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Abstract. My purpose here is to provide a coherent account of inclusive 
fitness techniques, accessible to a mathematically literate graduate student in 
evolutionary biology, and to relate these to standard one-locus genetic 
models. I begin in Sect. 2 with a general formulation of evolutionary stability; 
in Sect. 3 and Sect. 4 I interpret the basic stability conditions within genetic 
and inclusive fitness models. In Sect. 5 1 extend these concepts to the case of 
a class-structured population, and in Sect. 6 I illustrate these notions with 
a sex ratio example. In Sect. 7 1 give a proof of the result that under additive 
gene action and weak selection, an inclusive fitness argument is able to verify 
an important  stability condition (2.5) for one-locus genetic models. Most of 
these results have been published. 

1 Introduction 

The idea of inclusive fitness was originally proposed by Hamilton (1964) as 
a simple, heuristic explanation for altruistic behaviour among relatives. Since 
that time, it has shown itself to be a powerful method of calculating evolu- 
tionarily stable levels of a variety of types of social behaviour, for example, sex 
allocation, dispersal, parental care, sib-mating, etc. Its importance as an 
analytical tool derives from the simplicity of its calculations and the heuristic 
value of its arguments. It has also been demonstrated by a number of authors 
that these arguments are faithful to genetic processes; in particular, under 
simple general conditions, inclusive fitness arguments are known to give the 
same results as one-locus genetic models. 

I fasten attention on a behavioural parameter ~, called a strategy, which 
I assume lies in the unit interval: 0 < e < 1. For  example, e might represent 
the proportion of sons among an individual's offspring, the probability that an 
offspring will disperse, or the proportion of time or energy devoted to a certain 
activity such as grooming, guarding or feeding. I will restrict attention here to 
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effectively monomorphic populations, that is populations in which only a single 
strategy a is employed. Of course, there will always be population-wide 
variation in the strategies used, but I assume that the range of strategies has 
a distribution with a small variance, and I will work with the mean of this 
distribution. Indeed, for a population with such a distribution, I will assume 
that the fitness of any strategy fl used depends only on fl and on the average 
population strategy cc My general objective is to find a value of ct which is 
evolutionarily stable in the sense that selection pressures caused by differing 
fitness for different strategies will cause the average population strategy to 
converge to cc 

There are a number of modelling approaches that might do this, and we 
are concerned here with two of the simplest and most common: a one-locus 
genetic model and an inclusive fitness model. A main result of this paper will 
be that, with certain assumptions (weak selection and additive gene action) the 
genetic and inclusive fitness models provide mathematically identical condi- 
tions for "population" stability of a strategy a. 

I now summarize the general notation. I assume we have an infinite 
population of individuals. 

the average strategy in the population. 
fl the mutant  strategy. 
ax the strategy used by individual x. 
hx the phenotypic value of x, defined by the formula 

o:~ = h:,fl + (1 - h~)~ (1.1) 

where c~ is the normal strategy. We often interpret hx as the probability that 
x will exhibit mutant  behaviour. 

wy the fitness ofy. In general, wy will depend on the strategy used by a large 
number of individuals x: 

w r = F(many ~ )  . (1.2) 

w~ = Owy/a~ is called the fitness effect of x on y, and is the rate at which 
deviations in the strategy of x affect the fitness of y. Here, the superscript 
x denotes the partial derivative with respect to c~. 

The following notation applies to the genetic model. 
9y the genotypic value of y, defined as the frequency of the mutant allele 

in y. 
Q = E(gr) the population-wide frequency of the mutant allele. 

2 The stability conditions 

I begin by repeating that I restrict attention here to a one-dimensional 
parameter space, the possible strategies e lying in the unit interval [-0, 1]. By 
an a-population, I mean a population in which the average strategy used is e, 
and I assume that the range of strategies used is distributed closely around e. 
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A fundamental assumption is that the expected fitness of an individual will 
depend upon his strategy and the average strategy in the population, and 
I define W(fl, ~) as the fitness of a t-strategist in an a-population. 

Different models will have different ways of constructing this fitness 
function; for example, in a one-locus genetic model, W(fl, a) is the change in 
frequency over one generation of a mutant allele coding for t ,  and in an 
inclusive fitness model, W(fl, a) is the inclusive fitness of a t-individual. I will 
formulate the stability conditions in a general manner, so that they can be 
applied to a number of models. 

In this section we formulate conditions for a population strategy a to be 
stable. In fact there is a rich and often confusing array of definitions and 
terminology in the literature, and I shall try to draw a basic map of some of the 
territory. I find it helpful to identify two general types of stability conditions in 
use, which roughly correspond to the two independent variables of W: the 
mutant  variable fl and the population variable a. Notions of mutant stability 
hold the population strategy a fixed and require that values of fl that are 
different from (but perhaps near to) a be less fit. And notions of population 
stability alter a and ask whether the selective forces which then arise on fl will 
tend to move the average population strategy towards the stable candidate. In 
fact, there is considerable overlap between the notions, but I find this basic 
distinction to be of conceptual help. 

