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Vol. 135, No. 1 The American Naturalist January 1990 

ALLELE-FREQUENCY CHANGE IN A 
CLASS-STRUCTURED POPULATION 

PETER D. TAYLOR 

Department of Mathematics and Statistics, Queen's University, 
Kingston, Ontario K7L 3N6, Canada 

Submitted August 22, 1988; Revised March 6, 1989; Accepted June 13, 1989 

In a population in which there are different classes of individuals, it may not be 
clear how to assess the consequences of behavior that affects the fitness of 
individuals of more than one class. Sex (two classes: male and female) and age 
structure (one class for every age) are two common examples of such a class 
structure. Other examples might include different lifetime reproductive tactics 
(territorial and sneaker males; Gross and Charnov 1980), different sizes (large and 
small females), or, more generally, different fitness classes of individuals. 

The problem I am concerned with can be nicely stated in inclusive-fitness 
language (Hamilton 1964, 1970). Suppose I am an "actor" contemplating two 
alternatives: one to benefit a class-i recipient, and the other to benefit a class-2 
recipient. How do I assess the relative value to me of these alternatives? The 
standard inclusive-fitness method requires that I weigh each benefit by my re- 
latedness to the potential recipient, but what is not clear in this case is how I 
calculate the benefit itself. Typically, berifit should be measured as increased 
numbers of offspring, but suppose the two recipients have a different class 
distribution among their offspring. To compare benefits, I require some way of 
comparing offspring belonging to different classes. The general question is how I 
obtain an overall "currency" for comparing the fitnesses of recipients belonging 
to different classes when they have different class distributions of offspring. 

The answer, as we shall see, is that a correct numerical measure of fitness can 
be obtained by calculating a weighted average of the numbers of offspring of each 
class, using class-specific reproductive values as weights. 

The importance of this notion of reproductive value has long been recognized in 
models with two sexes (Price 1970; Oster et al. 1977; Benford 1978; Stubblefield 
1980; Pamilo and Crozier 1982; Frank 1986; Grafen 1986; Taylor 1988) and in age- 
structured models (Fisher 1930; Leslie 1948; Charlesworth 1980b), but it arises 
more generally whenever there is a natural class structure that interacts with 
individual fitness. My purpose here is to define these reproductive values in a 
general setting and to show how their role as weights in an inclusive-fitness 
calculation arises out of Price's (1970) covariance formula for allele-frequency 
change. 

Am. Nat. 1990. Vol. 135, pp. 95-106. 
? 1990 by The University of Chicago. 0003-0147/90/3501-0009$02.00. All rights reserved. 
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96 THE AMERICAN NATURALIST 

There are a number of examples in which individuals of different classes might 
have different class distributions of offspring. First, if we are dealing with size 
classes, the offspring of a large parent may have a different probability of being 
large than the offspring of a small parent. Second, the dichotomy of territorial and 
sneaker males mentioned above provides such an example if sons of territorials 
are more or less likely to be territorial than are sons of sneakers (however, there is 
no evidence of this in Gross and Charnov 1980). 

A third example is that of age structure. A mathematically simple way to 
work with an age-structured population is with a model of nonoverlapping gener- 
ations in which, in each period, we have a new population of individuals, every 
one of which is counted as an "offspring" of some individual of the preced- 
ing period. For example, the reproductive output of a year-3 individual 
counts his year-i offspring (the number of his natural children that will sur- 
vive to the following year) and then must include p year-4 offspring, where 
p is his probability of surviving another year. Thus, in this approach, individuals 
of different age classes may have different fecundities, but, more important, 
they differ in terms of the age mix of their offspring, and the general results of 
this paper apply (and the fitness matrix w defined below is the Leslie matrix 
[1948]). 

A fourth example is provided by a sexual population in which males and females 
have different sex ratios of offspring. This can happen in two interesting ways. 
With haplodiploidy, males and females make different genetic contributions to the 
offspring of each sex, and, since we count offspring according to genetic contribu- 
tion, males and females essentially have different sex ratios (males have no sons). 
This also occurs, even with diploidy, when there are two generations in each 
"period" but males and females have differential survival from the first generation 
to the second (partial bivoltinism). This sets up a selective pressure for different 
sex ratios in the two generations (Seger 1983), which, in turn, causes males and 
females at the beginning of one period to have different genetic representations in 
the two sexes that begin the following period. 

