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Following the approach of Schaffer (1974, Ecology 55, 291-303.) and Charlesworth 
& Leon (1976, Am. Nat. 110, 449-459.) the tradeott between fecundity and sur- 
vival/growth is investigated in an age-structured population with density indepen- 
dent life history parameters. The results of the above authors are generalized by 
allowing the tradeofI curve to vary with age; the life cycle is assumed to have two 
stages: an initial stage during which the organism generally improves in her capacity 
to reproduce, grow and survive, and a final stage during which her general perform- 
ance remains constant or declines. The principal result is that, during the final stage, 
RV per unit size should decrease and over the course of the entire life, should either 
decrease, or increase at first and then decrease. With the additional assumption that 
the tradeoff curves at different ages are similar in shape, it is shown that unit 
fecundity should increase throughout the reproductive life of the organism. 

I. Introduction 

A basic question in the study of age-structured populations is how life history 
parameters should vary with age. Here this question is addressed with what has 
been called the "cost of  reproduction model" (Bell, 1980) or the "reproductive 
effort model" (Charlesworth & Leon, 1976), which, at each age i, focuses attention 
on the tradeoff between fecundity on the one hand, and survival and growth on the 
other. Schaffer (1974) and Taylor et al. (1974) made the first serious analytical 
studies of  this question, and their work was extended by Charlesworth & Leon 
(1976), Schaffer (1979), and Bell (1980). Necessary and sufficient conditions are 
obtained for unit reproductive value (RV per unit size) to decrease with age which 
generalize those obtained by Charlesworth & Leon (1976). These are applied to a 
life cycle in which there are two stages, an initial stage I, during which survival and 
growth, for a fixed value of the fecundity, increase with age, and a final stage II, 
during which survival and growth, with fecundity fixed, remain constant or decrease 
with age. 

A number of  important assumptions are made. One is that the life history 
parameters are density independent. Another is that, at each age, if there is some 
variation in individual size, then fecundity is proportional to size. A third assumption 
is that the tradeoff between fecundity per unit size and survival and growth operates 
only within each age class. That is, changes in unit fecundity at one age have no 
effect on the functional dependence of survival and growth on fecundity at another 
age. Charlesworth & Leon (1976) deal separately with density independence and 
dependence, and make the last two assumptions. 
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The results of  section 3 concern the pattern of change with age in unit RV and 
fecundity. It is shown that unit RV should either decrease over the entire life of the 
organism, or increase at first and then decrease. In any event, unit RV should 
decrease during stage II. To get a general result on the change in fecundity with 
age, it is necessary to make some additional assumptions on the relation between 
tradeoff curves at different ages. The assumption made is that the tradeoff curves 
all have the same basic concave-down shape, and differ only in vertical scale. With 
this rather strong assumption, fecundity is expected to increase and unit RV to 
decrease throughout the reproductive life of the organism. These results generalize 
the findings of Charlesworth & Leon (1976) who assumed that the tradeoff curves 
remain constant throughout the period of reproductive maturity. 

2. Notation, Definitions and Assumptions 

The approach of Charlesworth & Leon (1976) is followed which in turn is based 
on the work of  Schaffer (1974). There are certain general assumptions that apply 
to the whole paper. One is that the life history parameters are density independent. 
Fecundity and survivorship will depend on maternal reproductive effort but not on 
properties of  the population such as its size and density, nor on the strategies chosen 
by other individuals. It is assumed also that the population has a uniform life history 
and is in a stable age distribution. This assumption is needed to enable us to define 
the annual population growth increment h. It is assumed that age classes are discrete, 
and are indexed by i or j. It is mathematically convenient to allow an infinite set 
of  age classes, even though it will be assumed that the optimum behaviour for the 
population will be to achieve maximum fecundity (and zero survival) at some 
terminal age n. The reason one needs at least one age class past n is that, when 
formulating the conditions for optimal behaviour, one needs to know the fitness of  
alternative strategies, and in particular, one needs to know the possible fecundities 
and survival probabilities of  an individual who decides to live past age n. 

The following life history parameters are now defined. As is usual in these studies, 
attention is restricted to the female subpopulation. 
e; is the reproductive effort of  a female at age i. 
s; is the size of  a female at age i, normalized so that sl = 1. 
B; is the fecundity of  a female at age i, defined as the expected number of  daughters 

who attain age 1, and assumed to be proportional to maternal size s~ (Schaffer, 
1974 calls this the effective fecundity). 

b; = B ; / s ;  is the fecundity per unit size at age i. 
g; = s;+,/s~ is the growth increment at age i defined as the factor by which size is 

multiplied. 
P~ is the probability of  survival of a female from age i to age i+  1. 
P~ = Pig; is the product of  survival and growth increment at age i, which, for want 

of  a better name, shall be called the survival/growth. 
L; = I-Ij-'t P~ ( i >  1) is the survivorship to age i, with L~ = 1. 
l~ = l - I j -~  pj  = L;s~ is the expected size at age i, if size is set equal to zero at death, 

with l~ = 1. It is useful to note that B~L~ = b;l;. 