2.1 Mutant stability 

In an a-population, W(a, ~) will measure what we call normal fitness. We say 
that c~ is a Nash Equilibrium if no strategy has greater than normal fitness: that 
is, for all t ,  0 < fl < 1, 

W(fl, ~) < W(c~, ~). (2.1) 

A local version of this condition requires that (2.1) hold only for fl in some 
neighbourhood of ~. An important consequence of (2.1) is the equilibrium 
condition 

OW 
a---t- (/~' ~)l~ =~ = 0 (2.2) 

which is typically used to find candidates for stable equilibria. 
For  e to be stable, in an evolutionary sense, to invasion by alternative 

strategies/~, we need more than (2.1). One obvious idea is to ask for strict 
inequality in (2.1): 

w(fl, ~) < w(a, ~) (2.3) 

for fl + c~. In fact, (2.3) sometimes turns out to be too restrictive. For example, 
in an infinite random mating population, the stable sex ratio is a = 1/2, but in 
a population with average sex ratio 1/2, all sex ratio strategies are equally fit, 
and (2.3) fails. Nevertheless, it is an important sufficient condition for mutant 
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stability, particularly in the form of the second derivative version: 

~zW ~-~ (/?, =) lp== = < O .  

Conditions (2.2) and (2.4) are together stronger than (2.3). 

(2.4) 

2.2 Population stability 

The condition that c~ be population stable is that if we consider a 7-population, 
for 7 near c~, then for/? sufficiently close to 7, /?-fitness should increase with 
/? when 7 is below c~ and should decrease with/? when 7 is above a. 

OW 
0--fl (13, 7) [B =, > 0 for y < c~ 

OW (2.5) 
O--fl (/?' 7)la =~ < 0 for 7 > c~ . 

The second-derivative version of (2.5) is 

- < 0 (2.6) a7  (/?, 7)le  =~ ~ = ,  , 

which can be written 

8zW U W  
(/?, ~) + ~-ff/~(/?, ~)la =~ < 0 .  (2.7) 

0/? z 

Of the two last equivalent formulations, (2.6) is conceptually more trans- 
parent, but (2.7) is easier to verify. In conjunction with the equilibrium 
condition (2.2), (2.6) is slightly stronger than (2.5), but it tends to be 
mathematically easier to verify. 

A number of papers have explored different formulations of the popula- 
tion stability notion (2.5). The idea was introduced by Eshel and Motro (1981) 
and called "strong stability." Subsequently Eshel (1983) defined a "continu- 
ously stable strategy" (CSS) to be an ESS that satisfies condition (2.5). In 
Taylor (1989), I called condition (2.7) "m-stability," but I was not happy with 
the terminology, and not long afterwards, Christiansen (1991) called (2.7) 
"covergence stability," and focused on the importance of this condition for the 
equilibrium to be "attainable" according to any reasonable evolutionary 
dynamic. 

2.3 The relationship between mutant and population stability 

Condition (2.5) implies the equilibrium condition (2.2) but not the Nash 
condition (2.1), and therefore certainly not the stronger condition (2.3). Van 
Tienderen and De Jong (1986 - discussed by Metz et. al. 1992), Christiansen 
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(1991), and Abrams et al. (1993) all give biological examples in which (2.7) 
holds but not (2.1). Abrams et al. (1993) provides the simplest mathematical 
example of this in a model of the intensity with which a resource is exploited. 
Their fitness function has the form: 

W (fl, ~) = -- bfl . 

For example, for the parameter values a -- 1, b = 3/8, it is easily checked that 
= 3 is an equilibrium at which (2.7) holds but (2.1) fails. In fact, the second 

derivative (2.4) is positive. 
In this case, a monomorphic population that starts near the equilibrium 

may converge, but once it has attained equilibrium, selective forces will favour 
alternative mutant  strategies, and there is the possibility of the emergence of 
a stable polymorphism. Such population states are beyond the scope of the 
present work, but Metz (this volume) has a discussion of this phenomenon. 
Also in this volume, Eshel provides an extensive discussion of the general 
concept of stability in evolutionary modelling, and reviews the many results 
which tie the game theoretic notions to the selective action of genotype 
frequencies. 

My preferred candidate for the "compleat" monomorphic stability condi- 
tion in the context of a one-parameter strategy set, would be the Nash 
condition (2.1) together with the population stability condition (2.5) or (2.6). 
The importance of (2.5) in one-locus genetic models is that it involves only the 
t-derivative of fitness evaluated at fl = a, and this is the quantity that can be 
measured by inclusive fitness (see 7.1). 

The E S S  definition 

I should tie these stability notions to the now classic definition of ESS. 
According to this definition, ~ is an evolutionarily stable strategy (ESS) if 
whenever an a-population is invaded by a rare t -mutant  (of frequency e), fl has 
lower fitness than ~ in the perturbed population.  Formally, for fl :l: ~, we 
require 

W(fl,(1 - e)a + eft) < W(a,(1 -- e)a + eft) (2.8) 

for sufficiently small e > 0. Note that this condition has elements of both 
mutant  and population stability. Note also that by taking the limit as 
e approaches zero, (2.8) implies the Nash condition (2.1), but not (2.3) - in the 
limit, the inequality need no longer be strict. This condition also does not 
imply (2.5). 

