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Some recent articles in this journal (Charlesworth 1990; 
Iwasa et al. 1991; Taper and Case 1992; Abrams et al. 1993) 
have focused on the relationship between quantitative ge- 
netics (QG) and evolutionarily stable strategy (ESS) models 
of the evolution of continuous traits under conditions of fre- 
quency dependence, and an ESS approximation S- for the 
selection differential S has been proposed. Here I recall a 
formula of Lande and Arnold (1983) for S which holds in 
normally distributed population and which illuminates the 
relationship between the two models, and I extend it to the 
case in which fitness depends also on the average behavior 
of a local interaction group (equation 12). I calculate S and 
S- for a number of standard fitness functions, and verify the 
results of Wilson and Dugatkin (in press) on kin selection 
and assortative interactions. 

Let x denote the value of the continuous trait, and assume 
it is distributed with mean 2 and variance V. In what I will 
call the non-structured model of frequency-dependence, in- 
dividual fitness is assumed to depend both on x and n: 

w = W(X, n). (1) 

Alternatively, I will consider a group-structured model, in 
which individuals assort into interaction groups of equal size 
and individual fitness depends also on the average trait value 
y of the interaction group: 

w = W(X,y, 2). (2) 

I suppose the group mean y is distributed with mean I and 
variance G, and I denote the quotient of between group and 
total variance by R: 

The last equality follows by noting that cov(y, y) = cov(E(x), 
y) = cov(x, y) where the expectation is over the group, and 
it is understood in the last expression that x is a random 
individual in the y-group. In models of kin selection, with 
an assumption of additive dependence of phenotype on ge- 
notype, R measures the relatedness of an individual to a ran- 
dom member of his group (including himself), and it is most 
commonly written using the expression on the right (Michod 
and Hamilton, 1980). 

When different phenotypes have different fitness, the ac- 
tion of selection will typically cause a shift in the population 
mean in each generation. The selection differential is given 
by the Robertson-Price equation: 
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and measures the difference between the selected and un- 
selected populations. This fundamental equation was discov- 
ered independently by Robertson (1966), Li (1967) and Price 
(1970); Frank (1995) gives a nice account of its significance. 
It is interesting for this paper that shortly after finding this 
formula, Price introduced Maynard Smith to the ESS (May- 
nard Smith and Price 1973). 

The overall change in n over a single generation incor- 
porates the effects of reproduction by multiplying S by the 
heritability h2. 

An = h2s (5) 

(Falconer 1960). The equilibrium condition for this model is 
S = 0. 

The ESS Approach 

The standard ESS argument for a non-structured popula- 
tion (Maynard Smith and Price, 1973) considers a mono- 
morphic population (fixed at X) and argues that if it is to be 
uninvadeable by a rare mutant strategy x, then W must be 
maximized in x at x = 1 and the local necessary condition 
for that is the equilibrium condition 

ax 

This will be a local maximum if for near awlax > 
when x < x and awlax < 0 when x > 8. 

Behind this stability condition, there is the idea that the 
sign of the selection differential S will be the same as the 
sign of awlax at x = 2, that is, if the partial derivative is 
positive at ,t, selection will tend to increase the population 
mean, at least when the action of local mutants is considered, 
and if the partial derivative is negative, selection will tend 
to decrease the population mean. But, further to this, one can 
ask for a candidate expression for S in an ESS model which 
would give some measure, not only of its sign, but of its 
magnitude. Such an expression could be used to provide a 
dynamic for the evolution of the phenotype, but it could only 
be heuristic, because the ESS model as such makes no explicit 
assumption on the population structure. A recent proposal of 
Iwasa et al. (1991) is 
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where V is the population variance in x. Essentially the same 
formula appears in Taper and Case (1992) and Abrams et al. 
(1993), except in both cases, they have replaced the denom- 
inator by W. For technical reasons (e.g., see equation 18 and 
compare equations 20 and 21) I prefer the version given in 
(7). All three of these cited papers have shown, without any 
assumptions on the population distribution, (by expanding W 
in a Taylor series) that (7) approximates (4) when selection 
is weak. The ornament - warns that (7) is not intended to 
be an exact measure of S for any actual population structure. 

