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SUMMARY

There has been recent interest in using the techniques of quantitative genetics to study optimal life
histories under frequency-dependent selection, but a search of the literature has revealed no clear
quantitative genetics recursion that incorporates both frequency dependence and overlapping generations.
This may be due in part to the historical tendency of life-history theory to ignore frequency dependence.
Here we provide such a recursion, and use it to explore the general question of how frequency-dependent
selection on life-history traits can cause the evolutionarily stable strategies to differ from the point of

maximum mean fitness.

1. INTRODUCTION

The concept of evolutionary stability has proven to be
a useful tool for modelling in evolutionary biology
(Maynard Smith & Price 1973 ; Maynard Smith 1982;
Vincent & Brown 1988). Intuitively, if a stable strategy
is possible, evolutionary change through natural
selection will continue until such a strategy is reached.
Therefore, to predict the outcome of evolution, one
simply needs to characterize such stable phenotypes.
An alternative to this philosophy is to determine the
phenotype that maximizes population mean fitness.
Traditionally, models of life-history evolution have
employed this latter approach, which we term the 7-
max approach below (Roff 1992; Stearns 1992). It is
well known, however, that strategies which maximize
mean fitness are not always evolutionarily stable
(Haldane 1932; Wright 1942 ; Huxley 1938, as cited in
Lande (1976)). For example, under frequency-de-
pendent selection, a population at its fitness maximum
may continue to evolve until a different, stable
phenotypic distribution is reached. Our purpose here is
to produce a quantitative genetic recursion for the
evolution of a character mean under frequency
dependence and overlapping generations. We then use
this equation to explore how evolutionarily stable life
histories differ from those that maximize mean fitness.
To avoid confusion we define how the term
‘evolutionary stability” will be used. Typically, the so-
called ‘ESS approach’ assumes an effectively mono-
morphic population and characterizes strategies that
are uninvadeable by rare mutants. The concept of
evolutionary stability, however, can be applied to any
model that specifies an evolutionary dynamic, in-
cluding a quantitative genetic model. Here we term a
population mean strategy evolutionarily stable (an
ESS) if evolutionary change ceases at this mean and it
tends to restore this mean after small perturbations.
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Traditionally, models of life-history evolution have
employed the r-max philosophy and this field has
developed largely untouched by the concepts of
frequency dependence and evolutionary stability
(Stearns 1976, 1977, 1992; Roff 1992). There has been
sporadic interest in incorporating these ideas, and this
has resulted in a few specific models but no general
framework. Kawecki (1993) provides a recent example
and summarizes much of the previous work. Here, we
present a general quantitative genetic procedure which
can be used for investigating the qualitative difference
between such evolutionarily stable and fitness maxi-
mizing life histories. The procedure allows considerable
flexibility in model assumptions and provides a simple
and general framework for the studies mentioned
above. It also makes many further such investigations
somewhat routine.

Below are two main sections. In the first we derive a
quantitative genetic recursion for the mean of a trait
under frequency dependence and overlapping genera-
tions, and describe a general method for addressing the
above mentioned life-history questions. The second
section considers some specific examples to illustrate
this method.

2. EVOLUTIONARY STABILITY VERSUS
FITNESS MAXIMA

We begin by assuming a normal phenotypic dis-
tribution. Under normality, an ESS can be defined as
an equilibrium mean and variance at which small
perturbations are damped by selection (Taylor & Day
1996). Here we assume the variance is fixed and focus
on the mean only. Thus evolutionary equilibria are
values of the mean where the selection differential
vanishes. Below we assume such equilibria are evolution-
arily stable. Fitness maxima are defined as points
where the population mean fitness function is station-
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Figure 1. The sign of d¥/dz allows prediction of whether the
ESS mean trait value will be larger or smaller than that
which maximizes mean fitness.

ary (i.e. W =0). We begin with the quantitative
genetic recursion for the mean value of a trait, z

(Falconer 1989);
Az = 2, (1)

where A? is the narrow sense heritability (i.e. additive
genetic variance divided by total phenotypic variance;
o2/c%), and Sis the selection differential. Lande (1976;
equation (9)) has shown that under frequency de-
pendence and non-overlapping generations the selec-
tion differential can be written as,