In the original formulation of Maynard Smith and Price (1973) and 
Maynard Smith (1974), and in many of the subsequent treatments, W(fl ,  ~) is 
affine in the population strategy a (the term "linear" is generally used, though 
"affine" is technically correct; an affine function is a linear function plus 
a constant). Let me first give a general example of how this might arise. 
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Suppose there are two alternative activities, 0 and 1, and an individual's 
strategy is his probability of playing 1, as opposed to 0. Now suppose 
a fl-individual's fitness is determined by random encounters in the population, 
gaining Wk(fl) in an encounter with a k-strategist (k = 0, 1). Since he will 
encounter a 1-strategist a proportion c~ of the time, his average fitness is 

w(/< ~) = (1 - ~)wo q~) + ~wl(/~) 

which is affine in ~. 
With this affine assumption, (2.8) can be written 

(1 - e) W(fl, c~) + eW(fl, fl) < (1 - e)W(c~,~) + eW(~,/3) (2.9) 

and this is easily seen to be equivalent to the condition: 

either W(fl, c~) < W(c~, ~) 
(2.10) 

or W(/3,~) = W(c~,~) and W(/~,/~) < W(~,/~). 

which is how the original definition was formulated. I prefer the form (2.8) 
because it is more general and it explicitly formulates the original intention of 
the definition. In the applications which I have in mind in the present paper 
(sex ratio, dispersal rates, parental investment, time of emergence, probability 
of altruism, etc.), W(fl, ~) is certainly not typically affine in ~. I remark that 
Eshel (this volume) notes that (2.8) and (2.5) are equivalent when W(/?, c~) is 
affine in ~. 

Finally I suggest that in most biological situations, the two notions of 
stability, mutant and population, may not be so far apart. A stronger version 
of (2.5) would require that if we change the population strategy c~ to a nearby 
strategy 7, then mutants which tend to move the strategy back towards c~ are 
more fit than mutants which tend to move the strategy further away from ~. 
More precisely, let me call ~ a stron9 ESS if for fl and y in some neighbourhood 
of c~, 

W(fl, j > W ( y , j  if fl is between a and 7 (2.11) 
W(fl, 7) < W(7, 7) if 7 is between a and fl .  

Although (2.11) does not seem to be an unreasonable strengthening of (2.5), it 
is strong enough to imply the ESS condition (2.8). To see this, first note that 
the first condition of (2.11) implies W(~ , J  > W(~,J  by taking the limit as 
fi approaches a. Now to obtain (2.8), take 7 = (1 - e)a + eft, and then (2.11) 
gives us 

w ( / < J  < w ( 7 , J  < w ( ~ , J  

which is (2.8). 

3 The one-locus genetic model 

For the one-locus genetic model, I suppose there are two alleles at a single 
locus: a normal allele and a mutant allele, and I will take mutant fitness 
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W(fl,~x) to be the change in frequency AQ of the mutant allele over one 
generation. I do not assume that the mutant  allele is rare. 

The mutant  frequency Q changes from one generation to the next if 
individuals with more mutant  genes tend to have greater or less fitness than 
individuals with fewer mutant  genes, that is, if there is some correlation 
between fitness and genotypic value. To be precise, the mutant frequency next 
generation Q^ is the fitness-weighted average of the current genotypic :r 

Q^ = E(w r gr)/E(w,) . (3.1) 

It is important to note that (3.1) assumes Mendelian segregation - that the 
genetic contribution of an individual to her offspring has the same average 
frequency of the mutant  allele as does she. Then the change in mutant  
frequency is 

AQ = Q^  - Q = E(w,o,) /E(w,)  - F 4 O )  

1 
_ E(w,)[E(w,0,11 _ E(w,)~(o)3 = E-]-~,)[Cov(w,,g,)] (3.2/ 

This is Price's (1970) covariance formula for gene frequency change. 
In a one-locus genetic model, AQ is our candidate for W(fl, c O, and so to 

apply the equilibrium condition (2.2) and the stability condition (2.5), we need 
to calculate the derivative of A Q with respect to ft. Differentiating (3.2), using 
the superscript fl to denote derivatives with respect to fl evaluated at fl = c~: 

0AQ [ = 1 rcov(w, ~, o,)e(w,) - Cov(w,,o,)e(w,~)] 
Off e=~ E(wy) 2 

= E~wr ) [Cov(w~, gr)] (3.3) 

Here I have used the fact that when fl = cq the mutant allele has no effect on 
behaviour, and fitness and genotypic value are uncorrelated, that is, 
C~ gr) = 0. Note also that the covariance which remains, Cov(w{, g,), is 
also calculated at fl = ~, that is, when the mutant allele is neutral. This is 
computationally important: when fl # ~, the effect of the mutant allele will 
typically be to alter the distribution of genotypes in the population, and 
statistical calculations in this altered distribution can be difficult. But there 
are simple approaches (e.g. identity by descent) that apply to the neutral 
distribution. 

We get an expression for the derivative of w r with respect to fl from (1.1) 
and (1.2): 

w~ = Eaw/~?o~. a~/~fl = Ew~hx (3.4) 
3C g 

and hence the derivative of AQ, from (3.3), expressed in terms of the pheno- 
types, genotypes, and fitness effects is given by 

= 1 x OAQ Cov(~w,h~, #,)  . (3.5) 
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4 The inclusive fitness model 

The inclusive fitness effect of the strategy ~ is denoted WI(a) and is calculated 
by taking a random "actor" x in an a-population and adding up the fitness 
effects of x over all individuals y in the population (including x), though of 
course we need only include the non-zero terms, each effect weighted by r~y, 
the relatedness of x to y. That is, 

W'(e) = ~rxyw~ (4.1) 
Y 

Here we use the pedigree definition of relatedness (Hamilton 1964, 1972; 
Michod and Hamilton 1980): 

f~' (4.2) rxy = rx~y fxx 

where fxy is the coefficient of consanguinity between x and y defined as the 
probability that random alleles chosen from x and y are identical by descent 
(IBD) at a selectively neutral locus. In a diploid population, f~x = (1 + F)/2, 
where F is the inbreeding coefficient of x. 

