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A model of seed provisioning is used to illustrate the relationship between an 
inclusive fitness and a one locus genetic model, with particular attention to the two 
basic local stability conditions: 8-stability and m-stability The model is able to 
illustrate the ditterence between these two conditions, and provide an example in 
which the first holds but not the second. 

1. Introduction 

The "'calculus" of  inclusive fitness (Hamilton,  1964, t970, 1972) provides a powerful 
method, both conceptually and computationally,  o f  modeling social behavior. An 
important  question concerns the extent to which inclusive fitness models are able 
to give the same results as genetic models. There is quite a general result, various 
versions of  which have been discussed by Hamil ton (1970, 1979), Charlesworth 
(1980), Seger (1981), Grafen (1985), and Taylor  (submitted),  which provides a 
partial equivalence between inclusive fitness conditions and one-locus genetic 
models when selection is weak. The purpose of  this paper  is to illustrate this 
equivalence result with a seed provisioning model of  Queller (1983, 1984), paying 
particular attention to the extent to which the inclusive fitness model is able to 
diagnose the local stability of  the equilibrium. The model will also serve as a good 
example of  the relationship between two different types of  local stability. 

I begin with a simple description of  an ESS model o f  behavior,  general enough 
to embrace both an inclusive fitness model, and a one-locus genetic model. I assume 
that the range of  possible behaviors is described by a continuous parameter  m which 
can be regarded as the probabili ty of  engaging in a certain activity, or the proport ion 
of resources invested in one activity instead of  another. I let m stand for "normal"  
behavior,  and consider a rare "deviant"  behavior  m + 8. The objective of  the model 
is to produce an expression W(m, 8) for the incremental fitness of  the deviant 
behavior. I f  8 = 0, deviant behavior  is the same as normal behavior,  and W will be 
zero. A "weak-select ion" model is interested in the form of  W for values of  8 close 
to zero, and looks at the Taylor series expansion of  W about  8 = 0: 

W(m, 8) = 8F, (m)  + (82/2)F2(m) + O(82), (1.1) 

where Ft = 3 W/a8 and F2 = a 2 W/382. I f  F~(m) ~ O, the story is told by the first term 
in eqn (1.1). I f  Fl(m) > 0, then W will be positive for 8 > 0, and selection will favour 
an increase in m. I f  F~(m)<0, then W will be positive for 8 < 0 ,  and selection will 
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favour a decrease in m. The eqn F~ (m)= 0, which can be written 

aW 
~mm (m, 0) = 0 (1.2) 

is called the equilibrium condition, and any solution m* gives an equilibrium point 
for the model. 

Equation (1.1) provides two formal ways in which an equilibrium m* might be 
called locally stable. Stability to changes in the normal strategy m, will be called 
"m-stability", and stability to changes in the deviant strategy 8 will be called 
"8-stability". Under m-stability, if m > m*, slection should favour mutants with 
8<0,  so we want F l (m)<0,  but if re<m*, selection should favour 8>0 ,  so 
Fl(m) > 0. The first-order condition in F~ for this is 

m-stability dF~/dm < 0 at m = m*. (1.3) 

Under 8-stability, at m = m*, we want W < 0  for all sufficiently small 8, which 
requires 

8- stability F2(m*) < 0. (1.4) 

As second-order conditions in W, these can be written 

02 W 
m-stability ~ (m*, 0) < 0 (1.3)' 

am 08 

a2W(m*, 01 <0. (1.4)' 8-stability a~ 2 

Eshel & Motto (1981) and Eshel (1983) call condition (1.4)' the ESS condition 
(evolutionarily stable strategy), and when both conditions hold, the ESS is called 
continuously stable or CSS, so named because condition (1.3) only makes sense 
when m is a continuous variable. My preference is to make both conditions part 
of what is generally called evolutionary stability for one-parameter models. Else- 
where (Taylor, submitted) I argue that condition (1.3) is closely related to Fisher's 
classical argument (1930) for the stability of the unbiased sex ratio, and I also show, 
in the context of linear games between relatives (Hines & Maynard Smith, 1979; 
Grafen, 1979), that conditions (1.3) and (1.4) are each equivalent to Maynard 
Smith's (1974) definition of ESS (see also Maynard Smith & Price, 1973). Eshel & 
Motto (1981) give a mathematical example in which condition (1.3) is stronger than 
condition (1.4), and the seed provisioning model discussed here provides a biological 
example of the same type. 