§ = (o3/W) [(dW/dz) —E(0W/02)], (2)

where

E[/(2)] = Jf (2)p(z)dz

and p(z) is the phenotype density, assumed normal.
The first term in parentheses is the derivative of mean
fitness with respect to the mean trait value and the
second term is the average partial derivative of
individual fitness with respect to the mean trait value.
This has been used to construct frequency-dependent
quantitative genetic models by several authors (Lande
1976; Taper & Case 1992; Charlesworth 1993). When
W is not frequency dependent, the second term of
equation (2) vanishes giving the familiar quantitative
genetic equation (Lande 1976),

§ = (o/W)(dW/dz). (3)

We note, (Lande & Arnold 1983; Taylor 1996)
that both equations (2) and (3) can be expressed as
S = o2E(0W/0z)/W which involves the derivative of
individual fitness with respect to individual trait value.
Equation (2) provides an elegant procedure for
determining whether the fitness maximizing phenotype
is bigger or smaller than the evolutionarily stable
phenotype. At the fitness maximum, W is maximized
in z and therefore, dW/dz=0. When W is not
frequency dependent, equation (2) reduces to (3) and
thus $ =0 at the fitness maximum (i.e. the fitness
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maximum is evolutionarily stable as well). Under
frequency-dependent selection, however, equation (2)
reveals that if the expected value of 0W/0z is positive,
then § <0 at the fitness maximum and natural
selection will result in evolution towards a smaller Z.
The reverse holds if this average is negative. For
evolutionary stability we require that § = 0 and from
equation (2) this gives

dW/dz = E(0W/dz). (4)

Therefore, evolutionary equilibrium will occur at a
value of Z for which the sign of the slope of the T/ versus
z graph is the same as the sign of the expected value
of 0W/0z. By definition this graph has a maximum at
the fitness maximizing Z, and therefore if the right-
hand side of equation (4) is positive, the evolutionarily
stable phenotype will be smaller than the fitness
maximizing phenotype and vice versa (figure 1). This
argument is local and assumes that the difference
between the solutions will be small.

To use a similar argument for life-history phenotypes
we require a version of equation (2) that holds for
overlapping generations. Under frequency-independent
selection, Lande (1982) has derived an analogue of
equation (3) for weak selection and overlapping
generations;

§ = o2(dr/dz). (5)

Here, 7 is defined implicitly by the characteristic
equation,

1 = Xe "k, (6)
where k; is the expected value of k;, the age ¢
reproductive function, i.e.

ki(z) = ;(z)my(2), (7)

such that /; (z) is the probability of survival from
birth to age ¢, and m, (z) and the expected number of
offspring at age ¢ for an individual with phenotype z.
Under frequency dependence the reproductive func-
tions in (7) will also depend on some population
parameter(s). For simplicity we assume that the only
relevant parameter is the population mean, z. There-
fore the age-specific reproductive functions (7), depend
on z and Z only. Charlesworth (1993) has suggested
extending equation (5) to a frequency-dependent
setting using a form analogous to equation (2); i.e.

§ = o2[(dr/dz) — E(0r/02)], (8)

where 7 is now a function of z and z defined implicitly

by
1 = Se"k,(z,2). (9)
2

Note that 7is not the expectation of 7(z,Z) but it can
be shown that they differ by O(e?) where € is defined in
the Appendix. Charlesworth has cautioned however,
that this form no longer provides an accurate recursion
relation, even when selection is weak (i.e. it is not
accurate to first order in ¢). Consequently, we seek an
alternate formulation.
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To begin we define the relative fitness of an
individual with phenotype z in a population with
overlapping generations and an approximate stable
age distribution. We write this as lifetime reproductive
output discounting future offspring by the growth
factor e (Kozlowski 1993), i.e.

w(f,z,2) = Xe 7k, (z, 2). (10)

Using definition (10), the Appendix shows that, for
frequency dependence and overlapping generations,
the following selection differential holds under weak
selection:

§ = o2[(d7/dz) — T'E(0w/02)]. (11)

The differentiation of w in equation (11) is with
respect to Z, holding 7 and z fixed and therefore we
display all three arguments of w in equation (10).
Although 7 is determined by Z, varying Z will in
general have two effects on w; it changes both 7 and
k,(z, Z). The partial derivative in equation (11) takes
account only of the change in fitness through changes
in k;(z, Z). In addition,

T =Yie "k, (12)
i

is the mean age of parents of a new generation of
zygotes in a population where all individuals are using
the reproductive function, £;, and is often termed the
generation time.