Seger (1981) and Pamilo and Crozier (1982) provide valuable discussions 
of the different definitions of relatedness that have appeared. Both papers 
emphasize the importance of understanding what the coefficient is meant to 
describe, and this will be important for us in Sect. 7. Seger pays particular 
attention to the effects of inbreeding, and Pamilo and Crozier discuss ways in 
which the coefficients can be measured. Grafen (1984 and 1985a) provides 
a valuable simple introduction to the ideas of inclusive fitness and its relation- 
ship to old and new ideas of group selection in models of altruistic behaviour. 

Often the fitness effects are specified multiplicatively, that is, we are told 
that a small b-change in the behaviour of x changes the fitness of y by the 
factor 49y8. In this case, ~by is the logarithmic derivative of fitness: ~by = wy~/wr, 
and (4.1) becomes 

W'(~) = ~r~rwy( & . (4.3) 
y 

The stability conditions are obtained by letting the inclusive fitness effect 
WI(cO play the role of the derivative OW/Ofl in (2.2) and (2.5). [Indeed, it is 
interesting to note that W I can actually be interpreted as a derivative. Take 
a population in which all individuals use strategy 7 except the actor x who 
uses ft. Then Wt(e) is the derivative with respect to fl of the weighted (by 
relatedness) sum of all fitnesses in the population: 

a 
W' (ot) = -fffl Erx,w, (4.4) 

Y 

evaluated at fl = a.] 
Thus the equilibrium condition (2.2) is 

W1(cO = 0 (4.5) 
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and the population stability condition (2.5) is that for 7 near a, 

W*(7)>0 f o r T <  
(4.6) 

W I ( J < 0  fo rT>c~ .  

There is another piece of notation which frequently arises in inclusive 
fitness arguments. Often, ct measures the allocation of time or energy between 
two activities A and B; specifically, c~ is the allocation to activity A or the 
probability of engaging in A and 1 - a measures the same for B. For example, 
if ~ is the sex ratio, A is the production of males, and B is the production of 
females, or A might represent offspring dispersal and B philopatry. In this 
case, when ct is increased, two things happen: there is a greater allocation to 
A and a smaller allocation to B. Often, when calculating fitness changes, it is 
convenient to separate these two effects out. We define W](a) by the formula 
(4.1) except when calculating the fitness effect w~, we allow x to increase his 
allocation to A without having to reduce his allocation to B. Similarly, W~(a) 
is calculated by allowing x to increase his allocation to B without having to 
reduce his allocation to A. 

With this notation, the inclusive fitness of c~ is 

W ~ = W ~ -  W~ (4.7) 

and the equilibrium condition (4.5) becomes 

W~(a) = W~(a). (4.8) 

The population stability condition (4.6) is that for 7 near a, 

W ~ ( j > W ~ ( J  f o r T < a  
(4.9) 

W ] ( j < W ~ ( j  fo rT>c~ .  

This makes sense: (4.9) says that in a population which allocates less to 
A (7 < a), allocation to A will be more fit than allocation to B, and viceversa 
for a population with a greater allocation to A. 

By analogy with (2.6), the following "second derivative" conditions are 
usually easier to verify than (4.9), and they are both (separately) stronger than 
(4.9). Thus they each imply stability. 

d [W~(7) - W~(J]  7 =~ < 0 (4.10) 
d7 

d [W~(y)/W~(7)]~=~ < 0 (4.11) 
d7 

Condition (4.11) is useful when we are working with fitness expressions which 
are unnormalized, because the normalization constant (which might depend 
on 7) will drop out of the quotient. This is illustrated in the sex ratio example 
of Sect. 6. 
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5 Inclusive fitness in a class-structured population 

I suppose that the population has a class structure of unspecified type, such 
that every individual belongs to some class and may have "offspring" belong- 
ing to any class. For example the classes might be the sexes (male, female, 
hermaphrodite) or age classes or size classes. It is simplest to assume that 
generations are discrete and non-overlapping, so that an individual who 
survives to the next generation with probability p is regarded as dying and 
contributing p "offspring" to the appropriate class. 

To calculate fitness it may no longer be reasonable simply to count total 
numbers of offspring, because, for example, a class 1 offspring might be more 
valuable than a class 2 offspring. The notion of reproductive value (RV) allows 
us to compare offspring of different classes; roughly speaking the RV of a class 
i offspring is a measure of his average longterm genetic contribution to future 
generations. 

An interesting example of class structure is found in a partial sib-mating 
model in a haplodiploid population with an inbreeding cost to daughters of 
sib-mated parents. (The cost is due to increased homozygosity, and is not 
suffered by sons who are haploid.) Then with a fixed probability that a female 
will sibmate, sons of sibmated parents have a smaller RV than sons of outbred 
parents because they have fewer sisters to mate with. Thus, in this model, we 
require three classes, one female class and two male classes (Taylor and Getz, 
1993). 

