly, 1996,
1997). To capture this effect, suppose that the plant pop-
ulation consists of a large number of patches containing
n individuals each and that competitive interactions
occur among plants within patches but not between
patches. Limited dispersal among patches results in the
plants within any particular patch being genetically
related. Now focus on a particular individual, and let y(t)
denote its size at time t and y� (t) denote the average plant
size in its patch.

Also, suppose that each plant produces resources
through photosynthesis, and these resources can be used

Day and Taylor
for either growth or reproduction. Consequently, each
plant must divide its resources between these two func-
tions at all times during the season. Let u(t) denote the
proportion of resources devoted to growth at time



t(0�u(t)�1), and suppose that a plant's rate of produc-
tion of resources through photosynthesis, b( y, y� ),
depends on both its own size, y, and the average plant
size in its patch, y� . We assume that a plant's production
increases with its own size (i.e., �b��y>0), but because of
competition, its production decreases with an increase in
the average plant size of the patch (i.e., �b��y� <0). The
growth rate of each plant is given by

dy
dt

=u(t) b( y(t), y� (t)) y(0)= y0 . (1)

A plant's rate of reproductive output at time t is given by

(1&u(t)) b( y(t), y� (t)), (2)

and therefore its total reproductive output over the
season is

|
T

0
(1&u(t)) b( y(t), y� (t)) dt, (3)

and u is to be chosen to maximize this.
This model is similar, to that presented by Mirmirani

and Oster (1978), and it is an example of a patch-struc-
tured population in which individuals ``play the field''
locally. What is the evolutionarily stable resource alloca-
tion strategy? If there were no interactions among
individuals (i.e., if b did not depend on y� ), then this
problem can be tackled using Pontryagin's maximum
principle. But because of these interactions, and because
the interacting individuals are genetically related, this
approach is not appropriate. Below we present a
generalization of PMP for this type of model, but before
doing so, we first review the standard version of PMP.

3. PONTRYAGIN'S MAXIMUM
PRINCIPLE

We refer to the time-dependent function, u(t), as a con-
trol variable and the time-dependent function y(t) as a
state variable. In the previous section, these functions
had specific biological interpretations. Here we leave the
interpretation of these variables open, but the control
variable is still the variable that is directly evolutionarily
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labile. We also generalize the state variable in this section
by allowing it to be a vector.

Let y(t) denote an individual's p-dimensional state
vector, defined within E p ( p-dimensional Euclidean
space) and u(t) denote the individual's control variable,
defined within some (closed) interval U=[a0 , a1]. We
will refer to those control variables, u(t), that are
piecewise continuous and lie within U as feasible con-
trols. Now suppose an individual's fitness can be
expressed in the form

W(t0 , y(t0); u)=|
t1

t0

f (t, y(t), u(t)) dt+8(y(t1)), (4)

where t0 and t1 are the initial and final points of the inter-
val of time being considered. Here 8 is a scalar-valued
function of a vector variable, 8: E p � E1, and f is a scalar
valued function of three arguments, f: E1_E p_E1 � E1.
The second term in (4) is the fitness of an individual with
a state vector y(t1) at the final time, and the first term
adds up the fitness accrued to an individual from the
beginning of the time interval to the end (Kamien and
Schwartz, 1991; Bulmer, 1994). Expression (4) applies to
the case where interactions among individuals are
ignored.

Now suppose that the state vector obeys a system of
differential equations of the form

dys�dt= gs(t, y(t), u(t)) ys(t0)= ys0 , (5)

where the index s=1, ..., p, and gs : E1_E p_E1 � E1.
Define the Hamiltonian function as

H(t, y, u, *)= f (t, y, u)+*(t)$ } g(t, y, u), (6)

where *(t) is a p-dimensional, time-dependent vector of
costate (multiplier) variables (one for each state variable),
g(t, y, u) is a p-dimensional vector of the differential
Eqs. (5), and *$ } g denotes the inner product (the prime
denotes transpose). Biologically, it is interesting to note
that the elements of *(t), i.e., *s(t), can be interpreted as
the marginal return in future fitness of an increase in
state variable ys(t) at time t (Leo� n, 1976; Iwasa
and Roughgarden, 1984; Perrin and Sibly, 1993; Day,
1998).

Definition 3.1. An optimal control, u*(t), is defined
to be a feasible control that renders the objective func-
tional (in this case (4)), a maximum over the set of all
feasible controls.
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Definition 3.2. Suppose '(t) is a feasible deviation
from the control u*(t), meaning that u*(t)+'(t) is a
feasible control. It follows that, if h is a scalar and



0�h�1, then u*(t)+h'(t) is also a feasible control.
u*(t) is defined to be a weak optimal control if

dW(t0 , y(t0); u*(t)+h'(t))
dh }h=0

�0 (7)

for all feasible deviations, '(t).
Notice that the dependence of W on h enters directly

through the integrand, f (t, y(t), u*(t)+h'(t)), as well as
indirectly through y(t) in the integrand as a result of the
differential Eqs. (5). The existence of (7) is guaranteed
provided that f and g are smooth enough (as we assume
below); the direct dependence through f then poses no
problem, and y(t) will be differentiable in the parameter
h as demonstrated in Perko (1991, Theorem 2, Section
2.3, p. 83). It should also be stressed that, although the
definition of a weak optimal control has been presented
in terms of a specific objective functional, W (i.e., (4)),
this definition holds for any objective functional of with
the appropriate substitution of W in (7). Notice that the
condition that u*(t) be an optimal control is stronger
than the condition that it be a weak optimal control.
Therefore, if u*(t) is an optimal control, then it is also a
weak optimal control. This also follows directly from the
following two theorems.

Theorem 3.1 (Pontryagin's Maximum Principle).
Suppose that fitness is given by Expression (4), and the
state variables, ys(t), are governed by the differential
Eq. (5). Furthermore, suppose that the functions f and gs

are continuous and have continuous first derivatives in t,
ys , and u, and that 8 is continuous and has continuous first
derivatives in ys . If u* is an optimal control then it is
necessary that there exist a continuous, nonzero costate
vector *(t) that is a function of time, such that the following
conditions are satisfied:

&
d*s

dt
=

�H
�ys

(8)

*s(t1)=
�8
�ys

(t1) for all s=1, ..., p

max
u # U

H(t, y, u, *)=H(t, y, u*, *). (9)

In (9) y and * refer to the state and costate vectors
generated by the optimal control. Condition (9) states that
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the optimal control is such that the Hamiltonian is maxi-
mized in the control variable at all times. Notice that we
can state conditions that must hold for (9) to hold in terms
of the first order effect:
if a0<u*<a1 then
�H
�u } u=u*

=0 (10)

if u*= a0 then
�H
�u }u=u*

�0 (11)

if u*= a1 then
�H
�u }u=u*

�0. (12)

For a proof of Theorem 3.1 see Leitmann (1966, 1981),
Sagan (1969), Fleming and Rishel (1975), Knowles
(1981), and Pinch (1993).

