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An inclusive fitness model for the sex ratio in a 
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Summary 

We construct an inclusive fitness model to find the evolutionarily stable sex ratios in a partially sibmating 
diploid or haplodiploid population. We assume a constant rate of sibmating with inbred offspring incurring a 
fitness penalty which, under haplodiploidy, is only suffered by females. We construct a one-locus genetic 
model for the same problem and observe that when selection is weak it gives the same numerical results as 
the inclusive fitness model. 
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Introduction 

Fisher (1930) argued that in a randomly mating sexual population, evolutionary forces should 
produce a 1:1 sex ratio. Hamilton (1967) was the first to point out that certain asymmetries 
between the sexes of a genetic or behavioural nature can invalidate Fisher's argument and create 
a bias in what he termed the 'unbeatable'  sex ratio. Our purpose is to investigate the effect on the 
sex ratio of such asymmetries in a partially sibmating population in which inbred offspring suffer 
a viability cost, and to compare our results for diploid and haplodiploid genetic systems. Much 
previous work has focused on different aspects of this investigation, and we provide a sex-ratio 
formula which generalizes a number of existing formulae and partitions the sex ratio bias into the 
three contributing factors of local mate competition, inbreeding, and inbreeding depression. 

Local mate competition 

Hamilton (1967) modelled local mate competition with a patch structure, in which N unrelated 
females breed together on a single patch, and their offspring mate at random on the patch before 
dispersing into the population at large. In this model, competition between related males (in this 
case, sibs) for a limited number of matings produces a female-biased sex ratio. An equivalent 
modelling assumption (Maynard Smith, 1978) is simply to specify that a fixed proportion of all 
females sibmate, and the rest mate panmictically, and this is the approach we adopt here. 
Subsequent generalizations of Hamilton's patch-structured model (Frank, 1985; Bulmer, 1986; 
Taylor, 1988) postulate only partial dispersal by mated females and this introduces a measure of 
local competition between females for breeding space, which can reduce the bias in the sex ratio, 
depending as it does on the extent of the asymmetry in local resource competition between males 
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and females (Taylor, 1981). The effects of inbreeding depression are more difficult to analyze 
when dispersal is partial. 

Inbreeding 

When relatives compete with one another for reproductive resources (in particular for mates) 
there is a tendency for mating to take place between relatives, and this natural association 
between inbreeding and LMC has often caused them to be confounded in the sex-ratio literature. 
The question arises as to how much of the bias is due to each of the factors of local mate 
competition and inbreeding and Herre (1985) was the first to attempt to partition these two 
effects for a haplodiploid population; our formula is a generalization of his. It is possible to 
construct examples in which there is LMC but no inbreeding and vice versa, but such models are 
often contrived. 

Haplodiploidy 

Haplodiploid populations are typically arrhenotokous, such that haploid males and diploid 
females develop from unfertilized and fertilized eggs respectively. The resulting genetic 
asymmetry between the sexes has an important effect on the sex ratio. Most importantly, it 
creates a different relatedness of a mother to her sons and to her daughters, these being 1 and 1/2 
respectively in an outbreeding population. In the absence of complicating factors such as 
inbreeding and LMC this asymmetry does not produce a sex ratio bias since the reproductive 
value of a male is half that of a female (Price, 1970). However, an effect of inbreeding is that the 
relatedness of a mother to her daughter increases, while that to her son remains the same, and 
this produces a female bias in the ESS sex ratio. This effect of inbreeding per se is not found in 
diploid populations in which there is no relatedness asymmetry. 

Cost o f  inbreeding 

Inbreeding depression, caused by the expression of deleterious recessive alleles in the homozygous 
state, generally tends to reduce fitness (Falconer, 1989). For example, Miller et al. (1993) found 
that inbred males in Drosophila melanogaster had a significant reduction in mating ability and 
therefore in reproductive fitness, and Taylor and Getz (1994) constructed a model to show that 
inbreeding depression reduced the selective advantages of sibmating. But is inbreeding 
depression by itself expected to bias the sex ratio? In diploid populations the answer is expected 
to be no, as inbreeding depression affects males and females equally. However, in the presence of 
local mate competition, inbreeding depression causes a slight reduction in the female bias; this 
effect was first studied by Charlesworth and Charlesworth (1981) in a population of self-fertile 
hermaphrodites. In haplodiploid populations, only the female suffers the cost of inbreeding and 
this provides a new component to the asymmetry between the sexes and alters the effect 
described above. 