I summarize the notation. A "prime" on a variable will denote its value 
next generation. I assume we have a genetically uniform population with 
equilibrium class frequencies. 

nj is the number of individuals in class j 
N --- ~ j  n~ is the total number of individuals. 
r = N ' / N  is the growth rate of the population. 
u s = n / N  is the proportion of individuals in class j. 
w~j is the average/-fitness of class j, defined as the average number of class 

i offspring per class j individual, where offspring must be weighted according 
to genetic contribution. With age classes, this is the Leslie matrix. 

wi = ~ j w i j u j  is average/-fitness over the population. 
Pit = w o u / w i  is the probability a random class i offspring allele comes from 

class j. 
cj is the reproductive value of class j, defined as the probability that 

a random allele in the future gene pool will derive from a class j allele in the 
current generation. Note that ~jcj = 1. 

v~ = c / u j  is the average reproductive value of a class j individual, defined 
as the relative (to other classes) contribution of a classj individual to the future 
gene pool of the population, normalized so that average reproductive value is 
one: 

~u~v~ = 1 .  (5.1)  
i 
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There is a lot of notation here; in particular, I have defined two types of 
reproductive value: individual RV vj and class RV cj. The advantage of the 
notation is that there's an elegant piece of mathematics which ties it all 
together. The idea is to look at the dominant eigenvalues of the matrices (P0 
and (w~j). In economic terms these are "input-output" matrices; the columns 
being inputs and the rows being outputs, and in such a case, the dominant 
eigenvalue typically has the interpretation of growth rate, the corresponding 
right eigenvector is the equilibrium class-frequency vector, and the 
corresponding left eigenvector is the vector of individual future values at 
equilibrium. 

5.1 The right and left eigenvector result 
(Leslie 1948," Charlesworth 19801o) 

The matrix (Pit) has dominant eigenvalue 1 and the matrix (wij) has dominant 
eigenvalue r the growth rate of the population. The dominant right eigen- 
vector for (Po) is the constant vector 1, and the dominant left eigenvector is the 
vector (ct) of class reproductive values: 

1 = ZPij (5.2) 
J 

cj = Y~cipij (5.3) 
i 

The dominant right eigenvector for (wit) is the stable asymptotic value of the 
class frequency vector (ui) and the dominant left eigenvector is the vector (v j) of 
individual reproductive values: 

rui = ~wou  j �9 (5.4) 
J 

rvj = ~v~wit (5.5) 
i 

Equation (5.2) follows from the probabilistic definition of Pit. To derive (5.4) 
we write the dynamic equations for population change: 

n'i = Z w , t n t  (5.6) 
J 

and divide by N to get 
ru'i = ~wijuj  (5.7) 

J 

which is the equation for class frequency change. At equilibrium, u'~ = ui and 
we get (5.4). We get (5.5) by noting that the asymptotic genetic contribution of 
a classj individual is made through her offspring of all classes. Since she has, 
on average, w o class i offspring, her reproductive value vj must be propor- 
tional to the value of her offspring ~iv~w o. If we hit both of these quantities 
with uj and sum over j, using equations (5.1) and (5.4), we see that the constant 
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of proportionality must be 1/r, and that gives us (5.5). Finally, to get equation 
(5.3), we multiply equation (5.5) by uj: 

which is written 

r v j u j = ~ , v i w i j u j  (5.8) 
i 

rcj  = ~v iw ip i j  (5.9) 
i 

using the definition of Pij. We get (5.3) using the fact that ci = viwi. 
In practice, our reproductive value calculation follows the simplest or 

most natural route. In an age-structured population, the most natural matrix 
to calculate is the Leslie matrix (wij), and from this we obtain the individual 
values vj. In a sex-structured population, the most natural matrix is often the 
gene-flow matrix (p~j), and from this we obtain the class values cj. As an 
example of the latter, in a haplodiploid population with standard pattern of 
inheritance, the p-matrix (male = 1, female = 2) is 

(P J) = 1/2 1/2 

and the left eigenvector for 1 is (c j) = (1/3,2/3). This provides a "proof" of the 
standard result (Price 1970) that the female population makes twice the future 
genetic contribution of the male population. 

How should the expression (4.1) for inclusive fitness be modified in 
a class-structured population? The answer is that we have to be careful to 
identify the nature of the fitness change, e.g. fecundity, or survival or both 
together, and choose the reproductive value accordingly. For example, if the 
effect of an actor is to increase the entire fitness of y by a factor Cy, then 
equation (4.3) becomes 

W ~ = 2 r ~ r v y C r .  (5.10) 
Y 

To take an example, in a sex allocation problem, if W~ and W~ are the 
fitness effects of a "free" extra allocation to male and female offspring, then the 
inclusive fitness (4.7) is 

W I = W t --  W ~  (5.11) 

with 

and 
= (5 .12)  

= rlv r (5 .13)  

where rl is the relatedness of the actor to the sex-/offspring, q~i is the rate at 
which extra allocation is converted into sex i offspring, and vi is the RV of an 
individual offspring of sex i. 

