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ABSTRACT: In intrademic selection models, individuals interact in
groups, and this interaction phase is usually treated as a point in
time. It is likely, however, that interactions take place over some
time period. If selfishness is treated as a quantitative trait and this
time period is explicitly considered, how does the evolutionarily
stable strategy (ESS) level of selfishness or altruism change through
time? Our main result is that, under biologically reasonable condi-
tions, the ESS level of selfishness is expected to increase. Two of
the assumptions behind this result are that there is a finite time
horizon on the life of the group and that reproduction occurs con-
tinuously throughout the time period in question. If there is no
time horizon or if all reproductive output is concentrated at the
end of the time period, the ESS level of selfishness is constant. Our
main result suggests that care must be taken when interpreting
empirical data that is collected at different times and that altruism
will often be most pronounced when groups first form. The model
also demonstrates that, when individuals interact repeatedly over
time, the evolution of altruism can be promoted through a mecha-
nism other than reciprocity.

Keywords: altruism, selfishness, reproductive value, inclusive fit-
ness, control theory, evolutionarily stable strategy.

Models of intrademic selection provide an important and
simple tool for understanding the evolution of altruistic
and selfish behavior (Price 1970, 1972; Hamilton 1975;
Wilson 1975, 1980; Wade 1985; Frank 1986; Wilson 1990
and references therein). In these models, organisms are
imagined to live in groups within a larger metapopula-
tion, and variation within and among groups allows nat-
ural selection to act at both the individual and the group
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level. In perhaps the simplest scenario, an individual’s
fitness is assumed to increase with its degree of selfish-
ness and to decrease as the average level of selfishness in
the group increases (see, e.g., Frank 1995). Altruistic be-
havior can evolve if there is sufficient variation in average
selfishness among groups. Group selection models and
kin selection models of patch-structured populations can
both be viewed as examples of intrademic selection mod-
els differing only in the way that they describe the varia-
tion within and among groups, the latter using principles
of relatedness (Wade 1985; Breden 1990; Wilson and
Dugatkin 1997).

In intrademic selection models, groups are formed
from a global pool of individuals. Fitness-determining in-
teractions then take place within these groups, and all re-
productive output enters the global pool from which new
groups form (Wilson 1990). Most models assume that
each individual makes a single “decision” during the in-
teraction phase. For example, supposing selfishness (or
altruism) is a quantitative trait, each individual exhibits a
single level of selfishness. This assumption- is made
largely for simplicity, but in many situations individuals
are faced with the same “decision” repeatedly during the
period of time that the group exists. For example, indi-
viduals in insect colonies can act altruistically or not con-
tinuously throughout the life of the colony. Similarly,
when multiple strains of a virus infect a host, each virus
can exhibit selfishness or not continuously throughout
the period of infection. In such cases what is the evolu-
tionarily stable strategy (ESS) temporal sequence of deci-
sions? Should the level of selfishness predicted from
models allowing single decisions simply be maintained
over time, or should the level of selfishness increase or
decrease during the existence of the group? If selfishness
is expected to change, then care must be taken when in-
terpreting empirical data. High selfishness might be
found in one instance and low selfishness in another sim-
ply because the observations were made at different
times. If so, this implies that altruism should be easiest to
detect at a certain stage in a group’s existence as well.



This aspect of the evolution of altruism appears to have
received little attention, and it is the focus of the present
article.

To address this question we need an intrademic selec-
tion model that allows individuals to vary their selfish-
ness through time. One class of such models in which in-
dividuals are faced with the same “decision” repeatedly
are those based on the game, iterated prisoner’s dilemma
(IPD; Axelrod and Hamilton 1981; Axelrod 1984; Brembs
1996). In these models, however, repeated interactions
promote the evolution of altruism through reciprocity
(Mesterton-Gibbons and Dugatkin 1992), whereas our
purpose for examining repeated interactions is different.
We assume that intrademic selection (group selection in
Mesterton-Gibbons and Dugatkin 1992) is the primary
factor responsible for the evolution of any altruistic be-
havior (rather than reciprocity), and within this context
we wish to ask how the ESS level of selfishness changes
during the existence of groups. Models based on IPD do
not accommodate this type of question easily and conse-
quently we use an alternative framework (Day and Taylor
1997). This framework is better suited to the question at
hand, and, as it turns out, it also reveals that repeated in-
teractions can promote the evolution of altruism through
a mechanism other than reciprocity.

Even the simplest models that allow individuals to in-
teract over a period of time are considerably complex.
For example, determining which strategies are evolution-
arily stable in the simplest versions of IPD is difficult
(Farrell and Ware 1989). Because the question of interest
here is more difficult yet, some simplifying assumptions
are necessary to make any progress. Our primary simpli-
fication is that we do not allow individuals to learn. For
example, in IPD, individuals can use knowledge of their
opponent’s past behavior in deciding what to do next; in
fact it is learning that allows reciprocity (Axelrod and
Hamilton 1981; Axelrod 1984). We assume that such
learning is not possible and that individuals effectively
“choose” their temporal strategy when the groups form.
This assumption may be too restrictive for some situa-
tions, but in many cases it is not unreasonable. Obvi-
ously, if it is not possible to gain information from other
individuals in the group, or if it is not possible to use
available information, then this assumption is not prob-
lematic. It is also reasonable, however, when the plastic
response of behavior to available information is slow rel-
ative to the duration of group existence. A wide range of
traits can be considered within the framework of altruis-
tic behavior, including dispersal rate (Hamilton and May
1977; Taylor and Frank 1996), sex ratio (Wilson and Col-
well 1981), life-history characteristics (Mirmirani and
Oster 1978; Day and Taylor 1997), virus replication
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schedules (Eshel 1977; Axelrod and Hamilton 1981; Sa-
saki and Iwasa 1991; Frank 1992), and meiotic drive
strategies (Axelrod and Hamilton 1981; Kloss and Nesse
1992; Day and Taylor 1998), to name a few. For many of
these traits the assumption of a slow or nonexistent plas-
tic response to available information is probably accept-
able.