Two important examples of this general modeling approach are found in inclusive 
fitness models, and population genetics models with two alleles at a single locus. 
The inclusive fitness argument typically considers a single deviant individual (playing 
m+8) in a normal population (playing m) and takes as W the inclusive fitness 
increment wl of the deviant individual, defined as the change in fitness of the deviant 
individual plus the sum of all changes in fitness of other individuals in the population, 
due to the behavioral deviation, each such change weighted by coefficient of 
relatedness of the affected individual to the deviant individual. The population 
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genetics model considers a normal allele (coding for m) and a rare mutant allele 
(coding for m + B) and takes as W the change AQ in the frequency Q of  the mutant 
allele over a single generation. 

The equivalence result referred to above is the following. Provided the assortment 
of  gametes among offspring is Mendelian and the correct relatedness coefficient is 
used, the inclusive fitness wl and the allele frequency change AQ have the same 
first-order coefficient Fl(m) in eqn (1.1) (up to a positive multiplicative constant), 
and hence they have the same equilibrium points [the solutions of  eqn (1.2)], and 
the same m-stability condition [condition (1.3)] for these points. However, the 
8-stability condition will not, in general, be the same. 

In section 2, I construct an inclusive fitness model for seed provisioning, under 
two different assumptions on how extra resources to one embryo affect the fitness 
of  its sibs, and in section 3, I construct a one-locus genetic model under one of  
these two assumptions, and compare the different local stability results obtained. I 
also recall just what the relatedness coefficient has to be for the equivalence result 
to hold. 

2. Inclusive Fitness Model of Seed Provisioning 

When a plant produces multiple seeds, a decision must be made concerning the 
amount  of  resources to be given to each seed. The more a particular seed gets, the 
less will be available for other seeds, contemporary or future, of  the same maternal 
plant. Thus there is a trade-off between the fitness of  each seed, and the total fitness 
of all its sibs (who may only be half-sibs, depending on paternity). This trade-off 
may lead to a conflict between the various agents who may have (partial) control 
over the allocation of  resources to each embryo, such as the mother, the embryo 
itself, or certain intermediate structures such as the endosperm in angiosperms. 

The optimum allocation from the point of  view of each agent depends on the 
precise way in which extra resources to one seed affect the quantity or quality of  
its sibs. In fact, roughly speaking, these two modes of  effect, quantity and quality 
describe two rather natural special cases. The first case, in which extra allocation 
to one seed reduces the number of  sibs, but leaves their fitness unaltered, is apt to 
describe the case in which offspring are produced sequentially with a fixed level of 
resource supply to the mother, and the effect of  a greedy embryo is to end the 
mother 's reproductive life after fewer total seeds have been produced. The second 
case, in which extra allocation reduces the fitness of  sibs, but leaves their number 
unaltered, may describe the case in which seeds are produced in batches of fixed 
size, and what one embryo gains, the others will lose. 

Models of  the first, the quantitative case, have been considered by Trivers (1974), 
Parker & Macnair (1978), Macnair & Parker (1978), Charnov (1979), Westoby & 
Rice (1982), Queller (1983, 1984), and Bulmer (1986), and of  the second, the 
qualitative case, by Macnair  & Parker (1979), and Law & Cannings (1984). To 
illustrate the contrast between the two cases, I construct a simple inclusive fitness 
model which assumes a fixed total resource M to the mother, which must equal the 
sum of  her allocation to all seeds. I also assume no cost to any party for a differential 
modification of the allocation. 
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The model requires the specification of  the function f(m) describing the expected 
fitness of a seed receiving m resource units. I assume the graph of f(m) has the 
sigmoid form of  Fig. 1. If  m is the normal population-wide level of  resource allocation 
per embryo, then a deviant embryo which receives m + 3 will have fitness increment 
f(m+3)-f(m). 

v , -  

R = ±  
_ I 4 

R=I  - 2  I 
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FIG. 1. Graph  of  expected fitness f (m)  of  a seed receiving m resource units. Solutions to the equilibrium 
eqn (2.5), for the quantitative case, are illustrated for the different values of  R tabulated in eqn (2.9). 