Equation (11) is useful for our purposes here, and it
also provides a quantitative genetic expression for
modelling the dynamics of frequency-dependent selec-
tion in an age-structured population (see also equation
(21)). Note that under frequency-independent selec-
tion, the second term in equation (11) vanishes
reducing it to equation (5); the r-max and the ESS
approaches then yield the same prediction.

We are now in a position to investigate how ESS and
fitness maximizing life histories differ. Because d7/dz =
0 at the fitness maximum, we need only determine the
sign of the second term in the parentheses of equation
(11) and employ the argument outlined earlier (figure
1). Noting that 7" is a positive constant, we have the
following: if the second term of equation (l1) is
positive, the fitness maximizing phenotype is greater
than the evolutionarily stable phenotype. If the second
term of equation (11) is negative, the reverse holds.
Below we provide some worked examples to illustrate
this idea.

3. EXAMPLES

We restrict attention to univariate life-history prob-
lems and summarize the approach in three steps: (i)
identify the independent variable of interest; (ii) state
which life-history components are affected by this
variable; and (iii) state explicitly how frequency
dependence affects life-history components. This fre-
quency dependence will typically arise as a result of
competitive interactions. In all examples we assume a
deterministic relation between the independent varia-
bles and other life-history attributes.
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The first two examples assume that the life history of
interest is composed of a juvenile stage and an adult
stage, each with constant mortality rates, j and a, and
that there is determinate growth. With these assump-
tions we take m to be zero prior to maturity and a
constant thereafter. Therefore equation (10) becomes

e~(f+j)acm
w(r‘,z,z‘) =1—_—‘e-_m—a—), (13)
where m is fecundity per unit time and « is age at
maturity. Therefore, for the first two examples, we can
evaluate the derivative of w with respect to Z using the

closed form (13) and then take its expectation.

(a) Example 1. & versus m: age at maturity [
Sfecundity

It is postulated that postponing age at maturity
allows an individual to increase its fecundity. Thus we
use the following: (i) z = a is the independent variable;
(i) increasing o increases fecundity, m; and (iii) an
increase in the population-wide age at maturity, &
(holding & constant) results in competitors of greater
size and hence competitive ability. This decreases
fecundity for any given individual age at maturity.
Therefore equation (13) becomes

e»(r’Jrj)am (OL, O_C)

u)(F’ %, O_C) = ] —e ta) 2

(14)

where m is increasing in a and decreasing in 4.
Taking the derivative of equation (14) with respect to
& holding 7 and « fixed gives

Ow/0& = w[(0m/0&)/m]. (15)

From step (iii) above, equation (15) is negative and
its expected value is negative as well because all
individual ages at maturity are affected similarly. Thus
under frequency dependence, the evolutionarily stable
age at maturity is later than that of the r-max
approach.

Kawecki (1993) has derived this result previously for
a patch-structured model and he discusses similar such
results involving competition for light in plants. The
power of the above approach is its simplicity and
generality. For many arguments, the details of the
model do not have to be made mathematically explicit.
All that is needed is a basis for unambiguously
determining the sign of the second term in equation
(11). This generality also allows the immediate
conclusion that, for the life history specified, all forms
of frequency dependence that cause decreasing in-
dividual fecundity with increasing & regardless of
individual age at maturity, will predict a later age at
maturity. This result is independent of how an
individual’s age at maturity, o, affects its fecundity.

Also, it is not necessary to confine the effects of
frequency dependence to a single life-history com-
ponent. For example, in the above life history it may be
that a size increase from postponing maturity results
not only in increased fecundity, but in decreased adult
mortality as well. Additionally, increasing the
population-wide age at maturity, &, may result in
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competitors of greater size and ability and this may
depress fecundity and increase mortality rate for any
given o. Under this hypothesis, both m and a in
equation (14) are functions of « and &. This gives

e T (o, &
w(f, o, &) = (2,4)

Cl—exp[—(F+ala,a))] (16)

Taking the derivative of equation (16) with respect
to & holding 7 and « fixed gives

ow [0m/0o'c e o 6a:'

aa m 1—e 955

(17)

The first term of equation (17) is negative, as is its
expected value, and the second term and its expected
value will be positive. Again the evolutionarily stable
age at maturity is greater than the r-max age at
maturity.