Neglecting learning can also provide many important
benefits. Because models involving IPD have dominated
the literature in this area we believe that it is worth con-
sidering the insight that can be provided by models with
alternative simplifying assumptions (Dugatkin et al. 1992;
Connor 1995). The assumption of no learning is a good
choice for two reasons. First, it simplifies the model
enough that we can easily increase its generality in other
respects. For example, it allows for any degree of relat-
edness among the N members of each group, for a
greater generality in fitness functions, and most impor-
tant, it allows the behavior of group members to affect
the likelihood of future interactions. Second, it removes
the possibility of reciprocity as it occurs in IPD, and
therefore we can determine how repeated interactions
can enhance the evolution of altruism through different
mechanisms. Also, perhaps equally important, it allows a
model that is still amenable to an intuitive analysis.

The Basic Model

The model we develop is used as a general exploratory
tool, similar to the way in which IPD has been used, and
is not meant represent a specific biological system. It is
helpful however, to have particular biological examples
in mind when trying to intuit the results. Therefore,
when appropriate, we use specific biological examples to
illuminate key points. It should be borne in mind, how-
ever, that the model is intended to capture the general
principles at play rather than the specific details of any
particular system.

We follow the tradition of patch-structured ESS mod-
els by considering the fate of rare mutants in a mono-
morphic population (Maynard Smith and Price 1973;
Maynard Smith 1982; Taylor and Frank 1996; Day and
Taylor 1997). The modeling framework that we use is a
combination of inclusive fitness theory (Hamilton 1964)
and noncooperative dynamic game theory (Basar and
Olsder 1982), as detailed in an earlier article of ours (Day
and Taylor 1997). This framework provides an inclusive
fitness approach for modeling dynamic games between
relatives.

Suppose individuals associate into groups of size N
and remain in these groups over a continuous period of
time from 0 to T. We consider a single quantitative trait,
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z(t), which is interpreted as the degree of selfishness, and
choose a scale of measurement so that z lies between 0
and 1. We take z = 0 to be the minimum- possible
selfishness (maximum altruism) and z = 1 to be the
maximum possible selfishness (minimum altruism). Note
that z is a function of time because we are interested in
determining how the ESS value of z changes over the in-
terval 0—T. We also allow individuals within the group to
be related and define R as the expected relatedness be-
tween two randomly chosen group members with re-
placement. Consequently, if groups are randomly
formed, R = 1/N (Frank 1996; Taylor and Frank 1996;
Day and Taylor 1997). Altruism in such models is some-
times termed weak altruism (Wilson 1990). We also note
that, the predictions of such phenotypic models of kin
selection are compatible with those of more explicit ge-
netic treatments provided that selection is weak and, in
the case of diploidy, genetic effects are additive (various
such results are summarized in Taylor 1996; T. Day and
P. D. Taylor, unpublished data).

Following standard life-history theory (Roff 1992;
Stearns 1992), we consider an individual’s fitness to be
the sum from 0 to T of its probability of survival to time
t, I(t), multiplied by its fecundity at time f, m, that is,
W = [Ilmdt. This assumes that reproductive output is re-
alized continuously as it is produced over time (see Koz-
lowski and Wiegert 1986). Below, in the section titled
“Variations of the Model,” we consider an alternative
scenario whereby all reproductive output is realized at
the end of the time period. There we also consider the
case where T = oo, A finite time horizon, T, would apply
to organisms for which the groups have a maximum life
span. For example, this would be true for a patch-struc-
tured population of annual plants (e.g., Impatiens ca-
pensis) or a population of annual bumblebee colonies
(e.g., Bombus terrestris), where T represents the end of
the season. The case T' = oo would apply when there is
no fixed time horizon, as might be the case for popula-
tions that reproduce approximately continuously in an
aseasonal environment. In either case, however, we as-
sume that all reproductive output goes to form new
groups, as is the case in all intrademic selection models.

How should survival, I(#), be specified? It is helpful to
distinguish between two types of mortality: patch mortal-
ity and individual mortality. It is probably reasonable to
assume that there is some type of patch mortality because
a high average selfishness might decrease the probability
that the patch as a whole survives. For example, if the
patch is a host organism, then a high average selfishness,
z, (e.g., resource exploitation) would increase the mortal-
ity rate of the host. Alternatively, a high average selfish-
ness might result in the group dissociating sooner than
would otherwise occur. Provided that members of the

dissociated group do not enter the global population,
these two scenarios are equivalent. In this way, the strate-
gies of group members affect the probability of future
encounters with one another. At the same time, individ-
uals within the patch might suffer variable mortality de-
pending on their individual selfishness. Accounting for
such individual mortality is very difficult because patch
size will then change, and the calculation of an individu-
al’s expected fitness then entails knowledge of the proba-
bility distribution of patch size through time. Therefore,
as a first attempt, we restrict attention to patch mortality
only and assume that patch mortality rate at any time de-
pends on z at that time (i.e., W(z)). The effect of al-
lowing individual mortality as well is considered in the
discussion. The probability that the patch survives until
time ¢ is, therefore,