The maximum principle actually introduces one other
costate variable, *0 (a scalar), that is multiplied to the
function f in the Hamiltonian (Leitmann, 1966; Fleming
and Rishel, 1975). As part of the necessary conditions of
the maximum principle, this scalar must either be zero or
positive, and hence it is usually scaled to be either zero or
1. The reason for this additional costate variable is that,
when the problem of interest has p{1, it can be the case
that the optimal control is fully specified without con-
sidering the objective functional (4). This case is termed
abnormal (Leitmann, 1981; Fleming and Rishel, 1975;
Knowles, 1981), and we will ignore it and assume that, in
all cases of interest, *0=1. The reasoning is that, if in
some problem *0=0, then the fitness function for the
problem would play no role in determining the optimal
strategy, and this suggests that the problem is poorly
formulated from a biological standpoint.

Theorem 3.2. Under the conditions of Theorem 3.1, if
u*(t) is a weak optimal control, then conditions (8) and
(10)�(12) must hold (but not necessarily condition (9)).

Proof (Theorem 3.2). The proof follows that of
Kamien and Schwartz (1991, Part II, Sections 2 and 10).
We calculate the total differential, $W(t0 , y(t0); u*(t)+
h'(t)) at h=0, and require that it be nonpositive.
Following Kamien and Schwartz (1991),

$W=|
t1

t0

:
p

s=1
{ �f

�ys
+ :

p

i=1

* i
�g i

�ys
+

d*s

dt = $ys

+{�f
�u

+ :
p

i=1

*i
�gi

�u = $u dt

& :
p

s=1

*s(t1) $ys(t1)+ :
p

s=1

�8
�ys

(t1) $ys(t1) (13)

=
t1

:
p �H

+
d*s $ys+

�H
$u dt

Day and Taylor
|
t0 s=1

{�ys dt = { �u =
+ :

p

s=1
\�8

�ys
(t1)&*s(t1)+ $ys(t1), (14)



where $ys and $u are the variations in ys and u caused by
a change in h. Now we define *s(t) so that

d*s

dt
=&

�H
�ys

*s(t1)=
�8
�ys

(t1). (15)

This is Condition (8) of Theorem 3.1. With this defini-
tion, having dW�dh�0 requires that

|
t1

t0

�H
�u

$u dt�0 (16)

for all feasible variations, $u. As in Kamien and Schwartz
(1991) it can be shown that under the control constraint
a0�u�a1 , Condition (16) implies Conditions (10)�(12).

Q.E.D.

4. THE GENERALIZED MAXIMUM
PRINCIPLE

4.1. An Underlying Genetic Model

To account for the effect of relatedness among interact-
ing individuals, it is necessary to work with a genetic
model. In this section we describe the genetic model that
forms the foundation of our results, both for interactions
in patch-structured populations and for pairwise interac-
tions. However, one of the most important features of the
theorems presented in Sections 4.2 and 4.3 below is that
all of the genetic details of the model are encapsulated in
a single, biologically meaningful (and relatively easy to
measure) parameter: genetic relatedness.

The genetic model is a single-locus, diallelic model for
a diploid organism, and, in keeping with the conceptual
framework of game theory, one allele (termed the
mutant) is rare. We imagine that the common (resident)
allele in the population, say ``a,'' codes for some control
strategy, û(t), and the rare mutant allele, ``A,'' codes for
a different strategy, u(t). Under diploidy every individual
will have either zero, one, or two copies of the mutant
allele. Let gx be a random variable that denotes the
genotype of individual x and that takes a value of either
0, 1

2 , or 1 corresponding to these three cases, respectively.
Therefore, E[ gx] ] g� is the mutant allele frequency in
the population. Allowing for inbreeding, the three
genotypes occur with frequencies
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AA (1&�) g� 2+�g�

Aa 2(1&�) g� (1& g� ) (17)

aa (1&�)(1&g� )2+�(1& g� ),
where � is Wright's inbreeding coefficient (i.e., the prob-
ability that homologous copies of a gene are identical
by descent) (Crow and Kimura, 1970). Next, define
WAA(u, û) and W Aa(u, û) to be the average fitness of a
mutant homozygote and heterozygote, respectively, and
Waa(û) to be the average fitness of a resident-type
homozygote. We will assume that allelic effects are
additive, meaning that WAa(u, û)=W AA( u+û

2 , û) (we
also have Waa(û)=W AA(û, û)). The equation for allele
frequency change is

2g�
g�

=
1
W�

(WA&W� ), (18)

where W� is the population mean fitness, and WA is the
marginal fitness of the mutant allele (Crow and Kimura,
1970);

WA=[(1&�) g� +�] WAA(u, û)

+[(1&�)(1& g� )] WAa(u, û). (19)

We are concerned with the limiting case where the
mutant allele is rare, so as g� � 0, Eq. (18) becomes

2g�
g�

=
1

Waa(û)
(�WAA(u, û)

+(1&�) WAa(u, û)&W aa(û)). (20)

To proceed further, the average genotypic fitnesses,
WAA(u, û), WAa(u, û), and Waa(û) must be further
specified. Because of interactions among individuals,
these genotypic fitnesses will depend on how the mutant
alleles are distributed throughout the population. For
example, knowing that an individual has genotype AA is
not enough to know its expected fitness. We must also
know the genotype (and thereby the phenotype) of those
individuals with which it interacts. This, in turn, will
depend on the population structure and dispersal
behavior being considered. It might also depend on the
mutant strategy, u, and the resident strategy, û. To keep
the modeling approach as general as possible, we leave
all of these dependencies unspecified, and we simply
assume that once the mutant allele enters the population
(by mutation for example), the probabilities of different
types of mutant individuals interacting with one another
(e.g., a heterozygote with a heterozygote) reach a statisti-
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cal quasi-equilibrium while the allele is still rare. It is
this statistical equilibrium that is used to calculate the
expected genotypic fitnesses when the mutant allele is
rare. We note, however, that for such an equilibrium to



exist, it must often be assumed that the mutant has a
small effect so that fitness differences are small. This point
is considered more thoroughly in the Discussion.

Given Eq. (20) we can now define an evolutionarily
stable strategy.

Definition 4.1. A strategy, u*, is an ESS if

�WAA(u, u*)+(1&�) WAa(u, u*) (21)

is maximized in u at u=u*, in other words, if the
marginal fitness of a rare mutant strategy is maximized at
u=u*.

The logic behind Definition 4.1 is that, if the popula-
tion is fixed for an allele that codes for u*, then from
Eq. (20), no mutant allele coding for u{u* can invade
the population because 2g� �g� <0 for all such alleles (Day
and Taylor, 1998a). Also notice that, to use (21) to
characterize ESSs, we only need to specify the two
mutant genotypic fitnesses, WAA and W Aa.

4.2. Patch-Structured Populations

We now consider the first of two types of interactions:
patch-structured populations in which individuals
locally play the field. We begin by setting up a general
model of a patch-structured population and then present
a theorem that provides necessary conditions that an
ESS must satisfy. Section 4.2.1 then presents the proof of
this theorem. Again we emphasize that one of the most
important features of the theorem is that all of the genetic
details enter only through a single parameter which is the
genetic relatedness.