(b) Example 2. j versus o: juvenile mortality | age
at maturity

It is postulated that individuals must reach a fixed
size to mature and foraging in productive habitats
decreases the expected time to this size at the expense
of an increased juvenile mortality rate. Thus we use the
following: (i) z = is the independent variable; (ii)
increasing j decreases time to maturity, a; and (iii) an
increase in the population-wide mortality rate, j,
implies that there are more individuals foraging in the
productive habitats and this increases time to maturity,
a for any given individual j. Therefore equation (13)
becomes

1 _ e—(F+a)

w(r‘,j,j) =

where o is decreasing in j and increasing in j. Taking
the derivative of equation (18) with respect to j,
holding 7 and j fixed gives

0w/0f = —w(F+j)(0/0j). (19)

Assuming 7 > 0, step (iii) reveals that equation (19)
will be negative as will its expected value. Therefore,
the evolutionarily stable foraging strategy will be one
with a higher mortality rate. It is interesting to note
that if the population size is decreasing, equation (19)
may be positive for some individuals. Therefore for
some (negative) value of 7, it is possible that the
expected value of equation (19) is zero; the evolu-
tionarily stable and r-max predictions are then equal.

(¢) Example 3. a versus m: adult mortality [
Sfecundity

As a final example we no longer restrict ourselves to
determinate growth and appeal directly to the second
term of equation (11) for its sign. It is postulated that
foraging in productive habitats increases an indivi-
dual’s fecundity at the expense of greater adult
mortality and that an individual chooses a single
foraging strategy for its entire adult life. We take: (i) z
=a as the independent variable; (ii) increasing a
increases fecundity at all adult ages; and (iii) an
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increase in 4 implies that more of the population is
foraging in productive habitats and therefore fecundity
should decline for any individual a at all adult ages.

Under these assumptions, the derivatives, 0k,/0a will
be negative for all 7. Therefore, from equation (10) we
find that E(0w/0a) will be negative as well. Thus the
evolutionarily stable foraging strategy is one that is
more risky than that which maximizes fitness.

4. DISCUSSION

Even in the early work of Leslie (1948), it was
understood that the dependence of fitness on popu-
lation density can have an effect on optimal life-history
traits (see Charlesworth 1994, p.54 for a discussion of
the literature). Consideration of frequency dependence
has come much later. Much of this development has
been a result of the ESS formulation of Maynard Smith
& Price (1973). While the body of literature spawned
from these results has focused primarily on mono-
morphic models, a parallel body of literature in
quantitative genetics has developed the implications of
frequency dependence as well (Lande 1976; Slatkin
1979, 1980; Iwasa et al. 1991; Taper & Case 1992;
Abrams et al. 1993; Charlesworth 1993). However,
because many of these developments assume non-
overlapping generations their utility in addressing life-
history evolution has been limited.

The extension of Lande’s (1982) results presented
here allows frequency-dependent life-history evolution
to be investigated using a quantitative genetic model.
In particular, we have used equation (11) to formulate
a general procedure through which one can examine
the qualitative difference between evolutionarily stable
and fitness maximizing life histories. Previous work in
this area has been sporadic. For example, Abrams
(1983) considered whether an evolutionarily stable
reproductive effort should maximize population
growth rate and also whether absolute fitness measures
are maximized under competitive character displace-
ment (Abrams 1989; see also Brown & Vincent 1987).
Matsuda & Abrams (1994) have recently looked at
how frequency-dependent selection can even lead to
population extinction. A collection of other recent
work is summarized by Kawecki (1993).

The general procedure presented here allows one to
address a range of life-history questions with a
minimum of assumptions and mathematical formalism.
It can be used to look for general trends of ESS versus
fitness-maximizing life histories across a range of
tradeoffs. Even more useful perhaps, it allows one to
focus on a particular life-history trade-off (e.g. example
1), and make generalizations about the types of
frequency-dependent interactions that will lead to a
stable phenotype being bigger or smaller than that
which maximizes fitness.

Because frequency dependence may result from
competitive interactions, it may often be accompanied
by density dependence. Therefore it is useful to consider
how our results are altered when the population size is
constant (7= 0). From equation (A 5) of the appendix
we see that equation (11) becomes

§ = (o3/ T)[(dR,/d2) —E(0R,/0z)], (20)
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where R, is lifetime reproductive output and T is
given by equation (12) with 7= 0. Equation (20) can
be employed in an analogous way to equation (11).
Note that equilibria found by setting § = 0 in equation
(20) are subject to the condition R, = 1 just as they are
in the frequency-independent case.