On the other hand, its loss through reduced fitness of  sibs will have a different 
expression in the two cases. In the quantitative case, each seed receives m units, 
and this loss of 6 units will result in a loss of  6/m seeds with fitness f(m). This 
must be weighted by the relatedness R of these other seeds to the embryo, so the 
inclusive fitness increment of  the deviant embryo is 

w, = f(m + 6) - f ( m )  - Rf(m)(6/m). (2.1) 

In the qualitative case, if there are a total of S + 1 seeds, each of  the S sibs will lose 
6/S units, and will have fitness f(m - 3 / S ) -  f(m), so the inclusive fitness increment 
of the deviant embryo is 

w, = f(m + 3) - f ( m ) +  RS[f(m - 3/S) -f(m)]. (2.2) 

In both cases, the calculation of  R requires specification of  the controlling agent 
and the mode of  gene action (Michod & Hamilton, 1980; Taylor, 1988 submitted). 

If  we differentiate wt with respect to 3, we get the form (1.1) with 

F~(m)=f'(m)- Rf(m)/m 
(2.3)  

F2(m)=f"(m) 
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in the quantitative case, and 

in the qualitative case. 
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G(m)=(l-R)f'(m) 

F2(m)=(l  + R /S ) f " (m)  
(2.4) 

In the quantitative case eqn (2.3), the equilibrium eqn (1.2) is 

f ' ( m ) = g f ( m ) / m  (2.5) 

and a number of solutions are illustrated in Fig. 1 for different values of R. The 
condition (1.3) for m-stability for any such solution is 

f"(m) < - g ( 1  - R ) f ( m ) / m  2 (2.6) 

and the condition (t.4) for t$-stability is 

f"(m) < 0  (2.7) 

at m - - m * .  Condition (2.6) is stronger and says that for m-stability it is not in 
general enough that f"(m*) be negative; it is necessary that it be not too close to zero. 

For the qualitative case, whenever R < 1, equilibrium eqn (1.2) is attained only 
when f ' ( m * ) = 0 ,  and both types of stability conditions require f " ( m * ) < 0 ,  which 
means m* is a local maximum of  f(m). This implies that the embryo will be selected 
to take as much of  the maternal resource as it can effectively get. Our assumption 
of no cost for a differential reallocation will be unreasonable for large allocations 
to each seed, and a more realistic model of this second case will have to build this 
in. 

However, we can see that there is an important difference between the quantitative 
and qualitative cases. In the case of eqn (2.2), the embryo is selected to behave 
selfishly, no matter how closely it is related to its sibling embryos, but in eqn (2.1) 
it will want to take less for itself when R is closer to 1. This distinction has been 
noted and discussed by Macnair & Parker (1979) and Bulmer (1986). 

The relatedness coefficient R to be used in the above equations is "the relatedness 
of  y to x under the control of z"  which is 

f"= (2.8) R = 
• " f x z  ' 

where f~z is the coefficient of  consanguinity between x and z, and is defined as the 
probability that random alleles from x and z, at the locus in question, are identical 
by descent. 

The relatedness, eqn (2.8), is not hard to calculate in the case in which x and y 
are half sibs of  an outbred diploid mother, under a number of  control agents: the 
mother, the embryo itself, the gametophyte (a haploid entity genetically identical 
to the maternal contribution to the embryo), and the endosperm (a triploid entity 
with two doses of  the maternal and one of  the paternal contributions to the embryo). 
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The results are tabulated below (Westoby & Rice, 1982; Queller, 1983, 1984). 