For another example, which mixes fecundity and survival, suppose extra 
allocation of time to parental care by the actor x reduces his viability by 2% 
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but increases the fecundity of his mate y by 3%. Then do we write the inclusive 
fitness effect as 

W I = (0.03)r~yvy - (0.02)r~xv~ (5.14) 

where r ~  ( = 1) and rxy are the relatednesses of x to x and to y? The answer is 
no - the y-term is wrong. The extra fecundity results in extra offspring so that 
it is not r~y we want but the relatedness of x to these extra offspring, and this 
will depend on the extent to which x or some relative of x has paternity. Also 
we do not want to use vy as this represents the life-time fitness of y, and it is 
only the current brood we are interested in (and that is what the 3% applies 
to). Thus the inclusive fitness should be written 

W I = (0.03)roVo - (0.02)r~v~ (5.15) 

where ro is the average relatedness of x to y's offspring, and Vo is the total RV 
of the offspring in the current brood. [And if there is more than one class of 
offspring involved (e.g. two sexes) then instead of roVo we would use the 
appropriate average value of the rv product.] A number of more challenging 
examples can be found in Taylor  and Frank (1996). 

6 A sex ratio example 

Colonies of the hymenopteran ant Apterostigma dentigerum are initiated by 
a queen who produces (female) workers and (male and female) reproductives. 
If the queen dies or fails to function, at least one worker will lay unfertilized 
(haploid) male eggs. Forsyth (1981) studied a population of this species and 
found that in colonies with a functioning queen, the sex ratio among repro- 
ductives was female biased, and he suggested that this bias might have evolved 
to compensate for the all-male production of workers in colonies which had 
lost their queen. A simple inclusive fitness model can investigate this idea, and 
see just how much "compensation" is expected. We suppose that in "queen- 
right" colonies, the queen lays all the eggs and has control of the offspring sex 
ratio. 

Let k denote the worker/queen ratio of reproductive output; that is, in the 
whole population, there are k worker-laid eggs for every queen-laid egg. Let 
the sex ratio for the queen be s. Then the relative numbers of males and 
females in the offspring population are 

Um ~ k + s (6.1) 
u y ~ , l - s .  

These expressions for the ui must be normalized by dividing by 1 + k. The 
gene-flow matrix is 

m f 

mV._k/2 s + k/2 1 
p = I s  + k s ~ - - k  " (6.2) 

f L 1/2 1/2 



Genetic models of behaviour 667 

To find the class reproductive values we use the first column of p to get 

k/2 
c , , ~ - ~  + c:/2 = c,, (6.3) 

which solves to give 

C m ~ S + k  

c: ~ 2s + k (6.4) 

up to a normalizing constant. Note that if k = 0, there is no worker produc- 
tion, and we get the standard 1:2 ratio of class RV for haplodiploidy. Finally 
the relatednesses of mother to offspring in an outbred haplodiploid popula- 
tion are r,, = 1 and rf  = 1/2. The (unnormalized) fitness effects are given by 
equations (5.12) and (5.13) with units chosen so that ~bl = 1: 

s + k  
W ~  = r,,v,, = rmCm/Um . ~ -  (6.5) 

s + k  

W } = r f v f = r f c f / u f ~ , ~  - 
2 s + k  

2(1 - s) 
(6.6) 

If these are equated as in equation (4.8), we get the equilibrium sex ratio 

2 - k  
s = - -  (6.7) 

4 

Check that if k = 0 (no worker production), we get the expected ratio s = 1/2. 
Since the fitnesses are unnormalized, we check stability with (4.11). The 

derivative 

d [2(1 - s)l _ - 2(2 + k) ~rw ',.(s)/W}(s)] = ~ L 2s + k J -~; u k) ~ (6.8) 

is clearly negative, and the sex ratio is stable. 
A naive conjecture might be that the queen should choose a sex ratio 

which produces an unbiased overall population ratio, that is, which makes u,, 
equal to u:. From (6.1), this would require 

t - k 2 - 2k 
s . . . .  (6.9) 

2 4 

Comparison of the last expression in (6.9) with (6.7) shows that the ESS queen 
strategy "splits the difference" between an unbiased ratio among her own 
offspring and an unbiased population ratio. Equation (6.7) has been obtained 
by Taylor (1981) and, as part of a more general model with the queen laying 
two successive broods, by Iwasa (1981 - his eq. (22) with t = 1 and 
k .= Nlo/N2) .  
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7 The equivalence between one-locus genetic models and inclusive fitness 

What I show here is that, under simple genetic assumptions (weak selection 
and additive gene action), the derivative of the change in mutant frequency 
given by (3.5) is equivalent to the inclusive fitness defined by (4.1): 

OAQ = KWI(o~) (7.1) 

for some positive constant K = K(e). The importance of (7.1) is that it allows 
us to use inclusive fitness to check population stability (2.5) in a one-locus 
genetic model. 

The argument is given for a one-class population. In the discussion (8.1) 
I mention how the analysis is modified in a class-structured population. 

I begin by rewriting the expression (3.5) in a sequence of steps which 
I justify below. 

g Cov(Eyw~hx, 9,) (7.2) 

NCov(w'~h~, 9r) (7.3) 

N [E COVk(W~h~, 9r) + Cov(Ek(w'~h~), Ek(gr))] (7.4) 

OAQ E (w)= 

= N [Ew'~ COvk(hx, 9y)] 

,l N2 nkNW~ Covk(hx, gr 
Lk .A 

(7.5) 

(7.6) 

(7.7) 

In (7.2) the average E r is taken over all x for each y, and the covariance is over 
all y. In (7.3), the covariance is now taken over all pairs (x, y). This last step 
uses a special case of the covariance decomposition theorem (A2) where the 
classes are indexed by y, and gy is constant over each class. 