ASSUMPTIONS AND NOTATION 

Formally, I assume discrete, nonoverlapping generations, though I hasten to 
say that one of the important applications of the method is to a discrete-generation 
age-structured population. In this case, as mentioned above, an individual of age k 
who survives to the following year with probability p is regarded as contributing p 
offspring to age class k + 1. I assume a class structure in the population, of 
unspecified type, such that every individual belongs to one class and may have 
offspring belonging to any class. My model of behavior assumes a single locus 
with two alleles: a "normal" allele, which codes for a common behavior, and a 
"mutant" allele, which causes, in a way to be specified by the dependence of 
phenotype on genotype, a deviation from the common behavior. I do not assume 
weak selection (thus, the deviation need not be small), but I assume that the 
mutant allele is rare, and my equations are valid to the first order in the mutant- 
allele frequency. 
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ALLELE-FREQUENCY CHANGE UNDER CLASS STRUCTURE 97 

I now summarize the notation (a "prime" on a variable denotes its value in the 
next generation): 

nj is the number of individuals in class j; 
N (= ljnj) is the total number of individuals; 
r (= N'IN) is the growth rate of the population; 
uj (= nj/N) is the proportion of individuals in class j; 
Qj is the frequency of the mutant allele in class j; 
wij is the average i fitness of class j, defined as the average number of class-i 

offspring per class-j individual, where offspring must be weighted according 
to genetic contribution (with age classes, this is the Leslie matrix); 

wi (= Yjw11uu) is the average i fitness over the population; 
pij (= wujulwi) is the probability that a random class-i offspring allele comes 

from class j; 
cj is the reproductive value of class j, defined as the probability that a random 

allele in the future gene pool will derive from a class-j allele in the current 
generation (note that Ejcj = 1); 

vj (= cjluj) is the average reproductive value of a class-j individual, defined as 
the relative (to other classes) contribution of a class-j individual to the future 
gene pool of the population, normalized so that average reproductive value is 
one, 

j uij= 1; (1) 

Q (= YjcjQj) is the measure of average mutant-allele frequency obtained when 
each individual is weighted by his reproductive value; 

x is a random individual; 
Gx, the genotypic value of x, is the frequency of the mutant allele in the 

genotype of x; 
Wix is the i fitness of x, defined as the number of class-i offspring of x, where 

offspring must be weighted according to genetic contribution; and 
wX (= Xiviwix) is the measure of the average fitness of x obtained when each 

offspring is weighted by its reproductive value. 
The deviant behavior of the mutant allele can be expected to change many of 

the above parameters, and in order to keep track of this, I imagine the mutant 
allele to be equipped with a "switch" that allows it to behave in either the normal 
or the deviant mode. When the switch is set to "normal," I say that the mutant 
allele behaves normally; if the population is large, it can be expected to attain a 
stable class-frequency distribution in which the u, Q, w, and p parameters have 
constant values. The above definition of reproductive value makes sense only in 
such a stable regime, and the above definition therefore assumes that the mutant 
allele behaves normally. There are other ways of defining reproductive value (see 
below), but the use of the asymptotic population is intuitively the most natural and 
follows the spirit of the approaches of Leslie (1948) and Fisher (1930). When the 
mutant switch is set to "deviant," all the parameters may change, but since they 
are all class averages, the change will be small if the population is large and the 
mutant allele is rare. I assume this to be the case, and my equations hold to the 
first order in the mutant frequency. 
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98 THE AMERICAN NATURALIST 

NORMAL BEHAVIOR OF THE MUTANT ALLELE 

I now write the dynamic equations for changes in class frequency and allele 
frequency. First, note that 

n'= Xjwijnj. (2) 

Dividing by N, we get 

ru = Ejwijuj, (3) 

which is the equation for class-frequency change. Finally, 

Q! = Y2jp11Qj (4) 

is the equation for allele-frequency change. This equation assumes that the normal 
and mutant alleles have the same expected reproductive success; it thus requires 
that the mutant allele behave normally. In a stable population, the primes can be 
removed, and the result can be stated in the language of eigenvectors. This 
eigenvector formulation is not necessary for an understanding of the concepts, but 
the complementarity between multiplication on the right and on the left is mathe- 
matically quite pretty. 

