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A general notion of evolutionary stability is formulated in models in which the 
possible behaviours are parameterized by a continuous variable, and selection is 
assumed to be weak. Two local stability conditions are formulated, m-stability and 
&stability, the former being first-order and the latter second-order in the mutant 
behavioural deviation. The conditions are interpreted in two standard formulations 
of a one-locus genetic model: a covariance approach and a structured population 
approach. A weak selection theorem is proved which says that m-stability can be 
calculated using the neutral covariances. These in turn can be calculated as related- 
ness coefficients; hence an inclusive titness formulation is capable of checking 
m-stability. But d-stability, being second-order, is more difficult to handle. 6 1989 
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1. INTRODUCTION 

A general problem in the modeling of animal and plant behaviour is to 
find an evolutionarily stable configuration. The possible behaviours are 
indexed by a scalar or vector parameter m, and the objective is to find a 
value of m, or a mixture of such values, which is, in some sense, more fit 
than its alternatives. But since the fitness of any behaviour typically 
depends on the mix of behaviours present in the population, the definition 
of stability requires a careful formulation. 

The idea behind the condition, that m* be locally stable, is to consider 
a population which is a slight alteration, in some sense, from a pure 
m*-population, and to require that the action of selection move the 
population back towards m*. But this is not, in general, an easy condition 
to formulate: the number of types of alterations is often large, and since 
selective forces change as the population changes, it is not easy to perceive 
their long term effects. 
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There are two special cases that have received a lot of attention in the 
literature. The first is the classic ESS theory (Maynard Smith and Price 
1973, Maynard Smith 1974) in which the fitnesses are assumed to be linear: 
the fitness of any strategy is a linear function of the population strategy 
mix. In this case, as far as fitnesses are concerned, many different kinds of 
alterations are equivalent, and the simple condition requiring m* to be 
more fit than average in the altered population works well, at least locally 
(i.e., for small alterations). Here, m is typically a mixture of a finite number 
of “pure strategies,” though in simple cases (e.g., the war of attrition) the 
number of strategies may be infinite. 

The second special case is the one we are concerned with here. It relin- 
quishes the linear structure of the fitness, but exploits a natural order struc- 
ture on the parameter set. Suppose the possible m values lie along a line 
segment, as would be the case if m represented the probability of a certain 
action or the proportion of resources allocated to a fixed purpose. Then we 
can get a good feeling for the local action of selection in an m-population 
by simply examining the fitness of rare mutants which are near m on either 
side. In fact there are two natural conditions to look at in testing the local 
stability of m*. One is to require that in an m*-population, all local 
mutants be less fit, and the other is to take m near m* and require that, 
in an m-population, local mutants on the m*-side of m be more lit than 
those on the other side. I call the two types of stability conditions which 
result b-stability and m-stability respectively. A formal analysis of these 
conditions was first done by Eshel and Motro (1981) and Eshel(1983). 

In Section 2, I provide a formulation of the above two stability condi- 
tions in terms of a general fitness function, and in Sections 3 and 4, I inter- 
pret these conditions in a one-locus genetic model using, as the fitness 
function, the relative change in frequency of the mutant allele over one 
generation. In Section 3, I use a covariance approach and in Section 4, a 
structured population approach with the assumption of a rare mutant 
allele. 

One difficulty with both these approaches lies in the calculation of the 
distribution of the mutant allele, for the deviant behaviour it occasions may 
alter its distribution from the more easily calculated neutral distribution. 
Theorem 2, the “weak selection” theorem, says that the neutral distribution 
will give the correct mutant fitness to first order in the behavioural devia- 
tion 6. We conclude that this neutral distribution will correctly verify the 
m-stability condition. A condition is given under which this distribution 
will suffice to check d-stability as well, but in general this will not be the 
case. Theorem 3 summarizes the consequences of this result for the 
inclusive fitness approach. 
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2. STABILITY IN A ONE-PARAMETER MODEL 

I assume the range of possible behaviours is described by a continuous 
scalar parameter m which can be regarded as the probability of engaging in 
a certain activity, or the proportion of resources invested in one activity 
instead of another. I let m stand for “normal” behaviour, and I consider a 
“mutant” behaviour which deviates from m by an amount 6. 