T R A D E O F F  C U R V E S  I N  L I F E  H I S T O R Y  35 

A is the geometric growth rate of the population, that is, the ratio of population 
size in one year to that of  the previous year. For a uniform population in a stable 
age distribution, A is defined by the equation 

c~ co 

E L~B,A-'  = ~ l;b;Z - '  = 1. (1) 
i = 1  i - - I  

V~ is the reproductive value (RV) of a female at age i, defined as the "present value'" 
of  all daughters from age i onwards: 

V~ = B~A - i +  piBi+lX-2 + P;Pi+~B~+2A - 3 + . . .  

/ ~ i - - I  ~x~ 

- E LjBjA-J. 
Li j= 1 

v~ is the unit RV defined as the RV per unit size. (This is Schaffer's 1974 modified 
RV, but unit RV is a better name.) 

)~ i - - I  oc 

vi = V, /s i  = ~ - i  E l;b; A-j- 
j = i  

Note that vl = 1, from eqn (1). Note also that the v~ satisfy the recursion 

v, = b_,+~ v,÷l .  (2) 
A A 

The reader will have noticed the duality between the upper case symbols B~, P~, 
Li and V~ and the lower case b~, p~, I~ and v~. The upper case latters are the parameters 
in the classical formalism of life tables and Leslie matrices, but here the lower case 
parameters are used for the following reasons. When the tradeoff curve between 
survival and fecundity at one age is affected by fecundity decisions made at another 
age, the optimality condition is difficult to analyse. A common example of  such an 
effect is found in organisms which are able to grow during reproductive maturity. 
In this case, reduced fecundity at one age can allow a higher growth rate at that 
age, providing increased size and consequently increased fecundity at later ages. 
Schaffer (1974) provided a clever way to handle this problem, and that is to treat 
growth as an aspect of  survival. In this formalism p~ = Pigi is the product of survival 
and unit growth increment, and is a generalized measure of "survival/growth". Thus 
an individual who has probability P~ = ~ of  surviving from age i to age i+  1, but 
will double in size if she does survive, has a p~ of 5. With these parameters, we do 
not distinguish (reproductively) between two individuals of  unit size and one 
individual of  size two, and this requires the assumption that fecundity is proportional 
to size. This device is used by Charlesworth & Leon (1976), and discussed further 
there, but note that their use of upper and lower case for P and p is reversed. 

With this set-up, we can do the life history analysis entirely in terms of  p~, l~, and 
the unit fecundity b~. The current strategy is allowed to affect future size (through 
the growth increment), but if we assume that there is no other effect on the form 
of future (or past) b - p  tradeoff curves, we can restrict attention to the tradeoff 
between survival/growth p~ and unit fecundity b~, at each age. 
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Indeed,  let us make this assumption formally. Following Schaffer (1974) and 
Charlesworth & Leon (1976), the b~ are regarded as the independent  variables, 
determined by choosing the level of  reproductive effort at each age, and the pi as 
the resulting dependent  variables. Imagine a female with a fixed schedule of  b~. The 
following assumption concerns the effect of  changes in a single b~ on the set of  
values of  pj. 

ASSUMPTION OF THE INDEPENDENCE OF AGES 

An alteration in a single b~ does not affect 

nor 
the value of  any previous 

the value of  any future 

p~(j < i) (3a) 

Pi(J > i). (3b) 

These are listed as two separate conditions because they have quite different 
biological and mathematical  significance. Assumption (3a) is biologically quite 
reasonable for a large class of  organisms. The only common exception mentioned 
in the literature is the phenomenon  of parental care: if such care is sustained over 
more than one year, increased fecundity at one age could affect the survival of  
earlier offspring, and thereby reduce the effective fecundity of  the parent at an 
earlier age. Assumption (3b) is less likely to hold. It permits increased unit fecundity 
bi at one age to decrease total fecundity Bj at a later age because of  decreased size 
at age j, but does not permit  any effect of  variation in current unit fecundity on the 
future tradeoff between unit fecundity and survival/growth.  One important  con- 
sequence of  (3b) is that the unit RV, vi, of  a female at age i depends only on her 
choices of  bj f rom age i onwards.  This is shown by using eqn (2) inductively. 