Control z R~_~y 

mother 1 
1 gametophyte 

endosperm ½ 
1 embryo 

(2.9) 

The corresponding solutions of eqn (2.5) are depicted in Fig. 1. Bulmer (1986) 
tabulates relatedness coefficients for a number of  cases in which the endosperm is 
genetically more complex, but it is important to note that Bulmer uses the coefficient 
rxy defined as the probability that a random allele from y has an IBD copy in x, 
and this is not in general the same as the coefficient R in eqn (2.8). 

We see that the case R = 1 does occur under  maternal control. From the point of  
view of  the mother, there is no reason to prefer x over y. In general the relatedness 
R decreases as the control agent gets genetically "closer" to x. 

3. Genetic Model of the Quantitative-effect Case 

For the rest of  the paper I restrict attention to the more interesting case in which 
a greedy embryo affects the quantity but not the quality of  its sibs. I construct a 
one-locus diploid genetic model for this case and formulate the equilibrium and 
stability conditions. The expression for AQ is obtained using Price's elegant and 
simple covariance formula (1970). 

What the genetic model requires is an expression for the change AQ in mutant 
allele frequency over one generation. The way to find this is to relate the genetic 
composition (the genotype) of  a random embryo to its fitness, and to find its fitness 
we have to know its behavior (its phenotype),  and the behavior of  its sibs. We define 
the genotypic value Gx of  an embryo x to be the frequency of  the mutant allele in 
its genotype, and, for fixed m and 8, we define the phenotypic value Hx to be such 
that the allocation of  resources to x is m + HxS. I will focus attention on a random 
embryo x, and denote by Hy the average phenotypic value of  all the offspring of  
x's mother. 

Recall that each maternal plant has a fixed total resource M to divide among her 
ovules. Hence the probability that a random embryo x will be developed is inversely 
proportional to its mother 's average allocation per embryo, and if developed, x will 
have fitness f(m + HxS), so the fitness of  x is 

f(m +/-/~a) 
Wx 

m ÷ Hy8 
which expands in powers of  8 as 

wx=f(m) { l+8[  f(m) H y ~ ]  

r 1 f"t m~ ~ ' f'fm~ l'l 
L mvm/dJ 

(3.1) 
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Provided inheritance of  parental alleles is Mendelian, the change in mutant allele 
frequency is then the co-variance between the genotypic value and the normalized 
fitness of x (Price, 1970): 

AQ =Cov  (Gx, Wx)/E(W,,), (3.2) 

where E(Wx) is the population-wide average fitness. 
Note that since the 6 term of  W~ in eqn (3.1) is proportional to phenotypic value, 

it will be first order in the mutant allele frequency Q, and hence so will the 8 term 
in E(Wx). Since I have assumed a rare mutant allele, we are interested only in the 
terms in AQ which are first order in Q, and since Gx is already first order in Q, we 
can replace E(Wx) in eqn (3.2) by its zeroth-order term f(m)/m. If  we then put 
eqn (3.1) into eqn (3.2), we get the form of eqn (1.1) 

A Q =  8Fl(m)+(82/2)F2(m)+o(82), (3.3) 

where 

. , f ' ( m )  1 
F~ = C o v  (Gx, tax),-W---T-Cov (Gx, H , . ) -  (3.4) 

i ~ m )  " m 

F2 =Cov  (Gx, Hi)___2+ ,,2, f"(m) 2f'(m) Cov (Gx, rlx) f--~-~-  Cov (Gx, HxH:,) 
m 2 m r ( m ) "  

This appears to give the expansion of  AQ in powers of 8, but care must be taken 
at this point. The covariances themselves can be expected to depend on 8, and if 
this is the case, the covariances in F~ may contribute some additional 82 terms to 
AQ. In our simple model, this does not happen; to first order in Q, the covariances 
are independent of  & Indeed, to first order in Q, a mutant embryo must have (with 
probability 50% each) either a singly mutant mother or father (but not both), and 
in each case, the distribution of the sib phenotypes is fixed and independent of 8. 
This would fail to be true in the presence of homozygose mutants, and this would 
occur if the mutant allele were not rare, or if there were inbreeding. 