If one is primarily interested in using equation (11)
to construct a frequency-dependent quantitative gen-
etic model with overlapping generations, the procedure
of Taylor (1996) allows equation (11) to be expressed
in the more succinct form,

§ = (03/ T)E(0w/02), (21)

where w is defined by equation (10) and the
differentiation is with respect to individual trait value,
z. This form is valid under both frequency-dependent
and independent selection. Also, the density-dependent
(7 = 0) version of equation (21),is S = 02E(0R,/0z) / T.

Finally, although the above procedure is a fairly
simple approach for incorporating frequency depen-
dence into many life-history questions, there are cases
where its general arguments are not sufficient. For
example, it is not always possible to unambiguously
determine the sign of the second term in equation (11)
without constructing a more formal model of
frequency-dependent interactions. Consider a life his-
tory described by equation (13) in which the length of
the juvenile stage is fixed (by season for example) and
foraging in productive habitats allows a greater adult
size and hence fecundity, m at the expense of higher
juvenile mortality, j. It is difficult to determine the sign
of 0m/0dj because an increase in j will correspond to
larger competitors but fewer of them. Because these
two factors work in opposite directions it is not possible
to determine how fecundity will change without being
more explicit about the nature of these interactions.
Nethertheless, we hope this approach will provide a
useful framework through which the importance of
frequency-dependent selection in life-history evolution
is given more consideration.
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APPENDIX

The derivation here follows that of Lande (1982).
We assume weak selection and posit that the nature of
frequency dependence is such that an approximate
stable age distribution is attained. We also assume that
the distribution of breeding values in newly formed
zygotes each generation is Gaussian. We define 7 by
equation (6) and the age specific response to selection

as 8, = h*Cov(z, k,) [k,
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To control the overall strength of selection we write
ki(z,2) = k(1 +h,(z, 2)e), (A1)
where £, is defined by equation (Al) with e=1.
Note that ¢ =0 implies a monomorphic population
and therefore evolutionary equilibrium as well (i.e.
0, =0 and therefore Az = 0). For weak selection we
‘turn up’ € a small amount and ignore terms involving
powers of € greater than one. We first seek an expression
for Az that is valid to first order in e.

Assume that the population’s mean phenotype
changes by an amount Az each time step so that in i
time steps it will change by an amount iAz. Now
consider a group of newly formed zygotes. Their mean
phenotype will equal the mean breeding value of
parents across all ages. However, the mean breeding
value of parents of a given age 7, will in general differ
from the overall mean of this new cohort for two
reasons. First, i-year old parents were born into a
cohort with a mean value iAZ less than the present
mean. Second, by definition the mean of that cohort
will have changed by an amount d; through selection
over the past ¢ years (when weighted by age-:
fecundity). Therefore the mean breeding value of age-
¢ parents (weighted by-age-i fecundity) differs from the
present cohort’s mean by an amount ¢, —iAz. However,
the mean of this difference across all parental ages must
equal zero. Writing ¢, for the probability that a parent
of a random offspring is of age ¢ gives,
0 = Xg,(d;,—iAz). (A2)

Here ¢, is given by a weighted sum over the
frequency distribution of different phenotypes, but
because we only need AZ to order ¢, and because J; is
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already of order €, we need only calculate these
probabilities at € = 0 (i.e. deviations from this will be
of order €*). These probabilities are simply given by
g, = € "'k,. This gives,

TAz =3%3,8,+ O(&?) (A3)

where 7 is defined by equation (12). Now for any
differentiable function f{(z, 7),

Cov(z, f) = v*[(0f/02) —E(9f/0z)]

over a Gaussian density with variance »®. Combining
equations (A 3) and (A 4) with the definition of §,
gives;

(A4)

Az = ZTQ [Se "0k, /02— SeE (0k,/02)] + O(€?). (A 5)

By differentiating equation (6) with respect to Z we
discover that the first term in parentheses of equation
(A 5) can be written as
Tdr/dz. (A6)

Now after taking the expectation outside of the
summation in the second term of equation (AJ), it can
be identified as the expectation of the partial derivative
of equation (10) with respect to z. Therefore (A5) can
be re-written as,

Az = ¢2[(d7/dz) — T'E(0w/0z)]+ O(€%) (A7)

Reference to equation (1) then gives result (11) (to
first order in €).