Our models assume an infinite population with non-overlapping generations. We assume that 
females mate once, with a sib with probability p and panmictically with probability 1 - p. 
Offspring of sibmated parents (both sexes under diploidy, only females under haplodiploidy) 
survive to breed with probability 1 - s relative to outbred offspring. These assumptions follow 
the model of Kaitala and Getz (1992) except we have no male-mating cost p~ and we impose an 
inbreeding cost. 

We have two objectives. The first is to formulate an inclusive fitness sex-ratio model for the 
given population structure for both diploidy and haplodiploidy, and display the effects of the 
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Figure 1. These graphs show the effect of sibmating on the sex ratio for different values of inbreeding 
depression s under (a) diploidy and (b) haplodiploidy. The inclusive fitness model with s = 0 is the same as 
the LMC models of Hamilton (1979) and Taylor and Bulmer (1980), with p = 1/N. Increased inbreeding 
depression slightly reduces the female bias under both genetic systems. This effect is greater under diploidy 
than under haplodiploidy. 

various factors described above.  The  second is to check this argument  with a one-locus genetics 
model  for the special case of a rare dominant  mutant .  

Results 

The inclusive fitness model provides the following formula for the sex ratio oL (proportion of 
males): 

1 2rmVm .[ ] [ ] (1 - p)Vo + pVs (1) c, = ~ • [1 - p] • Lr~vf + rmVmJ 

where  p is the probabil i ty a female  will s ibmate,  r i is the relatedness of a mother  to her sex i 
offspring, v i is the reproductive value of sex i, and V o and Vs are the reproductive values of a 
single outbreeding and sibmating respectively. The model  is presented in Appendix  A, and the 
formula  is displayed graphically in Fig. 1. The terms in the square brackets  in Equat ion (1) can be 
associated with the three principle factors affecting the sex ratio. The first is the local mate  
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competition term, the second provides the effect of inbreeding, and the third gives the effect of 
inbreeding depression. 

In Appendix A, we show that under diploidy, the inbreeding term is unity, and Equation (1) 
becomes 

first obtained by Charlesworth and Charlesworth (1981) in a population of self-fertile hermaphro- 
dites. Here, p is their rate of selfing S, and s is their fitness penalty g paid by selfed seeds. Under 
haplodiploidy, Equation (1) becomes 

oL = ~ .  [ 4 - p J 3 -  2ps - pas (3) 

and in case there is no inbreeding penalty, s = 0 and the last term is unity, giving 

1 [ l - p ] . [ 4 4 - ~ p  ] (4) 

which is Herre's (1985) formula. 
For the associated one-locus genetic model, with a rare dominant mutant, the equations of 

mating type frequencies are presented in Appendix B. ESS sex ratios were calculated by 
numerical solution of the equations and were found to be identical to those provided by the 
inclusive fitness Equation (1). 

Discussion 

The three terms in the square brackets in Equation (1) can be associated with the three principle 
factors affecting the sex ratio. The effect of the local mate competition term 1 - p is greater for 
higher inbreeding probability p; indeed, a mother receives an inclusive fitness gain through an 
extra son only when he outbreeds, and so the benefit of this extra male is less when the 
population-wide level of sibmating is high. 

The second term measures the effect of inbreeding. The product of relatedness r and 
reproductive value v might be called the 'complete relatedness' and this inbreeding term 
introduces a bias when the complete relatedness of a mother to her sons is different from that to 
her daughters. The genetic symmetry of diploidy guarantees that the two complete relatedness 
coefficients are always the same, regardless of the amount of inbreeding. Under haplodiploidy, in 
the absence of inbreeding, the complete relatednesses are also the same, but an effect of 
inbreeding is to increase the relatedness of a mother to her daughter, while that to her son 
remains the same, and this increases the female bias in the ESS sex ratio. 

The third term measures the effect of an inbreeding cost, and this modifies the sex-ratio bias 
whenever a sibmating and an outbred mating have different reproductive values. Under both 
genetic systems, when there is an inbreeding penalty, a sibmating will always be less valuable 
than an outbreeding because inbred offspring survive to breed with a lower probability. Thus 
Vs<V o and the last term in Equation (1) will always reduce the female bias. 