Now I remark that F~ in eqn (3.4) differs from eqn (2.3) by a positive multiplicative 
constant, if R is given by 

Coy (G,., H~) (3.5) 
RZ'Y -Cov (Gx, Hx)" 

Actually, this assumes Coy (Gx, Hx) is positive, and requires the observation that, 
by symmetry, Cov (Gx, Hy) =Cov  (Gy, Hx). In this case, to say that allocation of 
resources is under the control of z, is to say that Hx is a function of the genotypic 
value of z, Hx = F(G~), and this function, which will be determined by the mode 
of gene action, must be specified for R in eqn (3.5) to be calculated. In case the 
mutant allele is neutral, and gene action in z is additive (that is, Hx depends affinely 
on G:) or z is outbred, the coefficient defined by eqn (3.5) coincides with the 
standard inclusive fitness form eqn (2.8) (Michod & Hamilton, 1980; Seger, 1981; 
Grafen, 1985; Taylor, 1988 submitted). 

It follows that, provided this more general form of R is used, the equilibrium 
condition (1.2) of  the genetic model, / 'q = 0, is equivalent to eqn (2.5), obtained by 
the inclusive fitness argument. 
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I now do the stability analysis. Since the FI in eqns (2.3) and (3.4) are proportional,  
the condition (1.3) for m-stability of  the genetic model, that d F l / d m  be negative, 
is equivalent to the m-stability condition (2.6) for the inclusive fitness model. For 
my purpose here, I write it in the form 

where 

K m = R ( 1 - R ) .  (3.7) 

However, the condition (1.4) for 8-stability of the equilibrium is quite different 
from the inclusive fitness condition (2.7), and can be written as 

f"(m) < - [ f ~ ]  K8 (3.8) 

where 

H,,)] 2[ R Cov ( Gx, HxH~.)-Cov ( G,:, 2 
K~ = Cov (G y, H i )  (3.9) 

It turns out that for additive gene action, under  all four control agents tabulated 
in condition (2.9), Km exceeds K~, and m-stability is stronger than 8-stability. I am 
unable to show that this is true in general, but I present the calculations for the 
four cases mentioned. 

For the calculation of  the covariances, note that E ( G , )  = Q, the mutant allele 
frequency, and all covariance terms can be written 

Coy (Ox, L) = E l ( G ,  - Q), L] ~- E(GxL)  

to first order in Q, and so for a rare mutant, we can ignore the cases in which G,  = 0, 
which means we only have to consider mutant embryos. Now a proportion Q of  
all embryos are mutant with a mutant mother, and a proportion Q are mutant with 
a mutant father. If, in the first case, we let Hx = h2 and H v = h0 and, in the second, 
we let Hx = h I and H,, = 0, then 

Cov ( Gx, Hx) = Q(hl + h2)/2 

Coy ( Gx, H e) = Qho/2 

Cov (Gx, H 2) = Q(h2+ h2)/2 (3.10) 

Cov ( Gx, H,  Hy) = Qhoh2/2 

Cov (G~, H 2) = Qh~/2 

Putting these into eqns (3.7) and (3.9), we get 

ho( hl + h 2 --  ho )  
K m -  (h~ + h2)2 , (3.11) 

2h~hl 
K8 - (h I + h2)(h~ + h2 ) . (3.12) 
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The results, for the case of additive gene action, are presented in Table 1. Under 
maternal control, the stability conditions are the same, and require only that f(m*) 
be negative. But for the other three control agents, m-stability is the stronger 
condition. 

In particular, for these three control agents, m-stability will fail if f"(m*) is too 
close to zero. To illustrate what happens in such a case, I present, in Fig. 2, an 
example of  a fitness function, in which the equilibrium point m* occurs at a point 
at which the graph is a linear segment between the two endpoints m~ and m2. Using 
the inclusive fitness form eqn (2.3) of F~, which is equivalent to eqn (3.4), 

F , ( m ) = c [ f ' ( m ) - R ~ ] ,  

where c is a positive constant, and we see that the equilibrium point m* is a point 
at which the slope of  the graph is R times the slope of the line from the origin. 

TABLE 1 

Calculation of stability coefficients in eqns (3.7) and (3.9) for m- 
stability and ~-stability, under four different control agents, assuming 

additive gene action. 