In the group-structured population, the ESS equilibrium 
condition is most easily obtained with an inclusive fitness 
argument (Hamilton 1964). The approach of Taylor and Frank 
(1996) calculates the inclusive fitness increment AWI of the 
behaviour by differentiating W(x,y, X) with respect to x, treat-
ing y as a function of x (which it is not-it only covaries 
with x), and then replacing dyldx by the relatedness R, thought 
of as the slope of the regression of y on x: 

AW 
1 

- - = - + - - = - + - R .  -
d w  aw away aw aw 

(8)
dx ax ay dx ax ay 

As an example, suppose x measures the tendency towards 
altruistic behavior, an altruist incurring a cost c and providing 
a benefit b distributed in some random way among the mem- 
bers of the group. Then an x individual in a y group will have 
fitness W(x,y) = -cx + by and the inclusive fitness increment 
is AW, = -c + bR obtained by Hamilton (1964). The equi- 
librium condition is 

and the group-structured analogue of (7) would appear to be 

Quantitative Genetics Approach 

The quantitative genetics (QG) approach assumes x is nor- 
mally distributed with mean .f and variance V. In the non- 
structured model, S can be rewritten as: 

(Lande and Arnold 1983) and this expression provides an 
immediate heuristic argument that S- in (7) approximates S 
in a normal population when selection is weak. Indeed, under 
weak selection, neither W nor awlax should change much 
over the bulk of the population distribution, and their value 
at n should approximate their average value. 

In the group-structured model, I assume that the group 
mean y is normally distributed, and that the individuals within 
each group are also normally distributed with variance in- 
dependent of y. This is equivalent to the assumption that x 
and y are jointly normally distributed. If we regress W on 
the phenotypic values x and y, we get: 

uncorrelated with x and y. I am assuming that W is a function 
of y and z (and this a common assumption of ESS models), 
but (12) is valid when W is only correlated with these vari- 
ables. Then the selection differential is obtained from (4): 

This formulation is essentially Queller's (1992) equation (6), 
except he works with changes in mean genotype rather than 
phenotype. A standard calculation (Lande and Arnold 1983; 
see Appendix) shows that if x and y are jointly normally 
distributed, then 

and 

If we put these into (13), we get 

and this reduces to (1 1) when W is independent of the group 
mean y. Comparison with (10) again shows that in a normally 
distributed group-structured population, S- approximates S 
when selection is weak. 

I now calculate and compare S, in (1 1) and (16), with S-, 
in (7) and (lo),  for a number of commonly used fitness func- 
tions. In particular I notice when they have the same sign, 
for in this case, they will predict the same equilibria. 

Comparison of S and S-

The most basic result, first noted by Charlesworth (1990), 
is that when W is linear in x and y, then S and S- are equal. 
It was further noted by Abrams et al. (1993) that if W is a 
quadratic polynomial in x and y, then S and S- are equal 
when W is used instead of W(X,X) in the denominator of (7) 
and (10). Indeed, in this case, both partial derivatives of W 
are linear in x and y, and their expected value will equal their 
value at X and p. Thus, if W is linear or quadratic in x and 
y, then S and S- differ by a constant multiple and will have 
the same sign, and the QG and the ESS equilibria are iden- 
tical. Charlesworth (1993) has generalized the analysis of 
Abrams et. al. (1993) to the case of a multivariate trait in an 
age-structured population. 