It is at first surprising that there is an effect of the inbreeding under diploidy, since, in this case, 
the two sexes incur the viability penalty equally. In fact, the effect works, not through any genetic 
asymmetry, but by modifying the behavioural asymmetry already caused by the LMC. Indeed, 
recall that the inclusive fitness gain to a mother through an extra son accrues only through his 
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outbreedings, and this is unaffected by an inbreeding cost. However, the mother does receive a 
fitness gain through an extra daughter who sibmates (as well as through one who outbreeds), and 
this gain is reduced by the inbreeding penalty. So the inbreeding penalty reduces the marginal 
gain through daughters, but does not affect that through sons, and therefore reduces the existing 
female-bias. This effect was first studied by Charlesworth and Charlesworth (1981) in a diploid 
population. 

In fact, it is interesting to note that this effect of inbreeding depression is greater under diploidy 
than under haplodiploidy, that is, the last term in Equation (2) is greater than the last term in 
Equation (3). We can attribute this to the genetic asymmetry of haplodiploidy. The value of a 
sibmating is greater under haplodiploidy than under diploidy because haploid males do not pay 
an inbreeding cost, and thus, the reduction in the inclusive fitness gain through daughters, caused 
by the inbreeding penalty, is of less magnitude. 

In a haplodiploid population with no inbreeding cost (s = 0), the ESS sex ratio (Equation 4) 
was first obtained by Hamilton (1979), and Taylor and Bulmer (1980) working with an equivalent 
patch-structured model with N females per patch and p = 1/N. It was Herre (1985) who first 
partitioned this formula into an LMC and an inbreeding component. Herre's approach was to let 
the number n of females per patch be variable in the population, and to allow the female to 
respond to variations in n, but not, of course, to her own inbreeding coefficient, and this allowed 
him to separate out the common factor due to inbreeding. The value of p used in his formula is 
1/N where N is the harmonic mean of n. 

In Appendix A (Equation A3) we verify the convergence stability (Christiansen, 1991) of the 
sex ratio. This condition is the essential ingredient of what Eshel (1983) called continuous 
stability (CSS), and what Taylor (1989) subsequently referred to as m-stability. A discussion of 
the various stability conditions that have been identified can get quite technical; we will only 
point out that the inclusive fitness arguments in general are able to check the convergence 
stability of an equilibrium. 

Kaitala and Getz (1992) use a one-locus genetic model similar to that laid out in Appendix B to 
study the sex ratio in a partially sibmating haplodiploid population with no inbreeding penalty 
and a male mating cost Ix. Their numerical results, for the case Ix = 0, are slightly different from 
the predictions of Equation (4), and they account for the discrepancy between their results and 
those of Taylor and Bulmer (1980) by suggesting that a perturbation to the sibmating frequency 
occurs when a mutant female arrives on a patch. But in a weak-selection model, this perturbation 
is negligible and the difference between the results is now understood to be due to a 
normalization error in their equations. 

The calculations of the one-locus genetic model in Appendix B make the assumption of a rare 
mutant and this makes the recursion equations for the 8 x 8 matrix much simpler. We have 
found that this assumption has a negligible effect; the one-locus genetic model in Appendix B 
which assumes a rare mutant gives the same numerical results as the corrected genetic model of 
Kaitala and Getz (1992) which does not assume a rare mutant. Our genetic model also employs a 
dominant mutant. Several authors, including Bulmer (1986) and Kaitala and Getz (1992), have 
shown that dominance has negligible effects when selection is weak; inclusive fitness and one- 
locus genetic models continue to give the same results. 

Under the assumptions of weak selection and additive gene action our inclusive fitness analysis 
provides the same numerical results as the one-locus genetic model described in Appendix B. 
This illustrates a general equivalence between these two modelling approaches which has been 
discussed by several authors including Hamilton (1975), Charlesworth (1980), Grafen (1985), 
Bulmer (1986) and Taylor (1989). The inclusive fitness approach is important because the 
formula it provides allows us to understand how different factors contribute to the sex-ratio bias, 
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and in particular to pin down the crucial role played by reproductive value in evolutionary 
modelling. 
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Appendix  A: the inclusive fitness m o d e l  

First we define the necessary notation: 

the sex ratio (proport ion of males), assumed uniform in the population 
p the probabili ty of sibmating 
F the average inbreeding coefficient among breeding females 
s m the viability penalty suffered by male offspring of a sibmating 
sf the viability penalty suffered by female offspring of a sibmating 
r i the relatedness of a mother  to her sex i (i = m or ]) offspring 
v i the reproductive value of sex i (i = m or f) 
V s the reproductive value of a single sibmating 
V o the reproductive value of a single outbreeding 