I(t) = exp(—Joludr). (1)

We allow an individual’s fecundity, m(z(t), z(t)), at
any time to depend on its level of selfishness as well as
on the average level of selfishness in its group at that
time. With these assumptions, an individual using the
temporal strategy z() in a patch where the average tem-
poral strategy is Z(t) has a fitness given by

,
Wiz z) = J I(tym(z(t), z(t))dt. (2)
0
To make it reasonable for z to represent selfishness we
make the further restrictions:

du/dz > 0, (3a)

om/dz > 0, (3b)
and

om/oz < 0. (3¢)

Inequality (3a) states that the patch mortality rate in-
creases as the average selfishness in the patch increases.
Inequalities (3b) and (3c) state that an individual’s fe-
cundity increases as its selfishness increases but decreases
as the patch average selfishness increases. Thus if an indi-
vidual decreased its selfishness at time ¢ it would be sacri-
ficing its own current reproduction to increase that of
other individuals and also to increase the survival pros-
pects and thereby the future reproduction of the patch as
a whole.

The ESS level of selfishness over time can be deter-
mined from the fitness function (2) using a combination
of inclusive fitness and control theory (Day and Taylor
1997; app. A). However, because the mathematical con-
cepts involved in control theory are unfamiliar to many
biologists, we present a heuristic, intuitive argument in



the text and relegate the more careful formulation of the
model and its analysis to the appendices.

Our heuristic argument is based on reproductive value,
V(t), which is simply an individual’s expected future re-
productive output at time ¢, given it has survived to time
t (Fisher 1958). This is easily expressed using the integral
in (2) as

T
V(t) = LJ I(t)m(z(7), z(1))dT. (4)
1(t) Ji

Now if we consider what happens in a small interval of
time from t to t + At, we can decompose equation (4)
into current plus expected future reproductive output
(Williams 1966; Schaffer 1974; Taylor et al. 1974). The
current output over the small time interval is m(z(#),
z(t))At. The expected future reproductive output is
found by noting that, with probability 1 — p(z(#))At, the
individual will survive from ¢ to ¢ + At and then have a
reproductive value of V(t + At). Therefore, adding both
terms gives

V() = m(z, 2)At + (1 — wW@)AnV(t + Ar).  (5)

If the behavior of an individual does not affect the
fitness of other individuals and there is no density-de-
pendent population regulation, it is well known that
choosing the entire function z(#) that maximizes fitness
is equivalent to choosing the value of z at each time that
maximizes reproductive value (RV) at that time (Wil-
liams 1966; Taylor et al. 1974; Schaffer 1974, 1979). In
other words, if we consider any time interval ¢ to t + At
along the optimal strategy, it is not possible for an indi-
vidual to increase its RV at that time by altering z within
that time interval. Here, however, things are more com-
plicated because fitness (eq. [2]) is frequency dependent,
and the interacting individuals are related. We can pro-
ceed in analogy with the simple case, however (and get
the correct answer!), by supposing that, for any time in-
terval along the ESS strategy z*(t), it is not possible for
an individual to increase its inclusive RV by altering z
within that time interval. An expression for the inclusive
RV effect of an individual altering its z value within the
interval ¢ to t + At can be constructed in analogy with
the construction of the standard inclusive fitness effect
(see below; Hamilton 1964). To avoid the use of addi-
tional jargon, below we simply refer to the “inclusive RV
effect” as the “inclusive fitness effect.”

Proceeding, then, from equation (5) the inclusive
fitness effect of a small increase in selfishness through
current reproductive output is simply (dm/dz +
Rom/0z)At. The inclusive fitness effect of a small in-
crease in selfishness through expected future reproduc-
tive output is —(Rdu/dzV (¢t + Ar))At; note that all par-
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tial derivatives are evaluated at the population-wide
strategy, z(t) (i.e., z(t) = z(t) = 2(t)). Thus, dividing by
At and considering the limiting case of small time
steps, this suggests that the continuous-time inclusive
fitness effect at time f, AW,;,4(#), can be written

om om R

AWinc ={— + R—
@ (82 9z dz

V(r)) . (6)
In other words, this is the inclusive fitness effect of an in-
dividual increasing its selfishness by a small amount at
time ¢ (given it has survived to time f), when in a mono-
morphic population using strategy z. Provided the ESS is
not z* = 0 or z* = 1, the inclusive fitness effect (6) eval-
uated at the ESS (i.e, 2z = z*) must equal 0 (Taylor
and Frank 1996). Note, however, that (6) is a function of
time so that this condition must hold at every time ¢ be-
tween 0 and T. This is a dynamic (i.e., time-dependent)
version of Hamilton’s Rule (Day and Taylor 1997).

The inclusive fitness effect (6) captures an important
trade-off. Since AW, () = 0 at all times along z*(#) (ex-
cept if z* = 0 or 1), the ESS level of selfishness balances
current and future inclusive fitness effects at all times.
This suggests that the ESS level of selfishness will change
through time whenever the nature of this trade-off
changes through time. Since neither m nor W is explicitly
time dependent, consideration of equation (6) suggests
that this should occur only when an individual’s repro-
ductive value, V(1), changes through time.

At this stage we could choose specific functions for m
and W and characterize the ESS strategy by determining
how the above trade-off changes through time. Instead,
however, we show that some general qualitative predic-
tions can be made by placing only mild restrictions on m
and [. Some of these are technical and of little biological
consequence (table 1). Others, however, are motivated by
what is biologically reasonable.