The objective of any model is to produce an expression W(m, 6) for the 
fitness of the mutant behaviour in the mixed population. It is convenient 
for us to let W represent the fitness increment of the mutant allele, that is, 
the average fitness difference between mutant and normal behaviour. Thus 
if 6 = 0, the mutant behaves normally, and so W(m, 0) = 0. In the genetic 
models of Sections 3 and 4, I will take W to be AQ/Q, the relative change 
of frequency of the mutant allele over one generation. 

The ESS Conditions 

I now formulate the ESS conditions for a normal behaviour m* to be 
stable to mutant invasion. I identify two types of local stability: to changes 
in normal parameter (m-stability) and to changes in mutant deviation 
(d-stability). Under m-stability, if m < m*, selection should favour mutants 
with 6 ~0, and if m>m*, selection should favour mutants with 6 < 0. 
Under J-stability, at m = m*, all mutants should be less fit than normal. 
The local (6 small) formulations of these are: 

DEFINITION 1. The ESS conditions. 

m* is m-stable if for m near m* and 6 near 0, 
whenever m cm*, W(m, 6) has the same sign as 6, and 
whenever m > m*, W(m, 6) has the opposite sign of 6. 

m* is b-stable if for 6 near to but different from 0, W(m*, 6) < 0. 

These conditions are illustrated geometrically in Fig. 1. 

If W is differentiable, and m* is an interior point in its range, each condi- 
tion implies the equilibrium condition 

l3W 
Td 

m*,O)=O (2.1) 

whose solutions are called the equilibrium points of the model. 
I now look at the Taylor series expansion of W about 6 =O, and 

formulate the differential analogues of these two conditions. Recall that 
W(m, 0) = 0 for all m. 
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FIG 1. The sign of W near an m-stable point. Consider the set of points (m, 6) at which 
W=O. Since W(M, 0) = 0, the m-axis is included in this set. For m* to be an equilibrium 
point, there must be other curves in this set which cross the m-axis at m*. In the simplest (and 
the generic) case, there will be one other such curve, and it, together with the m-axis, will 
divide the space around (m*, 0) into four regions. For m* to be m-stable, the sign of W must 
be as shown in both diagrams. The point will be d-stable if the vertical line at m* is (locally) 
in the negative regions. This happens in l(a) but not in l(b). 

THEOREM 1. Suppose 

W(m,6)=6u(m)+~b(m)+0(67). (2.2) 

where a = 8 W/&T? and b = a2 W/&5’, both evaluated at 6 = 0. 

(1) If a(m) # 0, then for 6 near 0, selection will favour mutants with 
da(m) > 0 and disfavour mutants with ha(m) < 0. 

(2) If a(m*) = 0, then m* is an equilibrium point and is 

m-stable if da/dm < 0 at m = m* (2.3) 

S-stable if b(m * ) < 0. (2.4) 

As second-order conditions in W, these can be written 

a2w 
m-stable: - 

am a6 
(m*, 0) < 0 

J-stable: 
a2w 
m (m*, 0) < 0. 

(2.3)’ 

(2.4)’ 

An elementary analytic argument shows that (2.3) and (2.4) are strictly 
stronger than the formulations of Definition 1, though I would never 
expect to find a biological example where the definition held but the 
differential conditions failed. 
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Eshel and Motro (1981) and Eshel (1983) call (2.4) the ESS condition 
(evolutionarily stable strategy), and when both conditions hold the ESS is 
called continuously stable, or CSS, so named because (2.3) only makes 
sense when m is a continuous variable. My preference is to make both 
conditions part of what is generally called evolutionary stability for one- 
parameter models. 