The Right-Eigenvector Result 

When the mutant behaves normally and the population parameters have stabi- 
lized, the class- and allele-frequency vectors are the right eigenvectors for the 
matrices w and p, with eigenvalues r and 1, respectively: 

rui = Ejwuju1; (5) 

Qi= XYpiQj - (6) 

Since the dominant right eigenvector of the matrix p is constant (the row sums are 
one), it follows that, at equilibrium, the Qj's are constant: when the mutant allele 
behaves normally, its equilibrium frequency in all classes is the same. By equation 
(5), the average i fitness, wi, in the population is rui. This is, of course, expected: 
the average number of offspring of each class must be proportional to class 
frequency. 

In general, if eigenvectors on the right can be interpreted as frequencies, it turns 
out that eigenvectors on the left have an interpretation as future values. In this 
case, the asymptotic genetic contribution of a class-j individual is made through 
her offspring of all classes. Since she has, on the average, wij class-i offspring, her 
reproductive value, vj, must be proportional to the value of her offspring, Yiviwi1. 
If we multiply both of these quantities by uj and sum overj, using equations (1) 
and (5), we see that the constant of proportionality must be 1/r. I summarize this 
result as follows. 

The Left-Eigenvector Result 
When the mutant behaves normally and the population parameters have stabi- 

lized, the vector of individual reproductive values (vj) and the vector of class 
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ALLELE-FREQUENCY CHANGE UNDER CLASS STRUCTURE 99 

reproductive values (cj) are the left eigenvectors for the matrices w and p, with 
eigenvalues r and 1, respectively: 

rvj =iviwij; (7) 

cj= icipij (8) 

(Leslie 1948; Charlesworth 1980b). Equation (8) follows by multiplying equation 
(7) by uj and using the fact that wi = rui. 

THE COVARIANCE EQUATION FOR CHANGE IN MUTANT-ALLELE FREQUENCY 

In the section above, we considered an equilibrium population in which the 
mutant allele behaves normally. But the behavior of a deviant mutant affects the 
fitness of certain individuals (in a way that depends on their genotype) and 
possibly the fitness of others around, and this in turn moves both uj and Qj away 
from their equilibrium values. What we want is a calculation of how all these 
changes affect mutant-allele frequency. 

How are we to measure population-wide mutant-allele frequency? What we 
need is some weighted average of the Qj's, but how are the weights to be chosen? 
The answer is that each Qj should be weighted by the class reproductive value, cj, 
which is the same as saying that Q is the population-wide average allele frequency 
with each individual weighted by his reproductive value, vj. One reason why these 
are the "correct" weights to use is that, with these weights, Q does not change 
when the mutant allele behaves normally, no matter how it is distributed among 
the classes (Uyenoyama, pers. comm.). The best way to see this is to use these 
weights to calculate Q' from equation (4). If the mutant allele behaves normally, 

Q Y21c1Q = Y211cip1QQ1 = Y1jcjQj = Q. (9) 

The third equality uses equation (8) and, conversely, can hold for all Qj's only 
when equation (8) holds. 

I now derive the class-structured analogue of Price's covariance formula, using 
the following notation: x is a random individual; Gx, his genotypic value (the 
frequency of the mutant allele in his genotype); and wi, his i fitness (the number of 
his class-i offspring). When the mutant allele behaves in a deviant manner, the 
next-generation allele frequency is 

Q' = 2iciQ, (10) 

where 

Qi = E(Gxw1x)/wj = E(Gxw1x)/ruj + O(Q2). (11) 

The second equality follows from the fact that when the mutant behaves normally, 
average i fitness, wi, equals rui (eq. 5); thus, when the mutant behavior is deviant, 
the difference between them will be of the first order in the mutant-allele fre- 
quency Q. Since E(Gx) is also of the first order in Q, the error in the equation will 
be of the order Q2. (Recall that O(Q2) denotes a quantity whose quotient with Q2 
remains bounded as Q2 approaches zero.) Combining equations (10) and (11) and 
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using the fact that cilui = vi, 

Q' = E(G,w,)/r + O(Q2), (12) 

where 

WX = liviwix (13) 

is a measure of the average fitness of x, obtained by weighting the component wix's 
by the reproductive value of a class-i offspring. Equation (13) should be taken as 
the definition of average individual fitness, and equation (12) provides a good 
reason for using the offspring reproductive values as weights in defining this 
average. 