From equation (6) it is clear that the nature of the
functions (dm/dz + RIm/0z),-;-; and du/dz|,-; is what
determines how current and future inclusive fitness ef-
fects trade off at any particular time. The restrictions we

make are
i om Ra—’f <0 (7a)
dz \ oz 0z /)._,_.
and
i<d—’“_l) =0. (7b)
dz\dz),_.

To interpret these conditions, consider a monomorphic
population at Z. Condition (7a) on m means that the in-
clusive fitness effect through current reproductive output
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Table 1: Technical assumptions regarding the fecundity and mortality

functions

Function Assumption

m(z, z) It has continuous derivatives up to second order on (0, 1]
m(z, z) > 0 and bounded for z € [0, 1].

wz) It has continuous derivatives up to second order on (0, 1]

w(z) > 0 and bounded away from zero for z € [0, 1]
; bounded on [0, 1].

of an increase in selfishness is greater in an altruistic
population (i.e., z near 0) than in a selfish population
(i.e., Z near 1). In others words, there are diminishing re-
turns in this inclusive fitness effect as the background
level of selfishness increases. We have already specified
patch mortality rate as an increasing function of average
selfishness, and therefore condition (7b) on W means that
patch mortality rate is either increasing linearly or in-
creasing and concave up. That is, the effect of increased
selfishness is higher when the level of selfishness is high.
Both of these restrictions seem biologically reasonable.

Under these conditions it can be demonstrated that
z*(t) is nondecreasing, and in fact it is strictly increasing
as long as 0 < z* < 1. In particular, this implies that it
is never possible for a constant, intermediate level of
selfishness or altruism to be an ESS. The formal argu-
ment for this is presented in appendix B, but the idea be-
hind the argument deserves mention. Recall that z*(¢)
will change only if an individual’s RV, V(¢), changes
through time. Since time is finite, V(#) clearly decreases
near the time horizon. It can also be easily shown, how-
ever, that V(t) is strictly decreasing at all times (app. B,
eq. [B9]). Now the ESS value of z must keep equation (6)
equal to 0; therefore, if V(t) decreases over time, then it
follows easily from inequalities (7a) and (7b) that z*
must increase.

As an example, suppose our assumptions approximate
reality for a population of annual bumblebee colonies.
The model then predicts that as the end of the season
draws near, the level of cooperation among individuals
within a colony should decrease (selfishness should in-
crease). When the colony first forms, the RV of an indi-
vidual is large, and it is therefore important to keep mor-
tality low so that this expected future fitness can be
realized. This means having a high level of cooperation
to keep colony mortality rate low. As the end of the sea-
son is approached, however, RV decreases until at t = T,
V(T) = 0, and there is no future fitness remaining. The
effect of having a high colony mortality rate therefore be-
comes unimportant, and, consequently, the optimal level
of cooperation declines. Interestingly, this is exactly what

happens in Bombus terrestris colonies (van der Bloom
1985; Duchateau and Velthuis 1988).

The model also predicts that, if there is an upper and
lower bound on the level of cooperation possible, then
we never expect to see individuals within the colony ex-
hibiting a constant, intermediate level of cooperation
over time. All of these results hold for any m and u satis-
fying the above restrictions (7a) and (7b), but other
choices may generate the same predictions as well.

As an aside, we note that equation (6) also suggests
that if the strategies of group members do not affect the
expected life of the group, then the ESS level of selfish-
ness is constant through time. In this case conditions
(3b) and (3¢) hold but condition (3a) does not (du/dz
= 0). Therefore, equation (6) becomes

om om
AW a(t) = — + R— . 8
0 ( & az)m (8)

Notice that an individual’s RV is no longer relevant for
determining the ESS. In the context of the bumblebee ex-
ample, if the degree of cooperation within a colony did
not affect the likelihood of realizing future reproductive
success, then there would be no “reason” for individuals
to alter their level of cooperation through time. Although
an individual’s RV still declines to 0, the likelihood of
it obtaining future reproduction is not influenced by its
strategy, and therefore there is no trade-off between the
present and the future. This seems unlikely to be true for
social insects, but it is possible that group mortality rate
is independent of the group average selfishness in other
cases.

Finally, to get a feeling for how the ESS level of
selfishness is altered when other factors change, we con-
sider a specific mathematical example: m(z, z) = z/z and
Wz) = W, + Pz. These functions might be suitable when
an individual using z in a z group gains a share z/z of
local resources (per unit time), and a high average re-
source exploitation rate z results in a high group mortal-
ity (Frank 1995). It is easily checked that these choices
satisfy our assumptions, and using the framework in ap-
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Figure 1: The ESS level of selfishness over time. Results are us-
ing the functions m(z, z) = z/z and Wz) = W, + Pz. Time
units have been chosen so that T = 1, and p, = 0.1 for all re-
sults. A, The ESS level of selfishness through time for different
degrees of relatedness and B = 1: dotted line, R = 0.7; dashed
line, R = 0.85; and solid line, R = 0.95. B, The ESS level of
selfishness through time for different values of § and R = 0.7.
A large value means that an increase in the group average level
of selfishness decreases the likelihood of future interactions by
a large amount. Dotted line, B = 1; dashed line, p = 3; and solid
line, B = 5.

pendix A (Day and Taylor 1997), the ESS strategy z*(t)
is readily determined (fig. 1). Notice that, in this exam-
ple, the ESS level of selfishness z*(t) increases through
time and reaches the maximum level sometime before
the group’s time horizon T. Also, as expected, at any par-
ticular time the level of selfishness decreases as relat-
edness increases, although the qualitative temporal trend
of increasing selfishness always remains. Figure 1B also
demonstrates that when changes in average selfishness
have large effects on group mortality rate, the ESS level
of selfishness is, on the whole, lower. Again, however,
selfishness always increases through time.
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Variations of the Basic Model
What if T = oo?