Consider a patch-structured population and suppose
that an individual's fitness depends on its own state
variable, y(t), the patch mean state variable, y� (t), its own
control variable, u(t), and the patch mean control
variable, u� (t). Denote the patch size by n and allow patch
members to be related. In general we suppose that an
individual's fitness can be specified by an expression of
the form

|
t1

t0

f (t, y(t), y� (t), u(t), u� (t)) dt+8( y(t1), y� (t1)). (22)

Again suppose that the control variable, u(t), is piecewise
continuous and that it lies within some closed interval
U=[a0 , a1]. Assume that the state variable of each
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individual, i, obeys the same differential equation,

dyi

dt
= g(t, yi (t), y� (t), ui (t), u� (t)) yi (t0)= y0 . (23)
Notice that here, y� and u� are the means of all the yi and
ui , respectively, within the patch. Define a Hamiltonian
for the current problem as

H(t, %, %� , `, �̀ , *y , *y� )

] f (t, %, %� , `, �̀ )+*yg(t, %, %� , `, �̀ )

+*y� g(t, %� , %� , �̀ , �̀ ). (24)

Here *y is a costate variable corresponding to the state
variable, y, and we have introduced the costate variable,
*y� , corresponding to the average state variable, y� . Last
(Day and Taylor, 1997), define the inclusive fitness effect
of an individual (termed the actor) increasing its control
variable slightly from the current, resident value, û(t), at
time t (denoted by 2Wincl(t)), as

2Wincl(t)| û ] _�H
�`

+r�
�H
� �̀ &%=%� = y*, `= �̀ =û

, (25)

where r� is the relatedness of a randomly chosen patch
member (including the possibility of it being the actor
itself) to the actor (Michod and Hamilton, 1980). y* is
the state variable generated by the ESS control, u*(t), in
a monomorphic population through differential Eq. (23),
i.e.,

dy*
dt

= g(t, y*(t), y*(t), u*(t), u*(t))
(26)y*(t0)= y0 .

Theorem 4.1. Consider the model outlined above.
Suppose the organism in question is diploid, and allelic
effects are additive. Further, suppose that the functions f
and g are continuous and have continuous first derivatives
in t, y, y� , u, and u� , and 8 is continuous and has continuous
first derivatives in y and y� . Suppose that the Hamiltonian,
H, is given by (24), and 2Wincl(t)| û is given by (25). If
u*(t) is an ESS, then it is necessary that there exist con-
tinuous, nonzero costate variables, *y and *y� , that are
functions of time, such that the following conditions are
satisfied:

&
d*y

dt
=

�H
�%

*y(t1)=
�8
�y

(t1) (27)

&
d*y�

dt
=

�H
�%�

*y� (t1)=
�8
�y�

(t1) (28)

Day and Taylor
if a0<u*<a1 then 2W incl(t)|u*=0 (29)

if u*=a0 then 2W incl(t)|u*�0 (30)

if u*=a1 then 2W incl(t)|u*�0, (31)



where (27) and (28) are evaluated at `= �̀ =u* and
%=%� = y*, i.e., *y , *y� , and all yi are the costate and state
variables corresponding to a monomorphic population at
the ESS, u*(t). Conditions (27) and (28) specify the time
dynamics of the costate variables *y and *y� . Conditions
(29)�(31) are a version of Hamilton's Rule for dynamic
games between relatives (Day and Taylor, 1997).

4.2.1. Proof of Theorem 4.1. We will use Definition
4.1 to derive the necessary conditions presented in
Theorem 4.1. Recall that (21) is the expected fitness of a
randomly selected mutant allele. In particular, with
probability � such an allele will be in a homozygote and
therefore have fitness WAA(u, û). With probability
(1&�) it will be in a heterozygote and therefore have fit-
ness WAa(u, û). Thus we need to specify W AA(u, û) and
WAa(u, û) for a patch-structured population. In what
follows it will be convenient to refer to the individual that
houses the randomly chosen mutant allele as the ``focal''
individual.

Suppose the focal individual is a mutant homozygote.
This homozygote will exist in a particular patch type,
where patch type refers to the total number of
heterozygous and homozygous mutants in the patch.
There are a finite number of patch types for this focal
homozygous mutant, say |AA , and we label them as
k=1, ..., |AA . Similar considerations apply if the focal
individual is heterozygous and there will again be a finite
number of patch types, say |Aa . Label these as
k=|AA+1, ..., |AA+|Aa . Now label all individuals in a
k-patch from i=1 to n in a consistent way so that all
individuals labeled ik are genetically identical. Now, let-
ting Pk and pk be the probabilities that the focal mutant
homozygote or heterozygote is found in a k-patch then,
using (22), we have

WAA(u, û)= :
|AA

k=1

Pk {|
t1

t0

f (t, yIk , y� k , u, u� k) dt

+8( yIk , y� k)= (32)

W Aa(u, û)= :
|AA+|Aa

k=|AA+1

pk {|
t1

t0

f (t, yIk , y� k ,
u+û

2
, u� k) dt

+8( yIk , y� k)= . (33)

A few comments about notation are required here. We
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use yIk to denote the state variable of the focal individual,
and u� k= 1

n �i u ik and y� k= 1
n �i yik . Also, uik denotes the

control strategy of an ik individual, and this can be
either u, (u+û)�2, or û depending on whether it is a
homozygote mutant, heterozygote, or homozygote nor-
mal, respectively. Notice that yIk will be identical to one
of the yik because the focal individual is included in the
calculation of the mean. This is true for the control
variable as well. Last, we point out that the probabilities
Pk , pk , and � are determined by the way in which the
mutant alleles are distributed throughout the population.
These probabilities come from the statistical quasi-equi-
librium that was mentioned near the end of Section 4.1.
Therefore, in general they will depend upon the entire
mutant and resident control functions, u(t) and û(t),
from t0 to t1 . In particular, they will be functionals of u(t)
and û(t), having the form

|
t1

t0

!(u(t), û(t)) dt (34)

for some function, !( } , } ). Now, using (32) and (33),
Expression (21) is

W ] |
t1

t0
{� :

|AA

k=1

Pk f (t, yIk , y� k , u, u� k)

+(1&�) :
|AA+|Aa

k=|AA+1

pk f \t, yIk , y� k ,
u+û

2
, u� k+= dt

+� :
|AA

k=1

Pk8( yIk , y� k)

+(1&�) :
|AA+|Aa

k=|AA+1

pk8( yIk , y� k). (35)

Also, the state variable of each individual ik obeys
differential Eq. (23), i.e.,

dyik

dt
= g(t, yik(t), y� k(t), uik(t), u� k(t))

(36)

yik(t0)= y0 .