In order to get a covariance equation for the change in allele frequency, it is 
necessary to decompose the expectation in equation (12) along the class of x. If Ej 
and coVj denote the expectation and covariance over all class-j individuals, -x, 
then, to order Q2, 

Q' = 1jujEj(Gxwx)lr 
= 1juj1[covj(Gx, wx) + Ej(Gx)Ej(wx)] r 

= Ejuj[covj(Gx, wx) + Qjrvj]lr, (14) 

where we use the fact that Ej(Gx) = Qj and 

Ej(wx) = XjvjEj(wjx) = Eiviwij = rvj + O(Q) (15) 

(from eq. 7). If we perform the summation on the final term in the bracket in 
equation (14), we get Q. Hence, the change in allele frequency Q over a single 
generation of selection is 

AQ = Q' - Q = Ejujcovj(Gx, wx)lr. (16) 

This is our class-structured form of Price's equation. It holds only to the second 
order in the mutant-allele frequency Q. 

THE INCLUSIVE-FITNESS FORMULATION 

I now translate equation (16) into an inclusive-fitness form. In fact, there are 
two different forms depending on whether benefit is to be reckoned as an additive 
or a multiplicative fitness increment. 

Additive Benefits 
Turn now to a random potential actor y, and let Hy be the probability that he will 

act. Hy is his phenotypic value, and I assume that it is determined, in some way, 
by his genotypic value, Gy, and, in particular, that it is positively correlated with 
Gy. If he does act, I define sxyg the additive benefit to x derived from the mutant 
behavior of y, to be the resulting additive increment to the fitness of x. I assume 
that benefits from different actors are additive, such that the fitness of x is 

WX= wx? + E sxyHyS 9(17) 
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TABLE 1 

POSSIBLE RECIPIENTS OF A RANDOM ACT, BY CATEGORY 

No. of Average 
Category Class Individuals Benefit Relatedness 

Aunts 1 na Sa Ra 
Brothers 2 nb Sb Rb 
Cousins 2 n, Sc RC 

where the sum is over all actors, and w? is the fitness of x if the mutant allele is 
normal. This assumption of additivity of benefits from different actors is standard 
in inclusive-fitness arguments, and it is unlikely to hold unless the benefit attribut- 
able to each actor is small. 

Recall that wx measures the number of offspring of x, with offspring of class i 
weighted by the reproductive value, vi. It follows that, for equation (17) to hold, 
the benefits, sx>,, must also be so weighted. Thus, the additive benefit to x must 
measure his extra number of offspring, with class-i offspring weighted by vi. 

After substituting equation (17) into equation (16), the change in mutant-allele 
frequency, AQ, is given by 

rAQ = Ejujcovj(Gx, w + ysxyHy) 

= Yjujcovj(Gx, ysxyHy) (18) 

since w? is not correlated with GX. 
The behavior of a single actor may affect the fitness of individuals from different 

classes and may affect individuals from the same class in different ways. To see 
how these effects are typically organized, it is helpful to have an example. 
Suppose three categories of individuals may be affected, as tabulated in table 1. 
For example, on the average, an actor has nb brothers belonging to class 2 who 
receive an average benefit of Sb each and whose relatedness to the actor is Rb. 
Here, the relatedness of the actor y to the recipient x is defined (Michod and 
Hamilton 1980; Taylor 1988) as 

Ry>x = cov(Gx, Hy)Icov(Gy, Hy). (19) 

The inclusive fitness of the actor is defined as the sum of all benefits accruing 
from his behavior, with each benefit weighted by his relatedness to the recipient 
(Hamilton 1964, 1970, 1975). In this case, his inclusive fitness is 

WI = naSaRa + nbSbRb + ncscRc (20) 

It is shown in the Appendix that A Q and WI in equations (18) and (20) are equal up 
to a positive multiplicative constant: 

rAQ = Mcov(Gy, Hy)WI/N, (21) 

where M is the number of actors. It follows from this that WI has the same sign as 
AQ, and the inclusive fitness is able to tell us whether the mutant allele is 
increasing or decreasing in frequency. The assumptions needed are those that are 
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102 THE AMERICAN NATURALIST 

usually required of any inclusive-fitness formulation: that the mutant behavior is 
rare, and that the (additive) effect of the behavior of several actors on the fitness 
of a single individual is the sum of the separate effects. 