In some situations it might be reasonable to suppose that
groups can persist indefinitely. In such cases we have T
= oo, Note, however, that this does not imply that groups
persist forever because there is still mortality. Rather, it
means that there is no fixed time horizon at which the
group dissociates. Under this assumption the ESS level of
selfishness, z*(1), is constant through time (app. B). This
is intuitively reasonable as well. Since there is no time
horizon, an individual’s RV is constant. Regardless of the
time #, the future always “looks the same.” As a result,
the trade-off between current and future inclusive fitness
effects does not change through time and therefore nei-
ther does the level of selfishness.

What If All Reproductive Output Is Realized at t = T?

In some situations individuals’ reproductive outputs
might not be realized until the patch dissociates at time
T. For example, perhaps all reproductive output is re-
leased at the end of a season, and if a patch happens to
die before that time its members obtain zero output. Al-
ternatively, suppose the development of a single viable
offspring requires the investment of energy over a con-
stant and nonnegligible development time and that off-
spring that obtain more nourishment over this period are
more valuable. In this case the assumption of continuous
reproductive output is not be acceptable, and this situa-
tion is equivalent to that where all output is released at
the end of the season with T now representing develop-
ment time. In either case, how does the ESS level of
selfishness change during the existence of the group?

This problem can be handled using a control theoretic
setup as well (app. C). Again, however, we present a heu-
ristic argument here. The easiest way to visualize this
problem is to imagine that each individual produces re-
productive output continuously over the entire interval
from 0 to T but that it is stored and not released until
the time horizon is reached. Let X(f) = [im(z z)dt de-
note the amount of reproductive output stored up by
time t but not yet released. The fitness function in this
case is then given by

W(z, z) = (T)X(T) )

since an individual must survive to the time horizon to
realize any fitness (and this occurs with probability /(T)),
and in this event it realizes a total reproductive output of
X(T).

We can proceed in the same way as previously and de-
fine an individual’s reproductive value at time t. This is
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simply the probability of surviving from time ¢ to the
time horizon, multiplied by X(T):

vin = Dxr) (102)
I(t)
= %(x(t) +J m(z(T), Z(T))d’t>- (10b)

We have split X(T) in equation (10b) into two pieces,
the output stored before and after time f, to emphasize
that in order to specify an individual’s reproductive value
at time ¢ we now need to know X(¢) as well as t. For ex-
ample, two individuals, both at time #, might nevertheless
differ in expected future reproductive output because
they differ in the amount of reproductive output stored
by time . Now, again we are interested in calculating the
inclusive fitness effect of an individual increasing z within
a small time interval. Thus, considering the interval ¢ to
t + At, we can approximate (10b) as

Vir) = It + Ar)  I(T)
I(t) I(t + Ar)
vy T (11a)
X (X(t) + J m(z, z)dt + I m(z, E)d‘r)
_ _ I(T)
= (1 p,(z)At)l(t T AT)
T (11b)
X (X(t) + m(z, z)At + J m(z, Z)dr).

Expression (11b) highlights the components of V(¢) that
will change when z is changed within the interval ¢ to
t + At. The inclusive fitness effect of a small increase in
z in this interval is then (Taylor and Frank 1996)

g 1D (om pam
(L= @A a g (82 +Raz>m

T

- Ry, M)

dz I(t+ At)

t+At

(X(t) + m(z, z)At + J m(z, E)dt),

or, dividing by Ar and taking the limit as At becomes
small,

AW, 1(t)=[@ dm | pom —R@V(t)} L (12)
At)\dz oz dz

Notice the similarity between equations (12) and (6). The
only difference is that the inclusive fitness effect through
current reproduction in (6) is now multiplied by I(T)/
I(¢). The factor I(T)/I(t) is the probability of survival
from time ¢ until the time horizon and gives the “value”
of a unit of current output stored at time ¢ in terms of

realized reproductive output. With continuously released
reproduction, a unit of current output is worth an entire
unit of realized reproduction. When reproduction is re-
leased at the time horizon, however, this is no longer
true. Because there is the possibility of death prior to the
time horizon (which results in zero realized reproductive
success), a unit of current output must be weighted by
the probability of actually surviving to realize it.

To determine the ESS strategy, we need to know how
changes in both V and I(T)/I(t) through time affect the
trade-off in (12). From equation (10), V(¢) = X(T)I(T)/
I() at all times; the expected future reproductive success
at time ¢ is the product of the probability of survival
from ¢ until the time horizon and the expected output at
the time horizon, X(T). Therefore, both I(T)/I(t) and
V(t) change through time in the same way, and this
causes the trade-off in (12) to remain constant. This
means that z*(t) remains constant as well (app. C).

Discussion
General Conclusions

Most models of intrademic selection treat the stage of
the life cycle when individuals associate into groups as
a point in time. In most situations, however, groups
actually exist over a period of time, and therefore individ-
uals have the opportunity to interact with other group
members continuously for some duration. The results
presented here demonstrate that if this temporal na-
ture of groups is explicitly incorporated into intrademic
selection models, some general predictions can be
made with regard to how we expect the level of selfish-
ness and altruism to change systematically during this
period.