The assumption that fecundity is proport ional  to size is rather strong, but can be 
made less restrictive by letting the growth increment gi measure increases in repro- 
ductive effectiveness as well as body mass. This also makes assumption (3b) less 
restrictive. Indeed,  bearing in mind that growth rate should be lower when unit 
fecundity is increased, gi could serve to measure any type of  growth in reproductive 
effectiveness which is bought  at the expense of current reproduction. For example,  
g~ might measure the development  of  more effective reproductive organs, but should 
not be used to measure increases in brood-rearing ability which are derived from 
current parental experience, and are more likely to be increasing functions of  bi. 

The tradeoff at each age between fecundity and survival /growth is modelled by 
making pi a decreasing function of  b~. It is assumed that at some age m of  reproductive 
maturity, b~ becomes positive for the first time, and stays positive from that point 
on, and it is assumed that at all ages i -> m, the graph ofp~ against b~ is concave-down 
(Fig. 1). 

Now two artificial life history parameters  are defined which are mathematical ly 
very useful, and have important  geometric interpretations. 
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FIG, 1. The  b a s i c  c o n c a v e - d o w n  p-b t r a d e o f t  cu rve  wi th  the m a i n  va r i ab l e s  d i s p l a y e d .  

ai is that value of Pi that would provide the same unit RV vi entirely through 
survival/growth,  i.e. with zero fecundity. 

/3i is that value of  b~ that would provide the same unit RV v~ entirely through 
fecundity, i.e. with zero survival/growth. 

Using eqn (2), these parameters  can be defined by the equations 

v, = ~- v,+, (4)  

t3, 
- ( 5 )  

A" 

Before reproductive maturity, b~ = 0, and a~ equals p~, but once b~ becomes positive, 
ai exceeds p~. Even when the populat ion-wide behaviour  is to put maximal reproduc- 
tive effort into a terminal age n, a,, can still be defined by eqn (4) if v,+~ is interpreted 
as the unit R V  of  an individual who happens to survive to age n + 1. Note that 
assumption (3b) is required for eqn (4): it is necessary that v~+t be independent of  
reproductive effort at age i. 

The geometric interpretation of ai and/3~ is obtained from the following equations. 
Equations (4) and (5) together imply that 

13, 
vi+, = - - ,  (6) 

O/i 
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and eqns (2) and (4) give us 
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bi 
v i + l  - ( 7 )  

ai - P i  ' 

whenever b i > 0  (so that a~>pi) .  It follows from (6) and (7) that a~ and fl~ are the 
intercepts on the p- and b-axes respectively of  the line of  slope -1/vi+~ through 
the point (b~, p~) on the tradeoff curve. In case a~ =pi ,  this follows from (6) alone. 
This interpretation will be important  in our discussion of optimality conditions. 

An interesting relationship is found by applying eqn (4) repeatedly over the first 
k age classes: 

O~10~ 2. . . Olk~k+ I 
1 = v~ - ;~k+~ ( 8 )  

Equation (8) says that the geometric mean of  the k + 1 terms in the numerator  is 
the populat ion growth rate A. In a sense, a~ is a " 'survival-growth" measure and fl~ 
is a "fecundi ty"  measure of  how well the organism does, relative to the population 
growth rate A, in its ith year. 

A S S U M P T I O N  O N  T H E  A G E - D E P E N D E N T  N A T U R E  O F  T H E  p-b C U R V E S  

Finally, an assumption about the change in the pi-bi  curves with age is made. It 
is assumed that the life of  the organism is divided into two stages: stage I during 
which pi increases with age or is constant for each fixed b, and stage II during which 
pi decreases with age or is constant for fixed b. Let t denote the transitional age 
between the stages. Thus: 

Stage I (i<t) pi<--pi+l at each b 
( 9 )  

Stage II ( i >  t) P~->Pi+~ at each b. 

As an example,  consider a long-lived organism whose life cycle consists of  a 
period of  physical and reproductive growth, a steady-state period of  constant size 
and reproductive output,  and a period of senescence. During the growth phase, the 
survival P~ increases with age at each fixed b, but at a decreasing rate, and the 
growth increment gi decreases at each fixed b, at an increasing rate at first, when 
the organism is small, and then at a decreasing rate as steady-state is approached 
(corresponding to a logistic type growth curve). The effect of  this on the product 
p~ is uncertain, but it will certainly increase at the beginning and will likely start to 
decrease as the steady-state is approached.  During the steady-state, the survival P~ 
and the growth increment g~ do not change with age, and hence neither will their 
product  p~. During senescence, P~ and pi, and possibly g~ decrease with age. With 
this life history pattern, stage I will occupy a good part of  the growth phase, and 
stage II will occupy the last part of  this phase, and the remainder  of  the life. 