The notation in (35) can be greatly simplified by defining
_k(u, û) ] �Pk+(1&�) pk where pk=0 for
k=1, ..., |AA and Pk=0 for k=|AA+1, ..., |AA+|Aa

(notice that here we explicitly display the dependence of
this probability distribution on u(t) and û(t)). Also, we

345
define vk ] u for k=1, ..., |AA and vk ] (u+û)�2 for
k=|AA+1, ..., |AA+|Aa . Notice that vk is the control
variable of the focal individual, given that it occurs in a
patch of type k. Therefore, (35) can be written



W=|
t1

t0

:
|AA+|Aa

k=1

_k(u, û) f (t, yIk , y� k , vk , u� k) dt

+ :
|AA+|Aa

k=1

_k(u, û) 8( yIk , y� k). (37)

Expression (21) is now completely specified, and we can
use Definition 4.1 to characterize the ESS control, u*(t).
In particular, if we set û(t)=u*(t), then Expression (37)
must be maximized in u(t) at u(t)=u*(t). This maxi-
mization problem is quite complex because the control
variable u(t) appears not only in the function f as in
standard dynamic optimization problems, but also in the
functionals _k(u, û) (which themselves have the form
(34)). Therefore, the objective functional (37) is not in
the form of a standard dynamic optimization problem.
This motivates us to define an additional expression:

W0 ] |
t1

t0

:
|AA+|Aa

k=1

_̂k f (t, yIk , y� k , vk , u� k) dt

+ :
|AA+|Aa

k=1

_̂k 8( yIk , y� k), (38)

where _̂k ] _k(û, û)| û=u* . Expression (38) differs from
(37) only in that the probability distribution, _k(u, û), is
evaluated at u=û=u* so that (38) is in the form of a
standard dynamic optimization problem, and therefore it
is a problem to which Theorem 3.2 can be applied.

With this setup, the structure of the proof of Theorem
4.1 consists of the proof of each of a series of four implica-
tions:

(i) u* is an ESS O u* is an optimal control for W
(expression (37));

(ii) u* is an optimal control for W O u* is a weak
optimal control for W;

(iii) u* is a weak optimal control for W O u* is a
weak optimal control for W0 ;

(iv) u* is a weak optimal control for W0 O u*
satisfies Theorem 4.1.

Implication (i) follows directly from Definitions 3.1
and 4.1. Implication (ii) follows directly from Definitions
3.1 and 3.2. Therefore, we need only demonstrate that
implications (iii) and (iv) are true. The proof of implica-
tion (iii) is contained in the following lemma.

Lemma 4.1 (Proof of Implication (iii)). The proof
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consists of demonstrating that dW�dh=dW0 �dh at h=0.
In Expression (37) for W, _k(u, û), f (t, yIk , y� k , vk , u� k),
and 8( yIk , y� k) are all functions of h, and, as noted in
Definition 3.2, this dependence enters through both the
control variable and the state variable. For the present pur-
poses, however, all that matters is that the derivative with
respect to h exist at h=0, and this is guaranteed as dis-
cussed in Definition 3.2. Therefore, to simplify notation we
display the dependence on h as _k[h], fk[h], and 8k[h]
(this notation is used in the proof of this lemma only). Thus
(37) and (38) can be written

W=|
t1

t0

:
|AA+|Aa

k=1

_k[h] fk[h] dt+ :
|AA+|Aa

k=1

_k[h] 8k[h]

(39)

and

W0=|
t1

t0

:
|AA+|Aa

k=1

_k[0] fk[h] dt dt

+ :
|AA+|Aa

k=1

_k[0] 8k[h]. (40)

Now calculating,

dW
dh } h=0

=|
t1

t0

:
|AA+|Aa

k=1
\d_k[0]

dh
fk[0]+_k[0]

dfk[0]
dh + dt

+ :
|AA+|Aa

k=1
\d_k[0]

dh
,k[0]+_k[0]

d8k[0]
dh +

=|
t1

t0

:
|AA+|Aa

k=1

_k[0]
dfk[0]

dh
dt

(41)

+ :
|AA+|Aa

k=1

_k[0]
d8k[0]

dh
. (42)

The second equality, follows from the fact that fk[0] and
8k[0] are independent of k and that, because
�k _k[h]=1 for all h, we also have that �k

d_k[0]
dh =0.

Calculating dW0 �dh at h=0 also gives (42).

All that remains in the proof of Theorem 4.1 is to prove
implication (iv). This is done simply by noting that,
because u* is a weak optimal control for W0 (from
implication [iii]), we can apply the results of Theorem
3.2 to W0 . Implication (iv) then follows directly. It turns
out, however, that applying Theorem 3.2 to W0 involves
a considerable amount of calculation. The reason is that,
although the only control and state variables that appear
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in (38) are yIk , y� k , vk , and u� k , these variables alone are
not sufficient to apply Theorem 3.2 because the differen-
tial equation governing y� k (not shown) involves all the
yik and uik . Therefore, Theorem 3.2 must be applied using



all the yik and u ik , and this high dimensionality results in
somewhat tedious calculations. These are presented in
the Appendix, and they complete the proof of Theorem
4.1.

4.3.Pairwise Interactions

There is an analogous version of Theorem 4.1 for
pairwise interactions as well. Suppose an individual's
fitness depends on its own state variable, y(t), the state
variable of one other individual, y~ (t), its own control
variable, u(t), and the control variable of the other
individual, u~ (t). In particular, suppose an individual's
fitness can be specified by an expression of the form

|
t1

t0

f (t, y(t), y~ (t), u(t), u~ (t)) dt+8( y(t1), y~ (t1)). (43)

Suppose that the control variables, u and u~ , are piecewise
continuous and must lie within some closed interval,
U=[a0 , a1]. Assume that the state variable of the
individual in question obeys the differential equation

dy
dt

= g(t, y(t), y~ (t), u(t), u~ (t)) y(t0)= y0 , (44)

and the state variable of the other individual obeys the
same differential equation with the variables y and y~ (and
u and u~ ) interchanged. Now define a Hamiltonian func-
tion for the current problem as

H(t, %, %� , `, �̀ , *y , *y~ )

] f (t, %, %� , `, �̀ )+*yg(t, %, %� , `, �̀ )

+*y~ g(t, %� , %, �̀ , `). (45)

Here *y~ is a costate variable corresponding to the state
variable, y~ . Also, notice that the form of the Hamiltonian
defined here for pairwise interactions is slightly different
than that defined for interactions in a patch-structured
population (i.e., (24)). Last, define the inclusive fitness
effect of an individual (termed the actor) increasing its
control variable slightly from û at time t (denoted by
2Wincl(t)), as

2Wincl(t)| û=_�H

�`
+r�

�H

� �̀ &%=%� = y*, `= �̀ =û
, (46)
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where r� is the relatedness of the other individual to the
actor, and y* is the state variable generated by the ESS
control, u*(t), through differential Eq. (44).
Theorem 4.2. Suppose the organism in question is
diploid and allelic effects are additive. Further, suppose
that the functions f and g are continuous and have con-
tinuous first derivatives in t, y, y~ , u~ , and u~ and that 8 is
continuous and has continuous first derivatives in y and y~ .
Suppose that the Hamiltonian, H, is given by (45), and
2Wincl(t)| û is given by (46). If u*(t) is an ESS, then it is
necessary that there exist continuous, nonzero costate
variables, *y and *y~ , that are functions of time, such that
the following conditions are satisfied:

&
d*y

dt
=

�H
�%

*y(t1)=
�8
�y

(t1) (47)

&
d*y~

dt
=

�H

�%�
*y~ (t1)=

�8
�y~

(t1) (48)

if a<u*<b then 2W incl(t)| u*=0 (49)

if u*=a then 2W incl(t)|u*�0 (50)

if u*=b then 2W incl(t)|u*�0, (51)

where (47) and (48) are evaluated at `= �̀ =u* and
%=%� = y*, i.e., *y , *y~ , y, and y~ are the costate and state
variables corresponding to a monomorphic population at
the ESS, u*. Conditions (47) and (48) specify the time
dynamics of the costate variables *y and *y~ . Conditions
(49)�(51) are again a version of Hamilton's Rule for
dynamic games between relatives.