If groups persist indefinitely after they are formed,
then the ESS level of selfishness is constant over this pe-
riod. However, if there is a finite time horizon for a
group’s existence, as would occur for annual organisms,
for example, the situation changes. In this case, when
more selfish strategies result in greater group mortality,
the ESS level of selfishness can never decrease over time
and can remain at a constant level only if it has attained
some maximum value beyond which it cannot increase.
This result applies to situations in which reproductive
output is realized continuously as it is produced. How-
ever, if all reproductive output is realized only at the end
of the group’s existence, then a constant level of selfish-
ness or altruism is the ESS.

There are several ways in which the present model
might be extended to consider other, more sophisticated
biological scenarios. For example, the fecundity and mor-
tality functions can be made to vary with time to model
phenomena such as senescence or growth. With senes-



cence, m will decrease and/or W will increase with time.
In this case we would expect predictions to be qualita-
tively similar to the above results for finite T, even if
groups persist indefinitely, because a finite group time
horizon is really an extreme form of senescence that oc-
curs at a point in time.

The present model assumes that within-patch mortal-
ity is absent or it is low and group size is large so that
group size remains approximately constant (Day and
Taylor 1997). It would be interesting to incorporate
within-patch mortality by allowing patch size to change
through time. The additional complexity that this intro-
duces makes it likely that only some special cases could
be handled. In some situations it seems plausible that the
temporal decrease in patch size that results will increase
average patch relatedness and thereby favor an increase
in altruism through time. Alternatively, if individual
mortality is positively related to an individual’s level of
altruism, we might expect groups to contain a smaller
proportion of altruists as time progresses as a result of
differential culling. It is unclear, however, how this
would affect the level of altruism exhibited by the surviv-
ing members of the group (we thank R. Holt for this sug-
gestion). In fact, in this case it would be useful to distin-
guish between the temporal trend in altruism at two
levels: temporal changes in altruism at the group level
and temporal changes in altruism at the level of surviving
individuals since these need not be the same. Clearly, a
more careful treatment is required to answer these ques-
tions, and as of yet we have not managed to obtain any
results. Future work in this direction is ongoing, how-
ever, and we are considering the effects of allowing forms
of class structure (e.g., male/female, dominant/subordi-
nate, etc.) among individuals as well.

Very little data are yet available to test the model ade-
quately, but there is some suggestive evidence from dif-
ferent sources. As already mentioned, in some annual
bumblebee colonies there is a breakdown in cooperation
near the end of the season, and individuals become in-
creasingly aggressive (van der Bloom 1985; Duchateau
and Velthuis 1988). The situation is more complicated
than in the present model, however, in that there are dif-
ferent classes of individuals and colony size changes. An-
other example involves trisomy in humans. It has been
hypothesized that the increase in frequency of trisomic
pregnancies in humans with increasing maternal age re-
sults from increased chromosomal drive (Axelrod and
Hamilton 1981; Kloss and Nesse 1992; Day and Taylor
1998). Here, a female is thought of as a patch and indi-
vidual  chromosomes exhibit an increasingly aggressive
“drive” strategy as the female ages.

Other evidence might be sought in viral infections. If
multiple strains of virus infect a host we might expect an

Temporal Patterns of Selfishness and Altruism 109

increasing level of virulence as the host ages (Eshel 1977;
Axelrod and Hamilton 1981; Sasaki and Iwasa 1991;
Frank 1992). Also, studies of the annual plant Impatiens
capensis have suggested that individual plants may sacri-
fice personal size to increase the survival of their group
(Stevens et al. 1995). An examination of this species for
seasonal trends in such “altruistic” behavior might prove
interesting as well. Aside from looking for temporal
trends in selfishness and altruism, the present model
might be tested by examining whether its assumptions
are valid. In particular, for our model to explain tempo-
ral declines in altruism, group mortality rate must in-
crease as the average level of altruism decreases. If a tem-
poral decline in altruism is observed when this
assumption is not met, then other explanations must be
sought. Similarly, it must also be true that reproductive
output is realized continuously during the existence of
the group for our results to explain such temporal trends.

Repeated Interactions Can Promote the Evolution of
Altruism through a Mechanism Other Than Reciprocity

At least three factors have been identified that can pro-
mote the evolution of altruism and cooperation (Dugat-
kin et al. 1992; Mesterton-Gibbons and Dugatkin 1992;
Connor 1995): reciprocity—this is the effect at the core
of models based on IPD; group selection—this is the ef-
fect at the core of the present model; and by-product
mutualism—this is the effect whereby cooperative behav-
ior is an incidental by-product of individual selfishness.
These three factors have been proposed in addition to
that of kin selection, but our model effectively treats kin
selection and group selection as a single factor, which we
term intrademic selection.

The vast majority of the literature on models that in-
volve repeated interactions is based on the game of iter-
ated prisoner’s dilemma. In this game, opponents meet
repeatedly with a fixed probability. Because individuals
can learn, they can condition their behavior at any time
on the past behavior of their opponent. In this way the
behavior exhibited by an individual at any time not only
affects its current fitness but its future fitness as well be-
cause it affects the future strategy of its opponent. If it is
likely that the opponents meet again, then each individ-
ual may be more likely to cooperate in the hope of entic-
ing future cooperation by their opponent. As Axelrod
(1984, p. 126) has stated, “Mutual cooperation can be
stable if the future is sufficiently important relative to the
present.” Thus, in models of IPD, the ability to learn
allows repeated interactions to enhance the evolution of
altruism through reciprocity.