This simple assumption of two stages may not exactly describe many organisms, 
but my purpose in the next section is really to develop the mathematical  tools that 
are appropr ia te  for analysing changes in life history parameters  under similar 
assumptions.  
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3. The Optimality Condition: Changes in Unit RV and Fecundity with Age 

T H E  O P T I M A L I T Y  C O N D I T I O N  

The principal evolutionary problem is to find the schedule of reproductive effort 
which maximizes fitness. When the b - p  tradeoff curves at each age are density 
independent,  as is our assumption, then the answer to this problem is that the b~ 
should be chosen to maximize A given by eqn (1) (Gadgil & Bossert, 1970; Schaffer, 
1974; Taylor et  al. ,  1974). An important general result, first proposed by Williams 
(1966), and demonstrated by Schaffer (1974), Taylor et  al . ,  (1974), Schaffer (1979), 
Charlesworth (1980), and Caswell (1989: 176) asserts that this is the same as choosing 
b~ at each age to maximize v;. It is interesting to note (Schaffer, 1979) that this result 
requires assumption (3a) but not assumption (3b). To see this, write eqn (1) as 

cc i - I  

1 = ~. ljbjA - j  = ~, ljbjA - j  + liv,A ' - ;  
j = l  j = l  

and multiply by A ~ ~ to get 

i - I  

- ljbjA - = l,v,. (10) 
j = l  

The expression on the left is a polynomial in A with leading coefficient 1, and under 
assumption (3a), changes in b; do not affect its coefficients. Since A is the largest 
root of the equation, it must increase with the right-hand side of the equation. Since 
l; is also unaffected by changes in b~, again by assumption (3a), the right-hand side 
is maximized by maximizing v~. 

Differentiating eqn (2) with respect to bi: 

a 13 i Opi 0 l) i + I A-~i=l+-~ivi+'+Pi Ob--'-/- (11) 

Now assumption (3b) implies that v~+j is unaffected by changes in b;, and it follows 
that the last term of eqn (11) is zero. Hence: 

O?.)i 
A ~-~i = 1 + ~  vi+,. (12) 

If b~ denotes the value which maximizes v;, then the left-hand side of (12) must be 
negative when bi = 0, positive when b~ = b m~, and zero when b; is intermediate. This 
gives us the optimality condition 

f b ~ = 0  m a x  

w h e n J 0 < b i < b i ,  (13) 

which was first formulated by Charlesworth & Leon (1976). Geometrically, this 
implies that the line of  slope - 1 / v i + ~  through the optimum point ( b ; , p~ )  on the 
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age-/ tradeoff curve must lie above the curve except at the opt imum point. Since 
we have noted that this line has p- and b-intercepts a~ and fli, we deduce that 

the line with p-intercept c~ and b-intercept fl~ lies 
above the age i tradeoff curve except at the opt imum point. (14) 

In particular, this line is tangent to the curve at the opt imum point when the opt imum 
fecundity is intermediate. 

With this analysis, we can obtain the two conditions for the optimal value of  v~ 
to decrease, one sufficient and one necessary, obtained by Charlesworth & Leon 
(1976). Their sufficient condition is 

ifpmaX>h then v~>vi+l 

and this follows from eqn (4) by noting that ag-> p~X. Their necessary condition, 
at any age i of  intermediate fecundity, is 

if vi > v~+t then k~bm~x> A, 

where k~ is the magnitude of  the slope of the p~-b~ curve where it meets the b~-axis 
(at bi = b~"~x). This follows from the fact that since b~ < b~ 'aX, then 

max kibi > a~. 

since the left-hand side is the p-intercept of  the tangent line to the p-b curve at 
b~ = b~ 'ax, and, by (14), the right-hand side is the p-intercept of  the tangent to the 
curve at b~, and since the curve is concave-down, the latter must be below the former. 

C H A N G E S  I N  U N I T  RV A N D  F E C U N D I T Y  W I T H  A G E  

The question of how unit RV and fecundity should change during the life cycle 
is now addressed, assuming optimal fecundity at each age. Two results are obtained 
which are proved in the Appendix.  The second result requires some additional 
assumptions.  

Theorem 1. Change in unit RV with age. For an optimal life history schedule, under 
the above assumptions,  the vi either decrease during the entire life of  the organism, 
or increase during the first part  of  the life, possibly staying constant for some period, 
and decrease thereafter. In either case, vi must decrease during stage II. 

In particular, during any steady-state period of stage II (in which the pi-bi curves 
remain constant with age), unit RV will decrease. 