Control Agent R K,,, K 8 

Mother h I = O, h 2 = h o 1 0 0 
Gametophyte h I = 0, h 2 = 2h 0 1/2 1/4 0 
Endosperm h t = h o = h2/2 1/3 2/9 2/15 
Embryo h I = hz = 2h 0 1/4 3/16 1/8 

lpl I 

I I 
I 

I I 
I I 

:N I /77 ~ /?7 2 
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FIG. 2. Example of  an equilibrium point [a solution of  condition (2.5)], for the quantitative case, 
which is genetically not m-stable [condition (3.6) fails because f " (m*)=  0]. I f  we gave the line segment 
a slight curve, we would get a point which, for the case of  gametophyte control, was ~5-stable but not 
m-stable. [ I f  we make f"(m*) slightly negative, condition (3.6) will continue to fail, since K,,, = I /4,  but 
condition (3.8) will hold because K~ = 0--see Table 1.] 
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Also it is clear that, since f ' (m)  stays constant for m just above m*, Fl(m) will be 
positive, and for m just below m*, Fl(m) will be negative. Equation (3.3) tells us 
that in the first case, selection will favour ~5 > 0, and in the second, ~5 < 0. Thus m 
will move away from m* in either direction, until it reaches either ml or m2. Now, 
neither of  these points can be called equilibrium points, because f(m), and therefore 
Ft(m), fail to be differentiable there, but both these points are m-stable. Indeed, I 
have just argued that m2 is stable from below and ml from above. But also, if m is 
above m2, f ' (m) = 0  and F~(m) will be negative, and if m is below m~, f ' (m) exceeds 
f(m)/m, the slope of  the line from the origin, and Ft(m) is certainly positive, with 
eqn (3.3) telling us that, in both cases, the action of  selection will be to move m 
back towards m~. 

To get a differentiable example, the curve can be made smooth by rounding the 
corners, and we will get equilibrium points at each corner. For example, at mi,  as 
I have argued above, F~(m) is negative for m just above the corner, and Fro(m) is 
positive for m just below the corner, so somewhere in the (rounded) corner Fl (m) 
will vanish. This will be stable if we make the corner sharp enough to give f"(m) 
a large enough negative value. This illustrates a general phenomenon: an unstable 
equilibrium point will tend to have stable equilibria on either side. 

Curves which are qualitatively similar to Fig. 2, in which the slope changes slowly 
on some intervals and quickly on others, will tend to concentrate their stable 
equilibria at points at which the slope changes quickly, thus reducing the potential 
conflict between different agents of  control. 

4. Discussion 

I have begun with a general discussion of  local stability in an evolutionary model 
of  behavior in which two natural conditions arise, m-stability and 8-stability. The 
first focuses on the effect of departures from equilibrium in the population-wide or 
normal value of  the behavioral parameter, while the second focuses on changes in 
the mutant value when the population is at equilibrium. 

This general discussion provides a framework to study local stability for both 
inclusive fitness and one-locus genetic models. Both types of  models are useful: 
inclusive fitness models are simpler and provide a powerful heuristic, both concep- 
tually and computationally, whereas population genetic models follow more closely 
the mechanisms of the evolutionary process. We are particularly interested in cases 
in which the two types of  models can be predicted to give the same results, because 
then the simplicity of  the inclusive fitness approach can give some insight into the 
process of  natural selection. 

In all the particular genetic models I have looked at, m-stability has been the 
stronger of  the two conditions, but I do not have a general result of  this type. Even 
in the simple genetic model of  seed provisioning treated in section 3, it is difficult 
to show that for all possible control agents, the m-stability condition (3.6) is stronger 
than the 8-stability condition (3.8). A result which could show that, for genetic 
models under a wide range of  conditions, m-stability was stronger than 8-stability 
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would be of great value because, in most cases, m-stability is considerably easier to 
check than 8-stability. The reason for this is that the m-stability condition is 
first-order in 8, and coincides, in fact, with m-stability in the inclusive fitness model 
(if R is chosen correctly), whereas the 8-stability condition is second-order in 8, 
and requires the calculation of  covariances between genotypic value and second- 
order terms in phenotypic value. 