To get (7.4) we note that a typical individual x is engaged in different 
relatedness classes of interactions, e.g. brother-brother, or father-daughter, or 
nearest neighbour etc. such that the relatedness of x to y is constant within any 
class k, and we apply the covariance decomposition to this class structure. 
Now fasten attention on (7.4). I f / / =  0, then Ek(oy) is independent of k, which is 
to say that the genotype of an individual y has no effect of his likelihood of 
appearing in any particular relatedness class and the second term of (7.4) is 
zero. This requires, for example, that individuals with more mutant genes are 
not more likely to be brothers (or are not likely to have more brothers) than 
normal, and this will be the case if the mutant allele is neutral. 

In (7.5), w~ can be taken out of the covariance as its average w~ over all 
class k interactions because, within class k, the fitness effect w~ is uncorrelated 
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with genotype or phenotype. [Again this might be strictly true only when the 
mutant allele is neutral (/3 = 0).] 

In (7.6) I have replaced the expectation by the appropriate weighted 
average, where nk is the average number of class k relatives per individual, so 
t h a t  nkN is the size of class k. Note t h a t  EknkN ----- N 2 since it must equal the 
total number of sample points. Finally, in (7.7), I have introduced 

COVk(gy, hx) (7.8) 
rk -- Cov(gx, hx) 

which I will call the average relatedness of x to y over class k interactions. 
Equation (7.7) can be written 

OAQofl ~= ~ = K~.nkW~rkk (7.9) 

where K = Cov(9~, h~)/E(w) depends on ~ and is positive if genotype and 
phenotype are positively correlated. I show below that, provided allelic effects 
are additive (i.e. the mutant allele is semidominant), the two definitions of 
relatedness coincide, that is, rk defined in (7.8) is the same as the pedigree 
definition rx_~ r in (4.2) for a class k interaction. This establishes the equivalence 
(7.1) between the two modelling approaches. 

7.1 The identity o f  the relatedness coefficients 

Let the mutant  and normal alleles have genic values 1 and 0, and frequencies 
p and q = 1 - p. Note that if a and b are the genic values of the two alleles 
belonging to x, then the genotypic value of x is 

a + b  
9 x -  2 ' (7.10) 

which is the average genic value of x. Also, if a is the value of a random allele in 
the population, then 

E(a) = E(a 2) = p 

and 
Var(a) = Cov(a, a) = E(a 2) -- E(a) z = p - p2 = p q .  (7.11) 

I consider a fixed relatedness class k of interactants, e.g. two brothers, and 
I remain inside this class for the rest of this section. In Table 1, I classify all the 
pairs (x, y) in this relatedness class according to the IBD pattern of their 
alleles, and for each pattern, I calculate the covariance between genotypic 
values and show that, in each row, 

Cov,(ox, Or) = PqOxy (7.12) 

where the covariance is over all pairs belonging to row i. The classification 
scheme of Table 1 follows Jacquard (1974) and has been employed for the 
same purpose by Michod and Hamilton (1980) and Grafen (1984). Now 
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Table 1. Classification of pairs (x,y) of interactants in a fixed relatedness class 
k according to the IBD pattern of their alleles. In the covariance calculation I use 
(7.10) and (7.11) and I assume that two random alleles a and b must either be IBD or 
independent, and in the latter case Coy(a, b) = 0. [Crow and Kimura 1970, p. 69 - it 
seems to me that this assumption requires that mating be non-assortative, that is 
that no component of mate choice is based on phenotypic value at the mutant locus.] 

x y Coy (g~, gy) Ox~ 

[ 

I [ 

0 0 

C o v ( a + b  a 2 c ) Cov(a,a) pq 1 
" 2 '  - - "  = 4 4 

Cov(a . . . .  +ba2 ' 2 b) = Cov(a,a) 4+C~ =--Pq2 21 

/ a+b \  1 Cov~a,'--~) -COv(a'a)-pq 
2 2 

Cov(a, a) = pq I 

I decompose  the covar iance  (Appendix) over  the entire relatedness class 
k according  to the rows of the Table  1: 

Cov(gx, gy) = ECovi(gx, gy) + Cov(E~g~,Ekgr) = pqg~y (7.13) 

where the second te rm vanishes because E~gx = p and is independent  of i. This 
result also applies in case y = x, and we have that,  under  addit ive gene act ion 
(hx = g~): 

COVk(gr, h~) _ 9~r 
= r~-~r (7.14) rk = Cov(g~,h~) g~x 

and this demons t ra tes  the equivalence of the relatedness forms. I have done  
the analysis for diploidy, but  it also holds for haplodiploidy.  

8 Discuss ion 

The  ma in  result  of Sect. 7 states tha t  under  certain condit ions (discussed 
below), an inclusive fitness analysis will p rov ide  the same equil ibrium condi-  
t ion (2.2) and  the same popu la t ion  stability condi t ion (2.5) as a one-locus 
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genetic model. Mathematically, the reason for this is that the derivative of 
mutant fitness with respect to the mutant strategy fl (at fl = ~) has the same 
sign in both models. A number of authors have explored this question of the 
equivalence of the two approaches. Hamilton (1975) was the first to do an 
analysis of Price's equation in a group-structured population, and to con- 
struct from there the condition for the spread of an altruistic trait. Since that 
time, particular models, and versions of the general result, have been obtained 
by Charnov (1977), Charlesworth (1980a), Michod and Hamilton (1980), Seger 
(1981), Grafen (1985a) and Taylor (1989, 1990). 