The inclusive fitness gain to a mother  through an extra male offspring is 

W m = ( 1  - -  PSm) i -- a)  (1 -- psf) (1 -- P)VormV m ( a l )  
o~ (1 - pSm) 

The terms are explained as follows. The average male survives with probability p(1 - Sm) + 
(1 - p) = (1 - PSm) and increases his mother ' s  fitness only when he outbreeds since a sibmating 
will take away a mating opportuni ty from another  son. The expected number  of matings per male 
is the breeding sex ratio which is [(1 - a)(1 -p s f ) ] / [ a (1  - P S m )  ] where the average female 
survives with probability (1 - psf).  A proport ion (1 - p)  of these matings are outbreedings. 
Note  that the male gains proport ion v m of the value V o of each outbreeding. The inclusive fitness 
gain through an extra female offspring is 

Wf = (1 - psf)[(l  - P)VorfV f + PVs(rfv f + rmVm) ] (A2) 

where an extra female offspring survives with probability (1 - psf) and increases her mother 's  
inclusive fitness whether  she outbreeds (first term in square brackets) or sibmates (second term in 
square brackets).  In the case where she sibmates, she also gives a sibmating to her brother  and 
this accounts for the sum of the two riv i terms. At  equilibrium, Wm = Wf, and we obtain the ESS 
sex ratio, Equat ion (1). The derivative 

d (1 - -  p s f ) ( 1  - -  P)VormV m 
doL [ W m ( 0 ~ )  - -  W f ( o t ) ]  - - ° t  2 ( A 3 )  

is negative, therefore  the sex ratio is convergence stable (Christiansen 1991). 
To calculate the ESS sex ratios in Equat ion (1) we need to find relatedness and reproductive 

values under  both genetic systems. The general equations for the relative reproductive values of a 
sibmating and an outbreeding are 

V s =(1 - psi)(1 - pSm) - (1 - p)[(1 - psf)VmS m -']- (1 - pSm)VfSf] 
(A4) 

V o = 1 - p s  m 

These are calculated from recursion equations, an example of which is given below for the 
specific case of haplodiploidy. 
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Diploidy 

Under diploidy, we have (Michod and Hamilton 1980; Price 1970): 

1 + 3 F  1 
rm = re - 2(1 + 2F) Vra = Vf = ~ (A5) 

Using Equations (A4) and (A5) with s m = sf = s, the relative values of an outbreeding and a 
sibmating are 

V s =  ( l - s )  (A6) 

Vo=l 

and, using Equations (A5), (A6) and (1), the ESS sex ratio in the diploid case is given by 
Equation (2). 

Haplodiploidy 

The inbreeding coefficient F for haplodiploidy is calculated from the following one-generation 
recursion (Taylor 1993) 

F = p ~ + (A7) 

where F on the left is the probability that random alleles from a mated pair are identical by 
descent. This will happen only when the pair is sibmated which occurs with probability p. In this 
case, the probability of identity when the female allele is maternal (probability = 1/2) or paternal 
(probability = 1/2) is given by the first and second terms in the brackets respectively. Solving for 
F in Equation (A7) gives 

f = 4 -P 3p (A8) 

It follows from Equation (A8) that the relatedness coefficients are (Hamilton, 1972; Michod and 
Hamilton, 1980): 

l + 3 F  1 
r m =  1, r f - 2 + 2 F - 2 _ p  (A9) 

Following the method of Taylor and Getz (1994), we show that the relative reproductive values of 
the two types of matings are: 

sibmating V s = 1 - 2s _ ps 3 3 (A10) 

outbreeding V o = 1 (Al l )  

We first calculate the number of offspring from each mating type that survive to maturity. The 
number of male offspring from a mating of either type is 

m = Ko~ (A12) 

where K is the total number of offspring from a mating and the number of breeding daughters is: 

sibmating f~ = K[(1 - c 0 (1 - s)] (A13) 

outbreeding )Co = K(1 - o 0 (A14) 
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W e  normalize these values according to the assumption that the average number of breeding 
daughters from a mating is unity: 

Pfs + (1 - P)fo = 1 (A15) 

which gives us K = 1/[1 - a)(1 - ps)]. The recursions for the reproductive values of a single 
sibmating and a single outbreeding are 