What can we say about  changes in fecundity b;? The answer is that very little can 
be said without further assumptions on the relation between the p~-b~ curves 
belonging to different ages. It 's not enough to know whether the curve at age i lies 
above or below the curve at age i + 1 : we have to know something about  their relative 
shape. Of  course, if there is a steady-state period in stage II, during which the p~-b~ 
curves remain the same, then since the curves are concave-down, changes in v~+~ 
from one age to the next will correspond to changes in b~ in the opposite direction, 
by condition (13), and hence, during any steady-state period, fecundity should 
increase. 
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An additional assumption is now made about the life history, which is strong 
enough to allow us to conclude that fecundity should increase during the entire 
reproductive life of the organism. The assumption is the strongest one possible that 
allows the maximum value pm,~ of the survival/growth to change with age. It is 
assumed that b~ ax = b m~x is independent  of  i, and that all the p~-b~ curves have the 
same "shape" ,  and differ only in the scaling along the p-axis. That is, it is assumed 
there are constants ri, such that at each fixed b, 

Pi+~ = ripi. (15) 

and in terms of the two stages defined in the last section [condition (9)] 

stage I ( i < t )  r ,->l and ri+~<-r~ 
(16) 

stage II ( i ->t)  r~-~l. 

The additional assumption that the r~ decrease or stay constant during stage I is 
made. That is, the factor by which the curves increase is greater earlier in life. 

These new assumptions (15) and (16) on the shape of the tradeoff curves provide 
the following result, proved in the Appendix,  about the change in fecundity and 
RV with age. 

Theorem 2. Change in fecundity and RV. With assumptions (15) and (16), whether 
reproductive maturity occurs during stage I or stage II, unit fecundity bi increases 
and unit RV v~ decreases throughout the reproductive life of  the organism. 

The result we obtain here on the change in unit reproductive value is stronger 
than that of  Theorem 1. 

4. Discussion 

The traditional approach to life history analysis works with the fecundity Bi and 
the survival P~, and, indeed, these are the usual variables that appear  in the Leslie 
matrix. The objective of  the ESS theory is to find the B - P  schedule which maximizes 
individual fitness. However,  in general, the ESS equations are not easy to analyse. 
A major  source of difficulty comes from the effect of  changes in fecundity at one 
age on survival or fecundity at another  age. The equations are a lot simpler if 
changes in Bi are allowed to affect only the survival P~ at the same age. Of  course, 
such an assumption must usually be quite unrealistic, certainly in those cases in 
which changes in current fecundity can affect current growth rate, and hence future 
size, and hence future fecundity. 

In fact, this particular effect can be allowed for by treating growth rate and 
survival as two components  of  a generalized survival/growth p~ = Pg~, where g~ is 
the growth increment at age i. With the assumptions that fecundity is proportional  
to size, the ESS analysis can be done in terms of the pi and the unit fecundity b~, 
and the assumption that changes in current unit fecundity have no effect on the 
functional dependence of p~ on b~ at other ages, is not so unreasonable,  in that it 
does allow an effect on future fecundity Bi through a change in future size. These 
" lower case" variables can be regarded as the entries of  a generalized Leslie matrix, 
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and the ESS analysis in terms of these is tractable when attention is restricted to 
tradeoffs between unit fecundity and growth/survival within each age class. 

Previous studies (Schaffer, 1974; Charlesworth & Leon, 1976) have assumed that 
the b-p tradeoff curves remain constant, at least over the period of reproductive 
maturity, but the analysis here allows these curves to vary with age. It is assumed 
that there is an initial stage I during which the individual's performance in the game 
of  life (surviving, growing and /o r  reproducing) generally gets better, and a final 
stage II during which individual performance stays the same, or deteriorates. With 
this quite general assumption, we conclude (Theorem 1) that unit RV will either 
decrease during the entire life of the organism, or increase at the beginning, reach 
a maximum, and decrease thereafter. 

The question of how unit fecundity is expected to change is more difficult, and 
seems to require stronger assumptions on the relation between tradeoff curves at 
different ages. The assumptions (15) and (16), that all the p~-bi curves are similar 
in shape, allow us to conclude that unit fecundity increases (and unit RV decreases) 
throughout the reproductive life of  the organism. 

The model can be made more general by letting growth increment gi represent, 
not only changes in size, but also changes in reproductive efficiency, such as the 
development of  more effective reproductive mechanisms. But if the idea of a tradeoff 
between p and b is to continue to have any meaning, it should be the case that 
increases in p~ can only be obtained at the expense of  b~, and so the model should 
only pretend to describe those improvements in reproductive efficiency which have 
a cost in present fecundity. 