To generalize this equivalence result to a class-structured population, it is 
first necessary to ask how the mutant frequency should be defined. The most 
natural definition is to weight each individual by his reproductive value vj. 
This gives us the definition 

Q = yp Q j, j = (8.1) 

where Qj is the mutant frequency among class j individuals. With this defini- 
tion, and with inclusive fitness defined as in Sect. 5, the equivalence result of 
Sect. 7 continues to hold (Taylor 1990). 

The equivalence result is important because genetic models are generally 
regarded as the most realistic approaches to the modelling of simple kinds of 
evolutionary behaviour, whereas inclusive fitness arguments are often com- 
putationally simpler and offer a powerful conceptual heuristic which can aid 
our understanding, particularly in the study of social interactions. Indeed, in 
my work over the past few years, I have studied a number of examples in 
which the genetic model is intractible, even for a rare mutant (typically 
because the matrix is too large), but the inclusive fitness model is quite 
accessible. For example, this occurs in models of sex ratio and dispersal in 
a patch structured population with partial dispersal of offspring (Taylor 
1988a, b) and in a recent model of sibmating with inbreeding depression 
(Taylor and Getz, 1994). 

There are two important assumptions behind the equivalence result (7.1): 
that the mutant gene have small effect (weak selection), and that fitness 
interactions between genes be additive. I will discuss each of these. 

The essential problem with large effects (strong selection) is that the 
mutant gene, by its deviant behaviour, can alter its own distribution, and so, 
for example, change the probability that the bearer will engage in a certain 
type of interaction (e.g. alter his number of brothers) or even change his 
relatedness to a fixed class of interactants (for example, a gene affecting mate 
choice might alter the relatedness between brothers). The first factor figured in 
our derivation of (7.7), and the second in our argument that the two types of 
relatedness coefficients were identical. And in the extension of the argument to 
class-structured populations, it is necessary that the mutant gene have negli- 
gible effect on the class frequencies uj and reproductive values v~. Mathemat- 
ically, the equivalence is obtained by ignoring higher (than linear) powers in 
the mutant deviation (fl - ~) and this is the reason it is difficult to find an 
equivalence for mutant  stability (2.4). The possibilities for an equivalence 
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under strong selection have been discussed by Charlesworth (1980a); he 
reports that there is little hope unless the mutant allele is rare (because of 
frequency dependent effects) and even then, there are additional conditions 
that must be met. 

The assumption of additive gene action has components both between and 
within individuals. Between individuals, it is necessary that fitness effects be 
additive, that is, that the fitness functions (1.2) be linear. In fact, this rarely 
happens, but an important dividend of weak selection is that the fitness effect 
(3.4) is linear. [Indeed, what the derivative is all about, is that it linearizes 
non-linear functions.] Queller (1985) has a nice discussion of a particularly 
important non-additivity (synergistic interactions between altruist and recipi- 
ent) and in the same issue Grafen (1985b) observes that weak selection allows 
additivity to be restored. The within-individual component is a requirement of 
semidominance of the mutant  allele. In fact, this assumption is often not 
required and even when it is, the effect of dominance is slight. For example 
I analyzed (Taylor 1981) the sex ratio model considered above (sex ratio bias 
due to worker laying) with a one locus genetic model with a dominant mutant 
allele, and obtained the same result. On the other hand, a sex ratio model for 
a patch structured population with partial dispersal of offspring considered by 
Bulmer (1986) with a genetic model, and by Frank (1986) and Taylor (1989) 
with an inclusive fitness model, showed deviations in the ESS sex ratio 
depending on the level of dominance, but these were sl ight-  for three breeding 
females per patch, the variation from the semidominance result was at most 
0.2%. Taylor and Getz (1994) compared the two modelling approaches in 
a model of the advantage of sibmating under inbreeding cost, and found that 
dominance had a negligible effect under weak selection, but a noticeable effect 
for large values of ft. 

In this paper, I have restricted attention to stability of pure strategies, that 
is, to populations with a uniform value of cr A natural extension of these 
results would study genetic polymorphisms - stable mixtures of two or more 
strategies. 

Appendix: Covariance results 

For simplicity, I assume all random variables are defined on a discrete set of 
N points (the sample space). Suppose the sample space is partitioned into 
classes, with class i of size ni, and for any random variable a, let aij denote the 
a-value of the j th sample point in class i. Then if a and b are two random 
variables, their covariance over the whole space can be decomposed along 
these classes: 

Cov(ai j  , bij ) = E(Covi (a i j  , bij)) + Cov(Ei(ai j) ,  Ei(bij)) (A1) 

The first term in (A1) is the average within class covariance, and the second 
term is the covariance of the class averages. Here the notation covi and El 
indicates that the covariance and the expectation are taken for fixed i over the 
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sample  po in ts  in class i. F o r  example,  Ei(aij) is the  average value of a over  class 
i. N o t e  tha t  the  E in the  first term and  the C o y  in the second term represent  
weiyhted averages  over  the  classes, where class i has weight  ni/N.  

An i m p o r t a n t  special  case arises when the po in ts  in class i all have the  
same a-va lue  ai. Indeed,  the  r a n d o m  var iable  a might  have been used to define 
the classes, the classes being the level sets of a. In  this case, covar iance  of a and  
b over  class i is zero for all i, and  we have only the second term: 

Cov(aij, b,j) = Cov(E,(aij), Ei(bij)) . (A2) 
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