V' s = PfsV~ + (1 - p)fsvfVo + m(1 - P)vmVo m 

p ( 1 - S ) v  s +  ( l - p )  (1 2 s + p s )  (A16) 
= (1 - ps)  (1 - ps)  - 3 V° 

V o = pfoVs + (1 - p)fovfV o + (1 - P)mvmVo 
m 

= P ( l - p )  1 -  Vo 
( 1 -  ps) S ( 1 -  ps) 

These are obtained by counting the number of matings of each type by the offspring of each 
mating type. As an example, we provide the argument for Equation (A16). From a sibmating, 
there are Pfs offspring that sibmate each giving her brother a mating, so that in this case we get 
the entire value V s of the sibmating. In addition, there are (1 - P ) f s  female offspring that 
outbreed providing a value of vfV o. From Equations (A12) and (A15) the breeding sex ratio is 
1/m, so each of the m males can expect (1 - p)/m outbreedings with value vmV o. To get the 
second line of Equation (A16) we have used the fact that v t = 2/3 and v m = 1/3 (Price, 1970). 
These recursions can be written in matrix form: 

- 3 ] Vs 

The dominant  eigenvalue of this linear system is calculated to be unity and the corresponding 
dominant  eigenvector gives the reproductive values at equilibrium: 

V s = 1 g (A19) 
V° 1 

The ESS sex ratio in the haplodiploid case (using Equations (A9) - (Al l ) ,  (A19) and (1)) is given 
by Equation (3). 

A p p e n d i x  B: the  o n e - l o c u s  genet i c  m o d e l  for the  h a p l o d i p l o i d  case  

We assume that females of genotype i produce a proportion [3 i of males. Let xij(t ) be the 
frequency of sibmatings between a type i female and a type j male in the population at time t. 
Similarly, let Yij(t) be the frequency of outbreedings such that 

Z i j [ X i j ( 0  -~- Yij(t)] = 1 (B1) 

The following recursion equations are based on the assumption of a rare and dominant mutant 
allele B and a wild-type allele b, so that outbreedings of the type Bb × B and BB × B are 
assumed to be of negligible frequency: Y2a(t) = 0 and Y32(t) = 0. The mating type BB × B is 
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o m i t t e d  as w e  a r e  on ly  c o n c e r n e d  wi th  m u t a n t  m a t i n g  types .  Al l  f r e q u e n c i e s  a re  n o r m a l i z e d  b y  
t h e  f a c t o r  K = 1/[(1 - [3a)(1 - ps)], so t ha t  t he  a v e r a g e  n u m b e r  o f  b r e e d i n g  d a u g h t e r s  is un i ty .  

S ibma t ings :  

Xl2(t + 1) = 

X21(t + 1) = 

K ( 1  - [~2)[(1 - s)PX21(t ) + py21(t)] 

1 
(1 - p s )  [(1 - s)pxlz(t) + PYlz(t) 

+ 4 ( 1  - [32)[(1 - s)p(x21(t) + x22(t)) + py21(t)] 

x22(t + 1) = K ( 1  - [~2)[(1 - s)p(x21(t) + x22(t)) + py21(t)] 

+ K(1  - [33)[(1 - s)Px31(t) + py31(t)] 

x31(t + 1) = K ( 1  - [32)(1 - s)px22(t ) 

x32(t + 1) = K ( 1  - [32)(1 - s)Px22(t ) + K(1 - 133)(1 - s)Px32(t) 

O u t b r e e d i n g s :  

y12(t + 1) = ~ (1 - p)[x21(t) + x22(t ) + Y21(t)] 

+ ~ i  (1 - p[x31(t ) + X32(t ) + Y31(t)] 

~? P)~rq Y21(t + 1) = 2 p s ) t ,  -- s)x12(t ) + y12(t)] + K ( 1  - [32)(1 -- p )  

[y21(t) + (1 - s)(x2a(t ) + x22(t)) ] + K(1  - 133)(1 - p ) [ (1  - s)x3a(t ) + y31(t)] 

y31(t + 1) = K ( 1  - [32)(1 - p ) ( 1  - s)x22(t ) + K(1 - [33)(1 - p ) ( 1  - s)x32(t) 

(B2)  

(B3)  

(B4)  

(B5)  

(B6)  

(B7)  

(B8)  

(B9)  