Fisher’s Sex Ratio Argument 

By way of illustration, I report on what happens when these definitions 
are applied to a couple of standard examples. The first example is Fisher’s 
(1930) argument that an unbiased sex ratio is stable in a diploid popula- 
tion with random mating. He observed that in a population with a biased 
sex ratio, individuals who produced the rarer sex had an increased number 
of grandchildren, and if this tendency was inherited, the population sex 
ratio would move towards equal numbers of each sex. This is essentially an 
m-stability argument, because it looks at mutant fitness in a population in 
which normal behaviour produces a biased ratio. The question of 
a-stability in this example concerns the mutant fitness in a population in 
which normal behaviour is unbiased. Mutant behaviour is also penalized 
here, but the effect is weak (of order Q) when the mutant is rare, because 
the disadvantage to the mutant is proportional to the deviation of the 
population mean ratio from l/2. This was first pointed out by Shaw and 
Mohler (1953). 

Matrix Games 

My second example is the classical ESS theory of matrix games 
(Maynard Smith and Price 1973, Maynard Smith 1974) with the possibility 
of contests between relatives, treated by Grafen (1979) and Hines and 
Maynard Smith (1979). If there are two pure strategies, in a matrix game, 
the set of possible mixed strategies is a line segment, and the general 
analysis of this paper should apply. Since the standard ESS definition 
would seem to provide a complete condition for stability, one is curious to 
know how this definition relates to the two conditions of this paper. In fact 
they turn out to be all equivalent. If m is the probability of playing 
strategy 1, and the payoff matrix is A = [z “,I, then the equilibrium strategy 
is (Grafen 1979) 

h-d+ R(c-d) 
m=-(l +R)(a-b-c+d)’ 

where R is the average relatedness of a player to his opponents. If this is 
between 0 and 1, the conditions for m- and b-stability both reduce to the 
standard ESS condition (Grafen 1979) that a-h-c + d be negative. 
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Roughly speaking, because of the linear form of the fitness function, the 
effects on mutant fitness of shifting m from equilibrium, and of shifting S 
from 0, are the same. 

Comparison of the Two Conditions 

I have analyzed the two stability conditions in a genetic model of seed 
provisioning (Taylor 1989) and have constructed an example in which 
d-stability holds but not m-stability. A mathematical example of this type 
was given by Eshel and Motro (1981). It is also easy to provide mathemati- 
cal examples of functions with equilibrium points which are m-stable but 
not a-stable, but I have yet to see a biologically plausible example of this. 
It is worth asking why this might be so, especially since, as we shall see 
below, m-stability is much easier to verify than S-stability. Let me offer a 
rather vague reason. 

As we can see from Fig. 1, from a mathematical point of view, m-stable 
points should equally likely be b-stable or not, depending on whether the 
line W= 0 crosses the m-axis from the left (Fig. la) or from the right 
(Fig. lb). Why, in biological examples, should it be more likely to cross 
from the left? Often, in natural examples, such as the sex ratio example 
above, the fitness of a rare mutant depends not so much on m as on the 
population average ti = (1 - Q) m + Qs. That is, for small Q and perhaps 
small 6, the sign of W(m, 6) depends mainly on the sign of 6 and the value 
of ti. Thus, on each side of the m-axis, W has a constant sign along lines 
of constant 6. For small Q, this gives us a family of lines of steep negative 
slope - l/Q, which the line W= 0 should tend to be parallel to, at least for 
small 6. This argues for Fig. l(a). 

3. THE GENETIC MODEL: A COVARIANCE APPROACH 

I suppose there are two alleles at a single locus, a normal allele and a 
mutant allele with frequency Q, and I let dQ denote the change in Q over 
one generation of selection. I let 6 measure the relative effect (in a manner 
to be specified) of the mutant allele on individual behaviour. 

In this section I obtain an expression for dQ in terms of the covariances 
between genotype and phenotype. These covariances are generally hard to 
calculate, because the action of the mutant allele affects its distribution, 
and this distribution is hard to find. What is often easy to find is the neutral 
distribution that obtains when 6 =O. If this neutral distribution is used 
to calculate the change in frequency of the mutant allele, we get an 
approximation of dQ which I denote by d”Q. Thus, d”Q is typically much 
easier to calculate than dQ. Theorem 2 tells us that if the mutant allele is 
rare, ,4Q and d”Q are equal to first order in 6. The important consequence 
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of this is that d”Q can be used to verify m-stability. In Theorem 3, I relate 
this result to the inclusive fitness approach. 