The proof of this theorem is analogous to that of
Theorem 4.1.

5. THE EVOLUTION OF RESOURCE
ALLOCATION STRATEGIES

To illustrate the use of the above theorems, we now
analyze the resource allocation model introduced in
Section 1. Mirmirani and Oster (1978) have analyzed a
similar model for a special case of the function b and for
pairwise interactions among plants using a differential
game between two players. We discuss their model
further in Section 6.

Using Theorem 4.1, the Hamiltonian (24) for this
problem is
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H(%, %� , `, �̀ , *y , *y~ )

=(1&`) b(%, %� )+*y`b(%, %� )+*y� �̀ b(%� , %� ). (52)



Now, applying Theorem 4.1 gives the following necessary
conditions that an ESS, u*(t), must satisfy:

&
d*y

dt
]

�H
�%

=(1&u*)
�b
�y

+*yu*
�b
�y

*y(T )=0 (53)

&
d*y~

dt
]

�H
�%�

=(1&u*)
�b
�y�

+*yu*
�b
�y�

+*y� u* \�b
�y

+
�b
�y� +

*y� (T )=0 (54)

and

if 0<u*<1 then 2Wincl(t)| u*=0 (55)

if u*=0 then 2Wincl(t)| u*�0 (56)

if u*=1 then 2Wincl(t)| u*�0, (57)

where

2W incl(t)| u*=_�H
�`

+r�
�H
� �̀ &%=%� = y*, `= �̀ =u*

(58)

=b(*y+r� *y� &1). (59)

If (59) is positive then u*=1, and if it is negative then
u*=0. This follows from (55)�(57) which is a dynamic
version of Hamilton's Rule.

Now to solve for the ESS schedule, u*(t), we work
backward in time from t=T. From differential Eqs. (53)
and (54) we can see that

2Wincl(T )|u*=&b. (60)

Therefore, from Conditions (55)�(57), u*(T )=0. Also
notice that *y and *y� are continuous and therefore
2Wincl(t)| u* is continuous as well from (59). It follows
that either 2Wincl(t)| u*<0 for all t or else there is some
interval (t*, T] in which 2Wincl(t)| u*<0 where t* is
defined by

2Wincl(t*)| u*=0. (61)

We will assume that the latter is true (otherwise u*(t)=0
for all time). Thus using (59) in (61) gives

*y(t*)+r� *y� (t*)&1=0. (62)
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Now because 2Wincl(t)| u*<0 in the interval (t*, T],
u*(t)=0 on this interval from (56). As a result, Eq. (1)
implies that y* is constant in this interval, and therefore
b( y*, y*) is constant in this interval as are its derivatives.
Therefore differential Eqs. (53) and (54) have the
solutions

*y(t)=
�b
�y

} (T&t) (63)

*y� (t)=
�b
�y�

} (T&t) (64)

in this interval. Also, since *y(T )=0 and *y� (T )=0, we
have

*y(t)>0 (65)

*y� (t)<0 (66)

on this interval from the assumptions about how b( y, y� )
changes with changes in y and y� .

Now, since b is not zero, using (63) and (64) in (62),
t* satisfies

�b
�y

} (T&t*)+r�
�b
�y�

} (T&t*)&1=0 (67)

or

t*=T&
1

�b
�y

+r�
�b
�y�

. (68)

For a feasible t* to exist we assume that

�b
�y

+r�
�b
�y�

>0 (69)

for all 0<r� �1. In particular, we assume

�b
�y

+
�b
�y�

>0. (70)

Now we must determine what happens prior to t*.
A singular control (Bell and Jacobsen, 1975) results if
2Wincl(t)| u*=0 over some interval of time, [t**, t*].
For this to occur, the time derivative of 2Wincl(t)| u*

(from the left) must be zero at t=t*, i.e.,

Day and Taylor
_ d
dt

2W incl(t)|u*& t=t*
=0 (71)
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or, by (59),

db
dt

(*y+r� *y� &1)+b \d*y

dt
+r�

d*y�

dt +=0. (72)

From (62) this requires that

d*y

dt
+r�

d*y�

dt
=0, (73)

which, using differential Eqs. (53) and (54), and noting
that *y=1&r� *y� from (62) when 2Wincl(t)|u*=0, requires

�b
�y

+r�
�b
�y�

=u*r� {*y�
�b
�y�

(r� &1)= . (74)

Notice that u* would have to be negative for this equality
to hold, which is not feasible. Therefore a singular con-
trol is not possible, and thus in some interval prior to t*,
u*=1.

We now show that 2Wincl(t)|u*>0 at all times prior to
t*, which, from Conditions (55)�(57), implies that u*=1
at all times prior to t*. Because b>0 by assumption, we
can see from (59) that we simply need to show that
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*y&r� *y� &1>0 at all times prior to t*.
From what we have shown above, u*=1 in some time

interval immediately prior to t*. Therefore, differential
Eqs. (53) and (54) are
axis is time remaining and the horizontal axis is the relatedness of two
line, :=0.5; dashed line, :=0.8.

&
d*y

dt
=*y

�b
�y

*y(t*)>0 (75)

&
d*y�

dt
=*y

�b
dy�

+*y� \�b
�y

+
�b
�y� + *y� (t*)<0 (76)

in this interval, where the conditions on *y(t*) and *y� (t*)
follow from (65) and (66). Now *y+r� *y� &1 will increase
backward in time from t* in this interval if

d
dt

[*y+r� *y� &1]

=&*y \�b
�y

+r�
�b
�y� +&*y� r� \�b

�y
+

�b
�y� +<0. (77)

For ease of handling, we write the right-hand side of the
equality in (77) as

&(*yA+*y� B). (78)

Now A and B are both positive from (69) and (70), and
we also have that A>B because calculating A&B gives
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�b
�y

+r�
�b
�y�

&r� \�b
�y

+
�b
�y� +=(1&r� )

�b
�y

, (79)
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which is positive. Therefore,

*yA+*y� B>(*y+*y� ) B, (80)

because *y>0. Hence, *y A+*y� B will be positive as t
moves backward from t* if we can show that *y+*y� is
positive for such t. The time dynamics of *y+*y� are
given by

d*y

dt
+

d*y�

dt
=&(*y+*y� ) \�b

�y
+

�b
�y� + , (81)

and since *y+*y� >0 at t* and �b
�y+ �b

�y� >0, *y+*y�

increases backward in time from t*. Therefore, t* as
defined by Eq. (68) is the only time in [0, T] at which
2Wincl(t)| u*=0. The ESS allocation strategy, u*(t), con-
sists of a period of pure growth (u*=1) up until t* and
then a switch to a period of pure reproduction (u*=0)
from t* until the end of the season, T.