The present results demonstrate that repeated interac-
tions can promote the evolution of altruism through a
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different mechanism as well. The primary factor respon-
sible for the evolution of altruism in our model is intra-
demic selection, and this effect is present even in the ab-
sence of repeated interactions. For example, at the time
horizon there are no future interactions, yet a certain de-
gree of altruism might still be favored through intra-
demic selection. This is represented by the balance being
struck between the first two terms of equation (6) at t =
T (the third term is 0 because V(T) = 0). Thus we can
determine how repeated interactions among group mem-
bers affect the ESS level of altruism here by comparing
the level of altruism at the time horizon with that at ear-
lier times.

In general, altruism will be greater at earlier times than
at the time horizon because z*(t) is nondecreasing. As
with reciprocity, greater altruism is favored when future
reproductive output is sufficiently important relative to
current reproductive output. Note, however, that under
reciprocity the balance between current and future repro-
duction is mediated indirectly through the future behav-
ior of opponents. Here such reciprocity is not possible,
and the balance between current and future reproduction
is mediated through the effect that current behavior has
on the probability that the group remains intact. This
mechanism is another route through which repeated in-
teractions can promote the evolution of altruism.
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APPENDIX A

An Outline of the Inclusive Fitness-Control
Theoretic Approach

The following is a brief synopsis of the modeling meth-
odology presented by us elsewhere (Day and Taylor
1997), customized for the present purposes.
Suppose the fitness of strategy z in a patch with an av-
erage of z is given by a function of the form
T

Wz z) = J I(tym(z, z)dt + G(I(T), X(T)). (Al)

In the terminology of economic control theory, z(t) is a
control variable and I(t) and X(t) are state variables, the
integral is an intermediate reward, and the function G is

a terminal reward. For the model with continuous repro-
ductive output (app. B), G(I(T), X(T)) = 0 and there is
only one state variable required (i.e., I(f)). When all re-
productive output is realized at t = T (app. C), both
state variables are required, and we have G(I(T), X(T))
= I(T)X(T) with the integral in (Al) set to 0. The state
variables change through time according to differential
equations specific to the model.

The first step in characterizing the ESS strategy, z*(¢),
is to construct the Hamiltonian function. (Note that this
is named after the mathematician William R. Hamilton,
not the evolutionary biologist Willlam D. Hamilton.)
This is done by taking the integrand of (A1) and adding
to it the equations for the state variable dynamics, each
multiplied by a so-called costate variable:

H = tm+ 8y dl (A2)

dt dt

The costate variables have interesting biological interpre-
tations (Ledn 1976; Iwasa and Roughgarden 1984; Perrin
and Sibly 1993; Day and Taylor 1997). In particular, for
the present article, A represents an individual’s reproduc-
tive value, V (app. B), and A* represents I(T)/I(t), the
probability of surviving from time ¢ until the time hori-
zon (app. C). The inclusive fitness effect of an individual
increasing its strategy slightly at time ¢, when in a popu-
lation monomorphic at z, is given by

(a_H N Ra_f_f) |
0z 0z 2N =2n=4(1)

With these definitions, z*(¢) can then be characterized
as follows: if z*(¢t) is an ESS, then

MT) = aG/E)l(T);

(A3)

[ —d\ide = oH/I (Ada)

: {—d?v‘/dt= QH/DX A(T) = dG/OX(T), (Adb)
if0<z¥(t) <1 then AWj,qls= = 0,

(i) 1 if 2*(r) = 0 then AWyglser = 0,  (Adc)

if Z*(t) =1 then AWilxclli=z‘ = 0)

where everything is evaluated at the ESS strategy, z*().
To connect this approach to the heuristic argument
based on reproductive value presented in the text, it is
necessary to redefine the inclusive fitness effect (A3) by
conditioning it on the probability of survival to time ¢
(i.e., by dividing [A3] by I(¢)).

APPENDIX B
Results for Continuous Reproductive Output

We begin by setting up the model of the text within the
framework outlined in appendix A and then go on to prove
the main results for continuous reproductive output.



The control variable here is the level of selfishness over

time, z(t), and the single state variable is the probability

of survival to time # I(t). From definition (1) the state
variable dynamics are governed by the differential equa-
tion

dlijdt = —ul

10) = 1, (B1)

and we construct the Hamiltonian by introducing the
costate variable V(1):

H = Im — Vul. (B2)

From equation (A4a) the costate variable dynamics in a
monomorphic population (i.e., z = z = 2) is governed
by the differential equation

avidt = u(2)V —m(z, z) V(T)=0. (B3)

This is the continuous-time analogue of equation (5).
The inclusive fitness effect of an individual increasing its
selfishness at time #, given it has survived to time #, is
found by dividing (A3) by I(#):

‘Awincl = l <ai_l + Ra_I:I> ’ (B4)
I\ oz 0Z | - s0-s0

which gives equation (6) of the text.

We now obtain four preliminary results that are appli-
cable when T is finite and that simplify the analysis. To
begin, note that although AW, is treated as a function
of time in the text, it should really be treated as a func-
tion with two arguments, z and V, each of which are
functions of time; that is, AW,(z(t), V(t)).

(1) V' is nonnegative. (B5)

The proof is by contradiction. Suppose that V were nega-
tive at some time between 0 and T. Because m and [ are
both positive, this would imply that dV/dt < 0 for all fu-
ture time from equation (B3), and therefore the terminal
condition V(T) = 0 could never be satisfied. Thus V
must be nonnegative.