The model of  seed provisioning in angiosperms provides a good illustration of  
this general discussion. I have identified two different ways in which extra allocation 
to one embryo can affect is sibs: quantitatively, by reducing their numbers, and 
qualitatively, by reducing their fitness. Inclusive fitness models for each of these 
cases show that there is an important difference between them with regard to sib 
altruism: in the quantitative case the developing embryo is selected to consider the 
needs of its sibs, increasingly as the relatedness between them is closer, whereas in 
the qualitative case an embryo is selected to be selfish no matter how closely related 
are its sibs. 

When selection is weak, the inclusive fitness model will always give the same 
equilibrium condition eqn (1.2) as the one-locus model provided the relatedness R 
is taken as eqn (3.5). There are two important cases in which this R is equal to the 
simple inclusive fitness form eqn (2.8): when gene action is additive (Hx is affinely 
related to G~), and when z is outbred (Michod & Hamilton, 1980; Seger, 1981; 
Grafen, 1985; Taylor, submitted). But if both these conditions fail, R must be 
calculated from the covariances, as in eqn (3.10), and R can then change with 
different assumptions on the dominance of  the mutant allele, possibly causing the 
equilibrium point to change. This can be seen to occur for the seed provisioning 
model with endosperm control, and is discussed by Queller (1984), Grafen (1985) 
and Bulmer (1986). 

In the genetic model of  seed provisioning, in section 3, I have calculated both 
the m-stability and the 8-stability conditions, under additive gene action, for four 
different control agents, and found that the m-stability condition is stronger, except 
in the case of  maternal control, when they are the same. The results are presented 
in Table 1. This allows us to construct an example of  a 8-stable point which is not 
m-stable. Take, for example, the graph in Fig. 2, and give the straight line segment 
a slight curvature, so that f"(m) becomes negative but stays greater than - f ( m ) / 4 m  2 
at the point m*. If, at m = m*, the slopes are such t h a t f ' ( m ) = f ( m ) / 2 m ,  then the 
point m* will be at equilibrium under gametophyte control (see Table 1) and will 
be 8-stable, but will not be m-stable. Selection acting on m will cause the population 
allocation to move either up or down, until an m-stable equilibrium is encountered. 
Similar examples could be constructed for endosperm or embryo control. 

Queller (1984) has constructed genetic models for all the cases I have considered, 
not with the use of  Price's formula, but by direct calculation of  frequency change 
in the mutant allele, and it is interesting to compare the two approaches. Queller 
also has an interesting discussion of  endosperm control when the mutant allele is 
no longer rare, and there are frequency dependent  effects. When Queller checks the 
stability of  his equilibria, it is 8-stability he is using, though in the case of  endosperm 
and offspring control he has reached the conclusion that the equilibrium is stable 
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as  l o n g  as  f " ( m * )  is n e g a t i v e ,  w h e r e a s  t h e  c o n d i t i o n  in  T a b l e  1 is s t r o n g e r  t h a n  th i s .  

T h i s  s e e m s  to  b e  d u e  to  a n  e r r o r  in  d i f f e r e n t i a t i n g  t h e  e x p r e s s i o n s  f o r  h i s  d i f f e r e n c e  

f u n c t i o n  D,  f o r  t h e s e  e x p r e s s i o n s  a r e  c o r r e c t .  

T h e  d i s c u s s i o n s  o f  Q u e l l e r  (1983 ,  1984)  a n d  B u l m e r  (1986)  c o n t a i n  a f u l l e r  a c c o u n t  

o f  t h e  i n t e r e s t i n g  q u e s t i o n  o f  t h e  ro l e  o f  t h e  e n d o s p e r m  in s e e d  p r o v i s i o n i n g .  

I am grateful  to Alan Gra fen  and  Michael  Bulmer  for helpful  discussions.  This work was 
suppor ted  by a grant  from the Natura l  Sciences and  Engineer ing  Research Counci l  of  Canada .  
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