Multiplicative Benefits 
Often, the most natural way to compare benefits to different individuals is as 

multiplicative increments, and in this case the expression for inclusive fitness 
takes a different form. For example, the actor might wish to compare a 5% 
increase in the fitness (viability or fecundity) of a class-I recipient with a 10% 
increase in the fitness of a class-2 recipient. To translate these to additive benefits, 
he needs to know the average fitness of class-j individuals, which, from equation 
(15), is rvj. His expected additive benefits are then s1 = 0.05rv, and s2 = 0.lOrv2 

to the class-I and class-2 recipients, respectively. The resulting multiplicative 
formulation of the inclusive fitness exhibits the class weights explicitly. Using the 
example in the table, if I letfa,b,c be the factors by which the fitnesses of aunt, 
brother, and cousin are increased, then the inclusive fitness of equation (20) 
becomes 

WI = rvi(nafaRa) + rv2(nbfbRb + n.f.R.). (22) 

In summary, if multiplicative benefits are used, the recipients must be weighted by 
expected individual reproductive success; in the present model, this is (propor- 
tional to) the reproductive value, vj. 

DISCUSSION 

Hamilton and Price were the first to realize that the covariance formula for A Q 
provides the mathematical link between inclusive fitness and allele-frequency 
change (Hamilton 1970; Price 1970). Since that time, a number of papers (Hamil- 
ton 1975; Charlesworth 1980a; Seger 1981; Uyenoyama et al. 1981; Michod 1982; 
Pamilo and Crozier 1982; Uyenoyama 1984; Grafen 1985; Queller 1985; Taylor 
1988, 1989) have considered the relationship between these quantities, providing 
more-general and more-careful formulations. Price's (1970) original paper already 
understood that in the case of a haplodiploid population, a relative weighting of 2 
must be given to the female population for the covariance formula to work, and 
since that time, this observation has been made repeatedly (Seger 1981; Pamilo 
and Crozier 1982; Grafen 1986; Taylor 1988). The purpose of this paper is to 
provide a proper mathematical formulation for the use of such weights in a general 
class-structured population. 

The general principle is that, in a class-structured population, the fitness, wx, of 
an individual, x, can be calculated as his total number of offspring, provided that 
offspring from different classes are weighted by class-specific individual reproduc- 
tive values, vi (eq. 13), obtained from the left eigenvector of the fitness matrix (eq. 
7). If fitness is calculated in this way, a class-structured form (eq. 16) of Price's 
covariance formula for allele-frequency change, A Q, is valid. With an appropriate 
modification of the standard argument (Hamilton 1975; Charlesworth 1980a), AQ 
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can be shown to be equivalent to the classical measure of inclusive fitness (eqs. 
20, 21). 

In fact, the expression (20) for inclusive fitness is identical to the standard 
formulation, and it is important to notice just where the weights are hidden. When 
an actor is calculating the average benefit accruing to a category of recipients, he 
must measure benefit in units of average individual fitness (eq. 13), and for this 
purpose, the recipient's class-i offspring must be weighted by vi. 

It is important to distinguish between the class reproductive values, cj, and the 
individual reproductive values, vj. I have used v for the latter because this is the 
notation introduced by Fisher (1930) for the reproductive value of an individual. I 
have defined vj as cjluj, but depending on the nature of the classes, it may be either 
Vj or cj that is more apt to vary with the class-frequency vector, u. For example, if 
the classes are the two sexes, then Piu and cj are determined by the ploidies and the 
parental genetic contributions to offspring and are independent of the sex ratio. 
By contrast, with age classes, if all competition is population-wide and not within 
cohorts, wu and vj are independent of the age distribution. In general, the situation 
will be intermediate and depend on the intensity of within-class competition. 

It is worth emphasizing just when we do and do not have to pay special 
attention to reproductive value. If individuals from different classes may have 
different numbers of offspring but do not differ, on the average, in the class 
distribution of their offspring, then any reasonable measure of average fitness 
(e.g., total number of offspring) will provide the relative reproductive values, and 
the usual methods of accounting will be correct. For example, with a male-female 
structure, this will be the case when the two sexes have the same offspring sex 
ratio. But if different classes of parents have different class distributions of 
offspring, then the class-specific individual reproductive values, obtained from the 
fitness matrix w (eq. 7), are required in order to compare average fitness between 
classes. 

For example, if high-quality individuals not only have higher fitness than low- 
quality individuals but also have a different distribution of quality among their 
offspring, the fitness of individuals of different quality can still be compared by 
counting offspring, provided that offspring of different quality are weighted by the 
correct reproductive value. 