In the following analysis, both mutant frequency Q and mutant 
behavioural deviation 6 may be assumed to be small, and to formulate the 
results clearly it is useful to use the “big 0” and “little 0” notation, whose 
meanings I recall. A quantity K is “big 0 of a”, written O(a), if K 
approaches zero as LY approaches zero, and a quantity K is “little o of CX” 
written O(E), if K/IX approaches zero as z approaches zero. 

I assume the population is homogeneous and consists of individuals all 
of the same type. In Taylor (1988b) I have discussed the extension of these 
results to cases in which both males and females are involved in the action, 
but in different ways. I will let )’ and z denote random actors, that is, 
individuals whose behaviour affects the fitness of others, and I let x denote 
a random recipient, that is, an individual whose fitness is affected by the 
mutant behaviour. 

Change qf Allele Frequency 

We can get an expression for dQ from a covariance formula of Price 
(1970), 

AQ = cov( G,, w,)/W, (3.1) 

where x is a random member of the population, G, is the genotypic value 
of X, defined as the frequency in x of the mutant allele, w,~ is the fitness of 
X, and F is mean fitness. This expression assumes Mendelian assortment of 
gametes to offspring, that is, any allele donated by x to an offspring will be 
mutant with probability G,. 

Now I obtain an expression for M:,. The idea is that the fitness of each 
individual x will depend on the behaviour of every individual y in the 
population (including x himself), and this behaviour will, in turn, depend 
on genotype. I allow individuals to adopt different levels of mutant 
behaviour. and let 

m,.=m+H,6 (3.2) 

be the behaviour practised by y. HY is called the phenotypic value of y, and 
will be determined by his genotype, or, more generally, by the genotype of 
the individual controlling his behaviour (Taylor 1988a). A standard diploid 
model takes H, = G, when G., = 0 or 1, and H,. = h when G, = l/2. 

Now I define 

(3.3) 

(3.4) 
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to be the first- and second-order effects of the behaviour of y (or of y and 
z) on the fitness of x (Hamilton 1970), where all derivatives are evaluated 
at 6 = 0. Then, expanding in powers of 6, 

w, = wo + 6 1 ffys.x., + p 1 c ffyffdxy: + 02), (3.5) 
Y .v 2 

where w. is fitness in a normal population, and the sums are over the 
whole population, including x himself. I note that average fitness is 

h=wo+~~H~“sy+o(13), (3.6) 
Y 

where s, = C, s, is the sum of the effects of y on members of the popula- 
tion. Since the average phenotype C H,/N is of order Q, Eq. (3.6) can be 
written 

W = w. + SO(Q) + o(6), (3.7) 

which we invert to get 

(W)-‘=(wo)-‘+8O(Q)+o(6). (3.8) 

If we put (3.5) and (3.8) into Price’s covariance formula (3.1), we get 

AQ= 
[ 
; +SO(Q)+o(6) 1 
x 6 c WG,, H,.GJ +; 11 WG,, fJyK~xyz) + 46’) 

Y y z 1 
=; 6 1 cov(G,, ff,s,) + ; 11 cov(G,, ffYH,sxyz 

Y y i )I 
+ S20(Q) + o(a2) 

=k 6~niCOVi(G,,H,,)s;+~~qCOVj(G,r~y~=)S:2) 
IY i J 1 + S*o(Q) + o(S2), (3.9 

where I have grouped interactions with the same average effect, with si an d 
s!*’ being the different first- and second-order effects, and ni and nj the 