P A R E N T A L  E X P E R I E N C E  

Of course, there are situations in which present fecundity can actually enhance 
future reproductive effectiveness. One example of  this is +'helping at the nest": the 
possibility that today's offspring will help raise those of  tomorrow. Another example 
is parental experience: the possibility that parental effectiveness improves with 
practice, so that today's reproductive efforts increase tomorrow's fecundity. Such 
phenomena,  which contribute negatively towards the correlation between present 
survival/growth and future fecundity, seem quite difficult to model in the framework 
of  this paper. For example, it is not at all easy to see what effect they might have 
on the form of  the p-b tradeoff curve. On the whole it must be difficult to predict 
in general how quantities such as reproductive value are expected to change early 
in the reproductive life, when the effects of  parental experience might be significant. 

C H A N G E  IN R E P R O D U C T I V E  V A L U E  

One of  the disadvantages of the p-b approach is that the RV results are actually 
about changes in RV per unit size. To translate these into results about changes in 
overall RV, we have to know how size changes with age, and this may not be so 
easy to describe, especially if, to make the model more general, we use si to describe 
a generalized notion of  size, which includes increases in reproductive efficiency 
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obtained at the expense of  current fecundity. Of course, once the organism has 
attained full size, if there are not subsequent changes in (generalized) size, then RV 
will show the same pattern of change as unit RV, and the results of section 3 will 
predict changes in RV. 

As an example, suppose the organism has attained full size s by the age m of 
reproductive maturity. What can Theorem 1 tell us? If we know that the organism 
has also attained full annual survival by this age, then m will belong to stage II, 
and we know that unit RV must decrease throughout the reproductive life. Since 
size is no longer increasing, we can deduce that RV itself decreases. And if we are 
prepared to accept the assumptions (15) and (16), that the p -  b curves have a uniform 
shape, we can reach the same conclusion even without the condition that full annual 
survival be attained. 

It has been empirically observed (Fisher, 1930; Hamilton, 1966) that RV tends 
to increase early in life, and then, close to the age of reproductive maturity, starts 
to decrease, and continues this decrease for the rest of the life. Because of the 
difficulties of  modelling generalized growth, it does not seem easy to construct a 
realistic model which can predict this pattern over the entire life. 

C H A N G E S  I N  P A R E N T A L  I N V E S T M E N T  

Another question of  interest is how parental investment (PI) should change with 
age. Recall that PI is defined as the loss in residual RV due to present reproductive 
effort. First, note that eqn (2) partitions unit RV into a component bJA due to 
current reproduction and a residual component  p~v~+j/A due to future expected 
fecundity. If  b~ were zero, this residual component would be p~aXv~÷j/A. The 
difference between these is the loss in unit residual RV: 

Absolute unit PI = p~X v~+ ~/A - piv~+l] A. 

Note that vi+~ is the same in both occurances because it is independent of fecundity 
at age i [assumption (3b)]. It is actually more meaningful to work with the relative 
loss, which is obtained by dividing absolute unit PI by unit RV for b~ = 0. Then, the 
v~+~/A cancel and we are left with 

m a x  

Relative PI =p~ -P~ m a x  
Pi 

and this can be interpreted on the p~-bi graph. Note that relative PI and relative 
unit PI are the same. 

The result of Theorem 1 on the change in unit RV, does not allow us to deduce 
how relative PI is expected to change with age, except in the steady-state, when 
the p-b curves remain the same. In this case, since v~ decreases with age, and the 
p-b curve is concave-down, we deduce from condition (13) that the p~ decrease 
with age, and relative PI must increase. 

Under the stronger assumptions (15) and (16), we can do better than this. Since 
the functions p~ = p~(b) are all proportional, relative PI is a fixed monotone-increasing 
function of  b, the same function at all ages. Hence, when b~ increases, so does 
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relative PI, and we deduce from Theorem 2 that relative PI is expected to increase 
throughout  the period of reproductive maturity. 

T H E  M A X I M I Z A T I O N  O F  A 

Under our assumption of density independence,  a set of  life history parameters  
which maximizes A [given by eqn (1)] will be an ESS in the sense that an alternative 
set of  parameters  which has a smaller value of  A will be selectively eliminated, 
provided the mutant  individuals are rare or deviate in behaviour by a small amount.  
The point of  the proviso, is that the geometric growth rate A defined by eqn (1) 
assumes a uniform population.  In a mixed populat ion,  the equations for the growth 
rates of  each of the component  strategies are more complicated. 

There is another  proviso, and that is that the above result uses a deterministic 
condition for the spread of  the mutant  gene, whereas a stochastic analysis of  its 
survival probabili ty would be more appropriate.  According to Charlesworth & 
Williamson (1975) the results in the two cases are closely related. 