As a specific example, suppose

b( y, y� )= y&:y� , (82)

where 0�:<1. Then Eq. (68) for the switching time
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from pure growth to pure reproduction is

t*=T&
1

1&r� :
. (83)
utput and the horizontal axis is the relatedness of two randomly chosen
ed line, :=0.8.

Notice that if 1�(1&r� :)>T then the ESS is to never
grow since 2Wincl<0 for all time. From this equation we
can see that the time remaining in the season when the
switch occurs, T&t*, does not depend on the length of
the season, but it does depend on the relatedness
parameter, r� , as well as the competition parameter, :. In
fact, higher relatedness (higher values of r� ) and stronger
competitive effects (higher values of :) both result in an
earlier switching time (Fig. 1). Stronger competition
decreases the value of a unit increase in size and therefore
the ESS is to begin reproducing earlier. Similarly, higher
relatedness also decreases the (inclusive) value of a unit
increase in size because it has a negative effect on other
patch-mates through competition, and this negative
effect is more important (evolutionarily) if relatedness is
high. In this sense, an individual exhibiting an earlier
switching time can be viewed as being more altruistic
since it is sacrificing some of its own reproductive poten-
tial for the benefit of others. Greater altruism is selected
for when relatedness is high.

Another way to depict this is by plotting an
individual's total reproductive output as a function of the
intrapatch relatedness, r� . This is calculated as

|
T

0
(1&u*(t))(1&:) y*(t*) dt

Day and Taylor
=(1&:) y0 exp \(1&:) \T&
1

1&r� :++ \
1

1&r� :+ ,

(84)



which is plotted in Fig. 2. It can be seen that the total
reproductive output of each plant (or the patch as a
whole) is maximized when r� =1 and that stronger com-
petition results in lower ESS reproductive output.

6. DISCUSSION

We have presented two theorems that can be used to
construct models of dynamic evolutionary games
between relatives. As mentioned earlier, the work of
Mirmirani and Oster (1978) is the only published exam-
ple, to our knowledge, of such a model. In their model,
relatedness was included in a differential game heuristi-
cally by constructing an expression for an actor's
inclusive fitness by analogy with Hamilton's Rule (their
Eqs. 5). This expression was then maximized using
Pontryagin's maximum principle (in the context of a
differential game [Basar and Olsder, 1982]).

Hamilton's Rule is a phenotypic result in that the only
reference it makes to genetics is through relatedness.
Nevertheless, it works (i.e., it gives the same predictions
as a genetic model under certain assumptions) because it
is derived from a genetic model. In the same sense,
Mirmirani and Oster's (1978) approach is phenotypic as
well because it is based on the phenotypic result of
Hamilton's Rule. Their approach was not derived from a
genetic model directly, however, and consequently it was
unclear whether it is genetically valid. Further doubt is
cast on their approach by the fact that, in simple
univariate models, maximizing an individual's inclusive
fitness sometimes gives erroneous results (Grafen, 1979;
Hines and Maynard-Smith, 1979; Mesterton-Gibbons,
1996; Day and Taylor, 1998a).

A comparison of the approach for constructing
dynamic games between relatives derived here (which is
genetically valid) with the approach of Mirmirani and
Oster (1978) reveals that their approach is, in general,
incorrect. The expression for inclusive fitness that is max-
imized in their approach (Mirmirani and Oster, 1978;
Eqs. 5) is substantially different (and much simpler) than
the expression that is maximized in a genetic model (our
Eq. 37). The genetic details of the phenotypic approach
are contained in the single composite parameter of
relatedness, whereas the genetic details of Expression
(37) enter in an explicit, mechanistic way through the
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probability distribution, _k(u, û). This distribution con-
tains complete information about how the mutant alleles
are distributed throughout the population whereas
relatedness does not. As a result there are two levels on
which maximizing the phenotypic expression of
Mirmirani and Oster will differ from maximizing the
genetic expression. First, the relatedness parameter of the
phenotypic approach is treated as a constant when in fact
such genetic properties will depend upon the strategies u
and û. Accounting for this dependence on u is what
makes maximizing the genetic Expression (37) much
more difficult. Second, suppose we ignore the dependence
of _k on u and simply work directly with Expression (38).
Then we can apply Theorem 4.1 to this expression. In
doing so, the application of (9) to (38) nevertheless leads
to a much more complicated condition than when it is
applied to the phenotypic expression used by Mirmirani
and Oster (see Eqs. [4.69] and [4.70] of Day, 1998). The
reason is that, from a genetic standpoint, more informa-
tion is required to use this general maximization condi-
tion for characterizing u*(t) than that which is contained
in the relatedness parameter.

It turns out, however, that it is possible to obtain con-
ditions that u*(t) must satisfy which do involve related-
ness as the sole genetic parameter. The key to doing so is
to focus on the first-order, necessary conditions that
must be satisfied by u*(t) when Expression (37) is maxi-
mized. These are the conditions given by Theorems 4.1
and 4.2. Therein lies the utility of implications (ii) and
(iii) in the proof of Theorem 4.1. Implication (ii) shows
that u* is necessarily characterized by first-order condi-
tions, and implication (iii) shows that such first-order
conditions will be the same whether we acknowledge the
dependence of _k on u or not. Consequently, by applying
Theorem 3.2 (which contains only first-order conditions)
to (38), it is possible to obtain a result in which all the
genetic details of the model are encapsulated by the single
parameter of relatedness. Problems arise only if we try to
obtain more general results by using Condition (9) of
Theorem 3.1, because this requires information about the
distribution of mutant alleles that is not contained in
relatedness. As already mentioned, similar conclusions
have been reached in the context of (static) univariate
games between relatives (Grafen, 1979; Hines and
Maynard-Smith, 1979; Mesterton-Gibbons, 1996; Day
and Taylor, 1998a).

Interestingly, Mirmirani and Oster (1978) used the
first-order conditions that correspond to the maximiza-
tion of their phenotypic expression for inclusive fitness,
and such first-order conditions happen to coincide with
those for the maximization of the correct, genetic expres-
sion derived here (Day, 1998). Consequently, although
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their general approach is not genetically accurate, their
focus on first-order necessary conditions resulted in con-
clusions that, coincidentally, happen to be valid. It is
possible, however, to obtain some of the results of



Mirmirani and Oster more directly using Theorem 4.2
(Day, 1998). Furthermore, Theorem 4.1 provides a
simple approach for extending the dynamic model of
Mirmirani and Oster (1978) to allow for interactions
among more than two plants (Section 5).