(i) AW,4(2, V) is a strictly decreasing function of z.  (B6)

Calculating dAW,,,/9dZ using equation (B4) gives

AWag _ d (9m, pom) _ypd (dh) ()
0z dz\ oz 0z /), ,, dz\dz),_,

From conditions (7a) and (7b) and result (B5), it can be
seen that (B7) is strictly negative.

Hamilton’s Rule implicitly defines z*

(ii1) ) (BS)
as a function of V.

Hamilton’s Rule for this model is given by conditions
(A4c) (Day and Taylor 1997). Conditions (A4c) implic-
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itly define z* as a function of V as follows. For any fixed
value of V, AW, is a strictly decreasing function of
z from result (B6); therefore, there are three possibilities.
If AW,y >0atz=0and AW,y < 0 at z = 1, then by
(A4c) z* cannot be 0 or 1; therefore z* € (0, 1). As a re-
sult, we also have AWj4|.-, = 0, and by the implicit
function theorem (Rudin 1976), AW,,q;=.- = 0 implicitly
defines z* as a function of V. If AW, = 0 for all Z, then,
because AW,,q is strictly decreasing, AW, < 0 for all z
> 0. Therefore, by (A4c), z* = 0. Finally, if AW,y = 0
for all z, then, because AW, is strictly decreasing, AW,
> 0 for all z < 1. Therefore, by (A4c), z* = 1. Thus
there is a unique value of z* for every value of V. As a
useful aside we note that this result also immediately im-
plies that z* is constant if V is constant.

(iv) V is strictly decreasing in time if T is finite.  (B9)

The proof is by contradiction. From result (B8) we can
write differential equation (B3) as a nonlinear, autono-
mous differential equation:

dvidt = U(V)V — M(V) V(T)=0. (B10)

Equation (B10) has a unique solution because the vector
field (the left-hand side of [B10]) satisfies a Lipshitz con-
dition (Perko 1991). Now suppose V was increasing at
some time. Because dV/dt < 0 at t = T, there must be
some time at which dV/dt = 0 for the solution to “turn
around” and decrease to 0. Setting dV/dt = 0, however,
defines a (nonzero) equilibrium solution of (B10), and
therefore, if V were ever to increase it must then intersect
this equilibrium solution. By uniqueness this is not pos-
sible.

With these preliminary results we can now prove the
following:

Result: z*(¢) is nondecreasing at all times ¢t € [0, T].

Proof: First consider the time dynamics of AW,4(z(1),
V() |s=2

dA Vvincllz':z' — aA ‘/Vinf] @
dt 0z dt

aA Wincl d_‘{
oV dt’

(B11)

The partial derivatives of AW, are given by (B7) and

aA Wincl —
oV

—Rd—!:L . (B12)
dz|;-;
To prove the desired result, it is enough to show that if
z* € (0, 1), then z* is increasing and if z* = 1, then z*
remains at 1 for all future time. If z* € (0, 1) at any time,
then Hamilton’s Rule (A4c) implies that AW y|;—,. = 0,
and therefore (B11) equals 0 as well. Now dV/dt is nega-
tive by result (B9), as are expressions (B7) and (B12)
from conditions (3a) and (7a) and (7b). Therefore, set-
ting (B11) equal to 0, we can conclude that dz*/dt > 0.
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The ESS level of selfishness, z*, is therefore strictly in-
creasing if it is not 0 or 1. If z* is constant through time
at z* = 1, then Hamilton’s Rule (A4c) implies that
AW,al;-« = 0. Noting that dz*/dt = 0 and that both
dV/dt and expression (B12) are negative, we can con-
clude from (B11) that AW,,|.-- is increasing through
time. Thus, from Hamilton’s Rule (A4c), z* = 1 for all
remaining time.

Result: It is never possible for a constant, intermediate
level of selfishness or altruism to be an ESS.

Proof: This follows immediately from the previous
proof, where we have shown that if z* € (0, 1), then z*
is strictly increasing through time.

Result: If T = oo, then z* is constant.

Proof: When there is no time horizon, we need to
look for solutions of differential equation (B10) (neglect-
ing the terminal condition) that are bounded for all time,
t € (0, o). The only solution with this property is the
equilibrium solution V = M(V)/U(V). Therefore, be-
cause V is constant in time, z* is constant as well (from
result [B8]).

APPENDIX C

Results for When All Reproductive Output
Is Realized at t = T

For this case fitness is simply X(T) multiplied by the
probability of surviving to time T:

W = I(T)X(T). (C1)

Using the setup in appendix A, there are now two state
variables, | and X. The dynamics of I(#) are again given
by (B1) and the dynamics of X(¢) are

dX/dt = m(z(t), z(t)) X(0) = (C2)
The Hamiltonian is
H = Mm — vul, (C3)

where A" and V are costate variables corresponding to
the state variables X and I, respectively. The temporal dy-
namics of V and A* are given by (A4a) and (A4b):

Vo v vy = x(7) (C4)
dt

and
d?\.)‘ =0 AY(T)=UT). (C5)
dr

The inclusive fitness effect of an individual increasing its
selfishness at time t, given it has survived to time ¢, is
again calculated as in (B4):

R G B 0

From equation (C5) we can see that A*/] = I(T)/l(¢),
and therefore (C6) is equation (12) of the text. We can
rewrite (C6) as

(T)|9m o
I(t)

and therefore the sign of AW, () is determined by the
sign of the expression in the parentheses of (C7). Since
this is not explicitly time dependent, the ESS strategy is
therefore constant.

AW, (t) = m _ g X(T)} , (C7)

0z 0z dz
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