In the density dependent  case, the analogous result maximizes the carrying 
capacity of  the environment,  which is given as a function of the life history 
parameters,  and an analogous theory to the one presented here requires a 
specification of the form this functional dependence might take. Further discussion 
of  this case is found in Charlesworth & Leon (1976) and Hastings (1978). 

R E P R O D U C T I V E  E F F O R T  

The model used here has been referred to as the reproductive effort (RE) model 
(Charlesworth & Leon, 1976) but in fact reproductive effort is rarely very well 
defined, and, in this paper,  it simply serves to provide an interpretation for the 
underlying parameter  e~ for the tradeoff between fecundity and survival/growth. 
Mathematically,  we regard survival /growth as a function of  unit fecundity, and 
bypass RE altogether. What ecologists mean by RE is often closely associated with 
time and energy budgets and risk taking, and the relation between that and fecundity 
or PI is often not clear, and is certainly expected to change with age. However, 
these same ecologists are interested in the question of when RE is expected to 
increase or decrease with age. To get theorems of this nature requires an assumption 
on how RE at each age relates to the unit fecundity bi, and I am not certain at this 
point what kind of patterns are appropriate.  There seems to be little work done on 
this question. 

ASSUMPTIONS ON THE SHAPE OF THE p-b CURVES 

The assumptions on the form of the tradeoff curves may not be unreasonable,  
but it is difficult to get good evidence on this matter. It is even difficult to get 
evidence that the tradeoff curves are concave-down (Charlesworth, 1980: 5.3), 
although the theory predicts that if this is not the case, the optimal strategy must 
have either zero fecundity, or zero survival. In fact there is even a scarcity of  evidence 
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fo r  t he  r e p r o d u c t i v e  cos t  m o d e l  i tself .  C h a r l e s w o r t h  (1980: 5.3) a n d  Bell & 

K o u f o p a n o u  (1986) s u m m a r i z e  s o m e  o f  the  e v i d e n c e  tha t  is ava i l ab l e .  O n e  b ig  

p r o b l e m ,  o f  cou r se ,  is t ha t  any  a t t e m p t  to l o o k  for  a n e g a t i v e  c o r r e l a t i o n  b e t w e e n  

f e c u n d i t y  a n d  su rv iva l  w i t h i n  a p o p u l a t i o n ,  will  be  s w a m p e d  by the  pos i t i ve  co r re l a -  

t i on  b e t w e e n  t he se  v a r i a b l e s  g e n e r a t e d  by the  e x i s t e n c e  o f  i n d i v i d u a l s  o f  v a r i a b l e  

na tu r a l  p r o w e s s  o r  v igou r .  O n e  mus t  resor t  e i t h e r  to an  e x p e r i m e n t a l  a p p r o a c h ,  o r  

to c o m p a r i s o n s  b e t w e e n  spec i e s  (Bel l  & K o u f o p a n o u ,  1986). 

I am grateful to Bob Montgomer ie  for his col laborat ion in our attempts to understand the 
biological significance of  the mathematical  results. This work was supported by a grant from 
the Natural Sciences and Engineering Research Council  of  Canada.  
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A P P E N D I X  

P r o o f  o f  T h e o r e m  1 

T h e  T h e o r e m  is p r o v e d  by w o r k i n g  b a c k w a r d s  s t a r t ing  at the  t e r m i n a l  age  n at 

w h i c h  b, = b,m, ~x. It is s h o w n  first tha t  

a, ,_l  > A. (A.1)  

It is t h e n  s h o w n  tha t  d u r i n g  s tage  II ( t <  i ( n )  

ce i>A ==~ cei_l > A , (A.2)  

a n d  d u r i n g  s tage  I (1 < i < - t )  

a i = X  ~ a,  i<--h. (A.3)  

a i ( A  ===> Ot'i_l ( A. (A.4)  
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These three conditions imply that t~, > )t during stage II, and that the entire life can 
be divided into three chronological phases, the first when ai < )t, the second when 
t~ = )t, and the third, when a~ > A, except that one or both of the first two phases 
may be absent. Theorem 1 then follows from eqn (4). 

I begin with (A.1). Since b,_~ is intermediate,  and the tradeoff curve is concave- 
down, 

fl,,_,> bm~>__b max, 

where the second inequality comes from the defining assumption (9) of  stage II. 
Thus, from eqn (6), 

ft._, b ~ "~X 
V n ~- ~ - - .  