This also brings up an important assumption men-
tioned briefly in Section 4.1. In describing the genetic
model, we assumed that the distribution of mutant alleles
in the population reaches a statistical quasi-equilibrium.
This is described by the probability distribution, _k(u, û).
What this means is that _k(u, û) is the probability dis-
tribution that is attained after the mutant allele has been
introduced at very low frequency and the movements of
such mutant alleles have reached a statistical equi-
librium. For it to be sensible to use this equilibrium, it is
often necessary to assume that the mutant allele has a
small effect (i.e., u is. close to û) because otherwise, a
significant change in allele frequency might occur before
such an equilibrium is reached. This poses no problem
for Theorems 4.1 and 4.2, however, because, being
phrased as first-order conditions, these theorems
implicitly consider only mutants of small effect. It is
also significant that relatedness in these theorems is
calculated using the distribution _̂k . This is the distribu-
tion that would be attained if the mutant allele were
neutral. Calculations of relatedness for neutral alleles are
generally much simpler than for nonneutral alleles
because simple arguments based on identity by descent
can be used.

A particularly striking result to emerge from our
analysis is the dynamic version of Hamilton's Rule, for
example, Conditions (29)�(31). This is completely
analogous to the scalar (static) version of Hamilton's
Rule (Hamilton, 1964; Day and Taylor, 1997) except
with the Hamiltonian playing the role of the fitness func-
tion. This rule can be applied just as the static version of
Hamilton's Rule is applied and it provides the same
degree of power for analyzing evolutionary models. In
particular, to obtain a conceptual understanding of the
factors at play in determining the ESS, it is not always
necessary to even explicitly calculate u*. Rather one can
simply calculate the inclusive fitness effect and interpret
each of the terms to understand the balance that must be
struck along the ESS control at each point in time (Day
and Taylor, 1997).

The theorems presented here can be used to address a
very wide variety of evolutionary questions. Several
models have been constructed to help understand the
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evolution of resource allocation strategies in annual
plants (Cohen, 1971; Denholm, 1975; Mirmirani and
Oster, 1978; King and Roughgarden, 1982a,b; Iwasa
and Roughgarden, 1984). The generalization of the
maximum principle presented here has allowed us to easily
extend these analyses to more realistic scenarios that
include competition between related individuals. In
plants this is likely to be important because plants are
sessile, seed dispersal is often limited, and individuals can
have large effects on the resource acquisition ability of
neighbors through shading.

Of course, Theorems 4.1 and 4.2 can be applied to any
evolutionary model for a dynamic character, not only
problems involving the evolution of resource allocation
strategies. For example, Theorem 4.1 has been used to
model the evolution of temporal patterns of cooperation
and altruism (Day and Taylor, 1998b). Most models for
the evolution of cooperation and altruism are static and
seek a single ESS level of cooperation or altruism. If a
group of individuals can interact over a period of time,
however, then there is no reason to expect that the ESS
level of cooperation or altruism should remain the same
over the entire period. Theorem 4.1 was used to deter-
mine the factors that promote different levels of coopera-
tion and altruism over time, and these results might
prove useful for understanding the evolution of temporal
patterns such as the breakdown in cooperation that
occurs in some annual bumblebee colonies as the season
progresses (van der Bloom 1985; Duchateau and
Velthuis, 1988). Interestingly, they have implications for
the evolution of meiotic nondisjunction and trisomy in
humans as well (Day and Taylor, 1998c). Similarly, the
evolution of a pathogen's temporal schedule of virulence
within a host might fall into this category. Previous work
has examined the evolution of virulence schedules in
detail but has ignored relatedness among virus strains
within a host (Sasaki and Iwasa, 1991). The above
theorems provide a route to generalize these results by
incorporating kin selection.

We close by mentioning a few caveats. First, all of the
above results assume a symmetry among individuals that
greatly simplifies the analysis. It would be very useful to
have similar results for other, asymmetric interactions
between individuals as well and we are currently explor-
ing this possibility. Second, the above framework
assumes that the control strategy used by an individual is
genetically fixed. In other words, an individual is com-
mitted to a temporal strategy and cannot alter this
strategy in relation to new information gained over time.
In the language of differential games, the ESS strategy,
u*, is an open-loop solution (Basar and Olsder, 1982).
Including the possibility of short time scale interactions
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and responses to learning greatly complicates models
because the optimal strategy then has to be specified in a
type of feedback (closed-loop) form. In other words, the
ESS must be specified, conditional upon the state of the



individual and all interacting individuals at all times.
At present obtaining results for such models still poses
a considerable challenge. Similarly, incorporating sto-
chasticity in the changes of state variables (Houston et al.,
1988) might also be more realistic for some models, but
again this requires that the ESS be specified in a feedback
form. Lastly our assumption of a single-locus diallelic
model was made to derive results in the simplest possible
genetic setting. Many inclusive fitness models employ
this approach but it would be useful to explore more
general (and realistic) genetic scenarios.

APPENDIX

For the dynamic optimization problem represented by
W0 (i.e., expression [38]), there are (|AA+|Aa)(n+1)
state variables (i.e., yIk and yik) that we will keep track of
and therefore we need to introduce as many costate
variables, which we denote by *Ik and *ik where
i=1, ..., n and k=1, ..., |aa+|Aa . In what follows we
will use the notation f | ik and g| ik to denote the functions
f and g when evaluated at y= yik , u=uik (and y� = y� k ,
u� =u� k). From (6), the Hamiltonian for this problem
(which we denote by H� ) is

H� = :
|AA+|Aa

k=1

_̂k f | Ik+ :
|AA+|Aa

k=1

*Ikg| Ik

+ :
n

i=1

:
|AA+|Aa

k=1

*ik g| ik . (A1)

Applying Condition (8) for *Ik gives

&
d*Ik

dt
=

�H�
�yIk

=_̂k
�f
�y } Ik

+*Ik
�g
�y} Ik

(A2)

*Ik(t1)=_̂k
�8
�y } Ik

. (A3)

Now evaluating this at u=û=u*, which from the state
variable differential Eqs. (36) implies yik= yIk= y*,
gives
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&
d*Ik

dt
=_̂k

�f
�y

+*Ik
�g
�y

*Ik(t1)=_̂k
�8
�y

. (A4)
The |AA+|Aa differential equations in (A4) can be
added to give one differential equation for *y ]
�|AA+|Aa

k=1 *Ik :

&
d*y

dt
=

�f
�y

+*y
�g
�y

*y(t1)=
�8
�y

. (A5)

This is (27) of Theorem 4.1.
Applying condition (8) for *ik gives

&
d*ik

dt
=

�H�
�y ik

(A6)

=_̂k
�f
�y� } ik

1
n

+*Ik
�g
�y� } Ik

1
n

+*ik
�g
�y } ik + :

n

j=1

*jk
�g
�y� } jk

1
n

(A7)

and

*ik(t1)=_̂k
1
n

�8
�y� } Ik

. (A8)

Evaluating this at u=û=u*, which from the state
variable differential Eqs. (36) implies yik= yIk= y*,
gives

&
d*ik

dt
=_̂k

�f
�y�

1
n

+*Ik
�g
�y�

1
n

+* ik
�g
�y

+
�g
�y�

1
n

:
n

j=1

*jk

(9)

*ik(t1)=_̂k
1
n

�8
�y�

.