In quantitative genetics models a common class of fitness 
functions are the exponential and gaussian W because these 
maintain normality in the population (Lande 1976b; Felsen- 
stein 1977), and this allows the quantitative genetics analysis 
to remain valid generation after generation, provided we also 
track the change in variance. Though Turelli and Barton 
(1994) have showed that something very close to a normal 
distribution of breeding values will typically be obtained even 
under strong truncation selection, when offspring values are 
normally distributed around the parental mean. 

If W is exponential: 

where the p are the partial regression coefficients, and 6 is 
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where a and b might depend on 2, then a calculation with 
(10) and (16) shows that 

S- = S = V(a + Rb) (18) 

and the common equilibrium condition is a + Rb = 0. The 
result in a non-structured population is obtained by setting 
b = 0 in (17) and (18). Such a fitness function might arise 
in a continuous time model of altruism, in which the instan- 
taneous relative rate of fitness change is W'IW = -cx + by 
(see the discussion after equation 8). Then, starting at W = 
1, the fitness at t = 1 would be given by (17), with a = -c. 

A fitness function that is often used to model stabilizing 
selection is gaussian: 

where the mode 0 and the selection strength IIQ can depend 
on a. For the non-structured case, (7) and (1 1) become: 

and 

respectively (Lande, 1976b), and in both cases, the equilib- 
rium condition is 

that is, at equilibrium, the population mean will coincide with 
the mode of the fitness function. 

In the group-structured model, assume that W has a product 
form: 

where W1 is gaussian with mode 81 and square width Ql 
(Boyd and Richerson, 1980). In this case, the ESS and QG 
equilibria are not quite the same. Indeed, (10) and (16) be- 
come: 

and 

where K is the within-group variance, which is assumed to 
be independent of y, and G* is the variance of y after selec- 
tion: 

The equilibrium conditions, obtained by setting S- and S 
equal to 0, are 

(Boyd and Richerson 1980, eq. 5), and 

If K << Q2, which will be the case if selection is weak or if 
the groups are nearly clonal, then (27) and (28) will give 
approximately the same equilibria. Both (27) and (28) display 
the population mean as a weighted average of the two fitness 
function modes. The weights in (27) appear to make sense- 
each O 1  is weighted by the reciprocal of the square width Ql  
of the fitness function (which measures the strength of se-
lection) and O2 is additionally weighted by the within-group 
relatedness R. The QG formula (28) gives a slightly higher 
relative weight to the individual mode e l  than does the ESS 
formula (27). 

Example: Altruistic lnteractions 

Wilson and Dugatkin (in press) have examined a model of 
a normal trait x in which groups of size N are formed, either 
by kin relationships or assortatively, and fitness depends on 
individual phenotype x and average group phenotype y ac- 
cording to equation (23). It is assumed that e l  < O2 so that 
maximum individual benefit is obtained with a group value 
higher than the individual value; in this sense the trait can 
be regarded as promoting altruisticlcooperative behaviour. In 
fact Wilson and Dugatkin take = 75, 82 = 125, Ql = Q2 
= 400, population variance V = 25, and group size, N = 10. 
Note that V << Ql so that the assumption of weak selection 
is reasonable. In this case, the approximation (23) for a gives 

The case R = 1 of zero within-group variance gives 2 = 100; 
this is the phenotype that maximizes group fitness. In general, 
we expect a to be between 75 and 100. 

In their first scenario, groups are sib groups in an outbred 
population. In this case, the normality assumptions on the 
distribution of group means is satisfied, and the equilibrium 
value should be approximately given by (29) with R = 0.55 
(Table 1). 

In the second scenario, groups are formed assortatively in 
the following manner. A random sample of 10k individuals 
is drawn from the population, and under the assumption that 
phenotype is recognizable, the top 10 individuals form a 
group, then the next 10 form another group, and so forth. In 
this case, the normality assumptions on the distribution of 
group means is not satisfied, nor is the assumption of constant 
within-group variance. However, we might still expect (29) 
to give a reasonable approximation. 