In some circumstances, the effect of an actor on a certain recipient does not 
simply increase his number of offspring by an overall amount; it also affects his 
offspring of different classes differently. An important example of this is found in 
sex-allocation behavior. If a breeding female alters the sex ratio of her offspring, 
and there is some local competition for mates or for reproductive resources in the 
offspring generation, then her behavior will have a different effect on the sons and 
daughters of a neighboring breeding female; in the calculation of inclusive fitness, 
these effects must be treated separately. The way to formulate the model in this 
case is to have the actor belong to the parental generation and the recipients 
belong to the offspring generation. An example of this calculation, in both a 
diploid and a haplodiploid population, is given elsewhere (Taylor 1988). In the 
case of haplodiploidy, not only do the male and female offspring have different 
class weights, but they also have different relatednesses to the breeding female. 
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Maynard Smith (1983) suggested that the main service that population genet- 
icists can perform is to specify the circumstances under which inclusive-fitness 
methods can safely be applied, and this paper is presented in this spirit. 

SUMMARY 

Suppose that in a population with a class structure, we wish to calculate the 
change in frequency of an allele under the action of selection. If the allele affects 
the behavior of individuals in different classes differently and if parents of differ- 
ent classes have different class distributions of offspring, then the allele frequen- 
cies in different classes may be different, and any overall calculation of allele- 
frequency change must decide how to weight the different class frequencies. I 
show that the correct weights to use are the class reproductive values, and, using 
these, I formulate a covariance equation for allele-frequency change. This equa- 
tion also provides the classical inclusive-fitness formulation if benefits (increased 
numbers of offspring) are calculated by weighting each offspring by the individual 
reproductive value that pertains to his class. 
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APPENDIX 
Here I show how the inclusive fitness, equation (20), is related to the allele-frequency 

change, equation (16). There is an important technical result required, and although it 
appears in the relevant literature (Hamilton 1975; Wade 1980; Grafen 1985), it deserves to 
be better known, and I formulate it here. It might be called the group-decomposition 
theorem for covariances, and it applies when the sample space is decomposed into mutu- 
ally disjoint subsets called groups. Suppose we have two random variables A and B; let aki 

and bki be the ith observation of each random variable in group k. Then the covariance of 
these observations can be decomposed into a within-group and a between-group compo- 
nent: 

cov(aki, bki) = E[covk(aki, bki)] + cov[Ek(aki), Ek(bki)]. (Al) 

The first term on the right is the average within-group covariance, and the second term is 
the covariance of the group averages. The subscript on the E or the cov denotes the group 
over which the expectation or the covariance is taken. 

Now consider the space of all actor-recipient interactions, and group these according to 
the recipient, x. Thus, in equation (Al), k = x, and, for each x, the index i keeps track of all 
the interactions of x. Then (Al) becomes 

cov(G,, s,yHy) = E[cov,(Gx, sxyHy)] + cov[Gx, Ex(sx^Hy)] 
= cov[Gx, Ex(sx^Hy)], (A2) 
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where the first covariance runs over all x-y interactions. The average within-group 
covariance is zero because, for each x, G, does not vary with y. Using equation (A2), 
equation (18) can be written 

rAQ = Ejujcovj(G, lys,sH^) = MEjujcovj[Gx, E,(s5yHy)] 
= MY2jujcovj(Gx, sxyHy) (A3) 

where M is the number of actors and the covy run over all interactions between an actor and 
a class-j recipient. 

Now, referring to the table, I use the group decomposition again, but this time I group by 
category of interaction: 

cov1(Gx, sxyHy) = nacova(Gx, sxyHy)lnl, (A) 
cov2(Gx, sxyHy) = nbcovb(Gx, sxyHy)/n2 + nccovc(Gx, sxyHy)ln2 

For example, in the second equation, the covariance is over all interactions involving class- 
2 recipients, grouped according to three categories (k = b, c, and everyone else); thus, for 
each k, i runs over all x-y interactions for x in category k. This time, the covariance of the 
category averages (the final term of eq. Al) is zero since the average of Gx is the same over 
all categories. Assuming that sxy is independent both of Gx (the actor cannot "know" the 
genotype of the recipient) and of Hy (the effect of his act is independent of his probability of 
acting), sxy can be pulled out of the covariance as its category average, and equation (A3) 
can be written 

rAQ = M[nasacova(Gx, Hy) + nbSbcoVb(GX, Hy) + ncsccovc(Gx, Hy)]IN, 
using the fact that ui = ne/N. From the definition of the relatedness coefficients in equation 
(19), we get equation (21). 
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