This is (|AA+|Aa) n differential equations that can be
reduced to one as follows. First, *ik=*jk for all i, j=
1, ..., n. To see this define the variable D=*ik&*jk for
i{ j. This satisfies the differential equation

dD
dt

=
d*ik

dt
&

d* jk

dt
=&D

�g
�y

D(t1)=0. (A10)

This has the unique solution D#0. Therefore, define
*

*k ] * ik=*jk . Now write (A9) as

d*
*k �f 1 �g 1 �g �g
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&
dt

=_̂k �y� n
+*Ik �y� n

+*
*k �y

+*
*k �y�

(A11)

*
*k(t1)=_̂k

1
n

�8
�y�

.



This is now (|AA+|Aa) differential equations which can
be reduced to one differential equation in *y� ]
n �|AA+|Aa

k=1 *
*k :

&
d*y�

dt
=

�f
�y�

+*y
�g
�y�

+*y�
�g
�y

+*y�
�g
�y�

(A12)

*y� (t1)=
�8
�y�

.

This is (28) of Theorem 4.1.
What remains is to derive (29)�(31) where 2Wincl(t)| û

is given by (25). First, using the fact that *y=*Ik �_̂k and
*y� =n*ik �_̂k , H� can be written

H� = :
|AA+|Aa

k=1

_̂k f (t, y*, y*, vk , u� k)

+*y :
|AA+|Aa

k=1

_̂k g(t, y*, y*, vk , u� k)

+*y�
1
n

:
|AA+|Aa

k=1

_̂k :
n

i=1

g(t, y*, y*, uik , u� k).

(A13)

Now, evaluating Conditions (10)�(12) we have,

�H�
�u } u=û=u*

= :
|AA+|Aa

k=1

_̂k \�f
�u

dvk

du
+

�f
�u�

du� k

du +
+*y :

|AA+|Aa

k=1

_̂k \�g
�u

dvk

du
+

�g
�u�

du� k

du +
+

*y�

n
:

|AA+|Aa

k=1

_̂u
k :

n

i=1
\�g

�u
duik

du
+

�g
�u�

du� k

du +
(A14)

=
�f
�u

:
|AA+|Aa

k=1

_̂k
dvk

du
+

�f
du�

:
|AA+|Aa

k=1

_̂k
du� k

du

+*y \�g
�u

:
|AA+|Aa

k=1

_̂k
dvk

du

+
�g
�u�

:
|AA+|Aa

k=1

_̂k
du� k

du +
+*y�

�g
:

|AA+|Aa _̂k
:
n duik

354
\�u k=1 n i=1 du

+
�g
�u�

:
|AA+|Aa

k=1

_̂k
du� k

du + (A15)
=
�f
�u

E_̂k _dvk

du &+
�f
�u�

E_̂k _du� k

du &
+*y \�g

�u
E_̂k _dvk

du &+
�g
�u�

E_̂k _du� k

du &+
+*y� E_̂k _du� k

du & \
�g
�u

+
�g
�u� + , (A16)

where E_̂k
[ } ] is the expectation weighted by the prob-

ability distribution, _̂k . Equation (A16) has the same
sign as

�f
�u

+*y
�g
�u

+
E_̂k _du� k

du &
E_̂k _dvk

du &
\�f

�u�
+*y

�g
�u�

+*y� \�g
�u

+
�g
�u� ++ .

(A17)

The remainder of the proof will now show that r� of
Theorem 4.1 is equal to the coefficient of the parentheti-
cal term in (A17), i.e., r� =E_̂k

[
du� k
du ]�E_̂k

[
dvk
du ]. Recall that r�

is simply the relatedness of a randomly chosen patch
member (including the possibility of it being the actor
itself) to the actor when the mutant allele is rare.

By definition, the relatedness of a randomly chosen
patch member to an actor is given by

r� =
cov(gx , gy)

var(gx)
, (A18)

where gx is the genotype of an actor and gy is the geno-
type of the randomly chosen patch member (Michod and
Hamilton, 1980). Calculating the covariance, using, �� ,
P� k , and p̂k to denote the corresponding probabilities
evaluated at u=û=u* gives

cov(gx , gy)

=E[ gx gy]&E[ gx] E[ gy]

=E[ gx gy | gx=1] Pr[gx=1]

+E[ gx gy | gx=1�2] Pr[gx=1�2]& g� 2

=E[ gy | gx=1]((1&�� ) g� 2+ g� �� )

+ 1
2E[ gy | gx=1�2] 2(1&�� ) g� (1& g� )& g� 2
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=g� [E[ gy | gx=1]((1&�� ) g� +�� )

+E[ gy | gx=1�2](1&�� )(1& g� )& g� ]
(A19)



and calculating the variance gives

var(gx)=E[ g2
x]&E[ gx]2

= 1
42g� (1& g� )(1&�� )+(1&�� ) g� 2+ g� �� & g� 2

=g� [ 1
2(1& g� )(1&�� )+�� +(1&�� ) g� & g� ].

(A20)

Therefore,

r� =
\E[ gy | gx=1]((1&�� ) g� +�� )

+E[ gy | gx=1�2](1&�� )(1& g� )& g� +
1
2 (1& g� )(1&�� )+�� +(1&�� ) g� & g�

(A21)

and, for rare mutants,

lim
g� � 0

r� =
�� E[ gy | gx=1]+(1&�� ) E[ gy | gx=1�2]

�� +(1&�� ) } 1
2

.

(A22)

Now, from the definition of uik , duik �du is the genotype of
an ik individual. More precisely, it is equal to 0, 1�2, or
1 depending on whether the individual is a normal type,
a mutant heterozygote, or a mutant homozygote.
Additionally, we have

du� k

du
=

1
n

:
n

i=1

du ik

du
, (A23)

which is the expected genotype of a randomly chosen
individual in a k patch. Therefore, E[ gy | gx=1]=
�|AA

k=1 P� k
du� k
du and E[ gy | gx=1�2]=�|AA+|Aa

k=|AA+1 p̂k
du� k
du .

Similarly, from the definition of vk , we have that dvk �du
is the genotype of the focal individual (i.e., the actor). In
particular, it is 1�2 if the actor is a heterozygote and it is
1 if the actor is a mutant homozygote. Consequently,
(A22) can be written

lim
g� � 0

r� =

�� :
|AA

k=1

P� k
du� k

du
+(1&�� ) :

|AA+|Aa

k=|AA+1

p̂k
du� k

du

�� :
|AA

k=1

P� k
dvk

du
+(1&�� ) :

|AA+|Aa

k=|AA+1

p̂k
dvk

du
(A24)

du�
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=
E_̂k _ k

du &
E_̂k _dvk

du &
. (A25)
The last equality follows from the definition of _̂k . This
demonstrates that Expression (A17) is equal to Expres-
sion (25), and using this in Conditions (10)�(12)
produces Conditions (29)�(31) of Theorem 4.1. This
completes the proof. As an aside, it is interesting that the
coefficient of relatedness, E_̂k

[
du� k
du ]�E _̂k

[
dvk
du ], can be inter-

preted as the ratio of the expected genotype of a ran-
domly selected patch member to the expected genotype
of the focal individual, from the perspective of a mutant
allele. In other words, it is a weighting of the fraction of
a random patch member's genotype that is mutant to the
fraction of the focal individual's genotype that is mutant,
from the perspective of a mutant allele.
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