Wilson and Dugatkin simulated this process, and found 
that the case k = 2 gave roughly the same value of a as the 
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TABLE1. Simulated values for 2 are taken from Wilson and Du- 
gatkin (in press, figure 2).  For the case of sib groups, the within- 
group relatedness is R = 0.9(0.5) + O.l(l .0) = 0.55. The R value 
for k = 1 is obtained by noting that a sample of 10 drawn randomly 
from a standard normal distribution has within-srouv variance 0.9. 
giving a between-group variance of 0.1. The R calculation for k = 
2 is approximate, and is in fact a slight overestimate, making (29)  
also an overestimate for 2.I underestimated the within-group variance 
by supposing that the top 10 individuals (of the 20) were drawn at 
random from the right half of the standard normal distribution. This 
distribution has variance 1 - (217) = 0.363 so that the group of 10 
will have within-group variance (0.9)(0.363)= 0.327, giving an over- 
estimate of 0.673 for the between-group variance G. The R calculation 
for k = 4 was done approximately from standard normal tables. 

x' calculated 
x' simulated R from (25) 

sib groups: 93.0 0.55 92.7 
assortative: 

k =  1 79.5 . 0.1 79.5 
k = 2  93.5 0.67 95.0 
k = 4  99.0 0.86 98.2 

case of sib groups. In Table 1, I present their simulation 
results together with the results provided by (29). In all cases, 
the approximation from (29) is seen to be close. 

In the QG literature, when fitness is frequency dependent, 
a standard formula of Lande (1976a) is often used: 

and when fitness is not frequency dependent, the second term 
vanishes. For our purpose, which is to make a comparison 
with ESS dynamics, formula (1 1) is more useful, and ought 
to be better known, and the group-structured generalization 
(16) is particularly elegant. I have not found a nice gener- 
alization of (30) for the group-structured case. 

When S and S- have the same sign, then the QG and the 
ESS models have the same equilibrium points, but are these 
equilibria simultaneously stable? The answer is yes if we 
assume selection is weak and if we use the notion of con- 
vergence stability (Christiansen 199 I), introduced by Eshel 
(1983) as the essential component of his CSS, and studied 
by Taylor (1989) under the name of m-stability. Under this 
definition, an equilibrium value y of the population mean is 
stable if for 2 near y ,  the sign of S(2) is opposite to the sign 
of 2 - y. This guarantees that the action of selection will 
move the population mean towards y. This will imply sta- 
bility of y in a continuous-time.mode1, but in a discrete time 
model, one must pay attention to the possibility of over-
shooting-if S is too large in magnitude, for example, if IS1 
> 212 - yl, departures from equilibrium might result in un- 
bounded oscillations. In this case, comparisons between S 
and S- must take magnitude as well as sign into account, 
but this should not be a problem when selection is weak. 

The above results show that S and S- are identical when 
fitness W is linear or exponential (eq. 18). When W is qua- 
dratic they have the same sign, and almost (assuming weak 
selection) the same magnitude. These results are true with or 

without a group structure. In case W is gaussian, if there is 
no group structure, then s and S- have the same sign and 
almost (assuming weak the same magnitude (eqs. 
20-21); with a group Structure, S and S- have almost (as- 
suming weak seiectibn) the same sign and the same magni- 
tude (eqs. 24-25). 

In the absence of group structure, there is a simple "geo- 
metric" argument which generalizes the for 
quadratic or gaussian. If W, as a function of x, is symmetric 
about a mode 0,  and increasing for x < 0 and decreasing for 

> 0, then s and S- mllst have the same sign and indeed, 
both have the sign of 8 - Z. Indeed, with these assumptions, 
S- clearly has the sign of 8 - 2 (eq. 7). To examine the sign 
of S it is mathematically simplest to rescale the x-axis so that 
2 = 0. Then: 

WS = - 0) W(x)p(x) dx 1;-(x 

= x[W(x) - W(-x)]p(x) dx. 