O l n - I  Oln 1 

Since v, = b~X/A [eqn (2)], we conclude that c~,,_~ > A. 
Condit ions (A.2-A.4) are proved by establishing a pair of  stronger conditions: 

stage II ( t < i ( n )  oli>ai_l ~ a , _ t > A  (A.5) 

stage I ( l < i _ < t )  a~<cr,_ 1 ~ a~_j<A. (A.6) 

These are easily seen to imply (A.2-A.4). For example,  to establish (A.2), suppose 
a, > A but a~_~ <-A. It follows that a, > ai_t ,  and (A.5) implies that a~_~ > A which 
is a contradiction. The arguments for (A.3) and (A.4) are similar. 

The demonstrat ions of  (A.5) and (A.6) are completely parallel, and (A.5) is 
demonstrated.  A useful piece of  terminology is to call the line with b- and p-intercepts 
fl~ and a~ the i line, and the p-b  tradeoff curve at age i the i curve. 

Suppose a~ > a~_~. It follows from this that /3~ </3i_t. Otherwise, /3~->/3~_~, and 
it follows that the i - 1  line lies below the i line at b~, the optimal fecundity at age 
i. (Here, b , < b ~  a~ is needed, which holds since i <  n.) But the i - 1  line lies above 
the i -  1 curve, and the i line touches the i curve at b~ [condition (14)] and it follows 
that the i - 1  curve lies below the i curve at bi, contradicting (9) for stage II. It 
follows that/3i </3~_~. To complete the argument,  note that, by eqns (5) and (6), 

/3, /3,_, 
- - -  ( A . 7 )  

A °ti I '  

and it follows that a , _ t  > h.  

P r o o f  o f  T h e o r e m  2 

We begin with a technical result which lists a number  of  equivalents to the 
condition that fecundity increase from age i - 1  to age i. 

I f  0 < bi < b m~x, then the following conditions are equivalent: 

(i) bi> bi-i 

(ii) cei> ri_toq_t 

(iii) vi>ri tv/+~ 

(iv) a i >  ri-lh. 

(A.S) 
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To see that (i) is equivalent  to (ii) and (iii), refer to Fig. A1. Since bi is an interior 
op t imum,  the tangent  to the /-curve at bi has slope -1/vi+, and p-intercept  ai. I f  
we mult iply all heights by 1/r~_~ we get the i -  1 curve and a line which is tangent  
to it at b~ with slope -1/r i - ,v i+, ,  and p- intercept  a~/r~_~. Since the i - 1  curve is 
concave-down,  b~_~ will be less than bi precisely when the tangent  to the i - 1 curve 
at b~_, has a lower p- intercept  and is less steep than the tangent  (to the i -  1 curve) 
at b~. And  that 's  condi t ions  (ii) and (iii). 

To show that  (iii) and (iv) are equivalent,  (iii) can be written 

ri-t vi+t < vi = bi+p/vi+1, 
A A 

using eqn (2), and this can be written as 

bi 
l')i+l <" r i - lA  --Pi 

Equation (7) tells us that this is equivalent to  (iv). 
Now we turn to the proof of  T h e o r e m  2. Looking first at stage II, the result of 

T h e o r e m  1 is that unit RV decreases during this stage: v~ > vi+~ f o r  i >- t. Since r~_~ -< 1 
f o r  i >  t, it follows that v~> r~_lV~+, f o r  i >  t. But this is condit ion (A.8ii i) above, 
and it follows that b~ > b~_~ for t < i < n. Finally, b, > b,_~ since b, is maximal,  but 
b,_~ is not. 

a i 

r i _ ,  
S l o p e - I / r , . _ r v i ÷  , 

Slope - I /v i+  , 

FIG. AI. An illustration of the equivalences of (A.8). The picture has been drawn with the ( i -  1 )-curve 
above the /-curve, but the argument works when they are reversed. 
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N o w  look at stage I, assuming reproduct ive  life commences  dur ing this stage, 
that  is, m < t. Since b,,_l = 0, we certainly have that b,, > b,~_j and hence, by (A.8iv), 
a , ,  > rm_lA. Since r,,_l -> 1, we deduce  that a, ,  > A. It follows from (the contraposi t ive 
of) (A.6), with m = i - l ,  that am+~>-am and hence that a m + l >  A. Cont inuing  
inductively,  using (A.6), we find that ai > A for m <- i--< t, and that ai is constant  or 
increasing. Since ri is constant  or  decreasing dur ing this same period,  the inequali ty 
cti>r~_iA must  cont inue  to hold for m<-i<-t .  It follows from (A.8) that the b~ 
increase dur ing this period.  Along the way we have seen that c~ > A during the 
reproduct ive  port ion o f  stage I, and hence, by eqn (4), the v~ decrease. 