If we suppose 0 > 0, then the assumed form of W tells us 
that W(x) > W(-x) for all x > 0, and it follows that S > 0. 

Finally, I mention that equation (1 1) provides the selection 
differential S for two quite different proposals for discrete 
dynamics. If we let p(x) be the trait density, then we can ask 
how p changes in one generation. The obvious proposal is 
to say that the new p will be the fitness-weighted average of 
the old: 

p *(x) = W(x)p(x)lW (31) 

giving the "replicator" dynamic 

proposed by Maynard Smith (1982). The continuous-time 
version of this was introduced by Taylor and Jonker (1978) 
and studied by Hofbauer et. al. (1979) and Zeeman (1979). 
This is the dynamic behind equation (4); indeed, the change 
in the mean of x is 

as given by equation (4). 
Another proposal for the change in p is related to a "learn- 

ing" interpretation of fitness. Imagine that an x-individual 
looks to the right and to the left, (on the x-axis) and with 
some probability alters his x-value in the direction in which 
fitness is increasing, this probability proportional to the fit- 
ness gradient. Then the "mass flow" on the x-axis will, at 
each x be proportional to [dWldx] p(x), and the rate of ac- 
cumulation of mass at x will be proportional to how fast this 
flow is changing with respect to x (the net inflow). This gives 
the "gradient" dynamics: 

where the constants Vand ware  chosen to make the dynamics 
dimensionless, independent of a change of scale in either W 
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or x. In the context of the application of evolutionary games 
to economic behaviour, this dynamic was proposed by Fried- 
man and Yellin (pers. comm.); in another context, it is the 
Fokker-Planck equation for conservative fluid flow. Follow- 
ing equation (30) the change in the mean of x is 

Equations (33) and (35) hold without any assumptions on the 
form of p or W. The nice observation is that equation (11) 
tells us that, for a normally distributed trait, the replicator 
dynamics (33) and the gradient dynamics (35) give the same 
change in the mean value of the trait. 

I am grateful to D. Wilson for his ideas about this problem, 
and to T. Day, S. Frank, and J. B. Walsh for valuable com- 
ments. My thanks go to D. Friedman for sharing his ideas 
and an unpublished manuscript with me. This work was sup- 
ported by a grant from the NSERC of Canada. 
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Equations (14) and (15) can easily be obtained by a direct vector 
integration analogous to the derivation of equation (11) (Lande and 
Arnold 1983), but here I derive them in a statistically interesting manner. 
First of all, I show that if x and y are jointly normally distributed, then 
the partial regression coefficients can be expressed as 

and 

where the subscript signals that the covariance is to be calculated with 
the subscripted variable held fixed, and then the expectation E is taken 
over the subscripted variable. 

To obtain (Al), take the covariance of W in equation (12) with x, 
holding y fixed, and then take the expectation over y: 

Since the middle term on the right is zero, (Al) will hold if Ecov,(G,x) 
= 0. What we know is that cov(6,x) = 0; write this as a sum of within 
and between group components: 

and we will be done if we show the last term is zero. This follows from 
the fact that E,(x) is linear in y: 

E,(x) = ay + b (A51 
which is a standard property of a bivariate normal distribution. Then 

since 6 is uncorrelated with y. The derivation of (A2) is similar. 
Equations (Al) and (A2) are interesting because of their similarity 

to the standard single-variable regression coefficient, and they deserve 
to be better known. They are also valid when y and z are binary variables 
which take only the value 0 or 1 (as might occur, for example, in a 
model of altruism in which you are either an altruist (y = 1) or not (y 
= 0)). Indeed, the crucial property for (Al) to hold is the linearity 
property (A5), and every function of a binary variable is trivially linear. 

Now for the second step, we apply (1 1) to W(x,y), with y held fixed: 

If we now take the expectation over ally, and note that the denominator 
of (A4) is in fact independent of y, then (Al) gives us equation (14); 
equation (15) is similarly derived. 