J 

number of interactions of a random x with these effects. Here, covi is over 
all x-y pairs with effect si and cov, is over all x-y-z triples with effect sJ*‘. 
The O(Q) in the first expression has become o(Q) in the second because 
the covi terms are O(Q). 
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Appearances to the contrary, (3.9) is not yet the second-order expansion 
of dQ in 6, for the covariances will usually depend on 6: the deviant 
behaviour of the mutant allele may alter its distribution, and hence alter 
the covariances. The trouble is that this altered distribution can be diflicult 
to calculate. Of course, all we need for the second-order expansion of AQ 
is the 6 term of the expansion of cov, (see (3.11) below), but this may not 
be easy to calculate. However, what are often easy to calculate are the 
neutral covariances which belong to the 6 =0 distribution, and what we 
now do is calculate the approximation A”Q obtained by using this distribu- 
tion, and see how good it is. From (3.9) 

+ S20(Q) + o(S2), (3.10) 

where I have used the superscript O on the covariances to signal the use of 
the neutral distribution. The question is, when will A”Q give us the correct 
local stability analysis using the conditions of Theorem l? If I define c, by 
the equation 

covj(G,, II,.) = cov:(G,, H,) + Sci + o(S) (3.11) 

then (3.9) can be written 

woAQ=6~n,cov;(G,,HJsj+~ ~njcov;(G,,H,,H;)sj2’+2~nic,s, 
I I I I 

+ S20( Q) + o(S2), 

and comparing (3.10) and (3.12) we have 

AQ A”Q d2 
--,=,[~niC~Si+o(Q)~+o(S2). 
Q I 

(3.13) 

The results are summarized in the following theorem. 

THEOREM 2. (The weak selection theorem). Suppose there are two 
alleles at one locus, one for the normal value m of the behavioural parameter, 
and the other, of frequency Q, for the mutant value, with deviation 6. Suppose 
that in the covariance formula (3.1) for AQ, the neutral (6 = 0) distribution 
of the mutant allele is used, and denote by A”Q the resulting approximation. 

(1) AQ/Q and A”Q/Q agree to first order in 6. Thus, away from equi- 
librium, and for 6 near 0, A”Q/Q will tell us whether the mutant allele is 
increasing or decreasing in frequency. It follows that A”Q/Q will identify all 
equilibrium points, and will correctly predict their m-stability. 
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(2) rffor all interactants x and y, cov(Gxr HV) is independent of 6 
(such that all ci = 0), or, more generally, if the cj in (3.11) are o(Q), then the 
h2 terms of AQ/Q and A”Q/Q will agree to order O(Q) and, for sufficiently 
small mutant frequency, A’Q/Q will correctly predict b-stability. 

An important case in which the condition of (2) holds is a diploid 
population with outbreeding in which interactions are only between 
members of the same nuclear family (between sibs or between parent and 
offspring), for then there is, to order Q, only one type of mutant family, 
with one mutant and three normal parental alleles. Ignoring mutant 
families with more than one parental mutant allele, which will occur with 
frequency o(Q), the resulting distribution of mutant alleles among members 
of the same family is independent of 6, and hence the c, in (3.11) are o(Q). 
An example of this is found in the seed-provisioning model of Queller 
(1984) discussed by Taylor (1989), where the interactions are actually 
between half-sibs. However, with inbreeding, the c, term in (3.11) must be 
reckoned with in the d2 analysis of AQ. 

The Inclusive Fitness Approach 

I now show that the first-order term of AQ can be obtained with an 
inclusive fitness calculation. Fasten attention’ on a fixed actor y. From 
(3.9), he can expect nj interactions of type si among all individuals x whose 
fitness his behaviour affects (and y himself may be such an x). Thus the first 
sum in (3.12) may be considered to run over all such x, and 

where 

w. AQ=cov”(G,, H,.)w,+o@), (3.14) 

is the inclusive fitness effect of y and 

R = cov”(G,> H,) 
xy cov”(Gy, H,) 

(3.16) 

is the relatedness between x and y. To get w1 we need to calculate the R, 
and these are often easily found. If H, depends on G, and y is outbred or 
the dependence is affine (additive gene action), then R, can be calculated 
with coefficients of consanguinity (Michod and Hamilton 1980, Pamilo and 
Crozier 1982, Grafen 1985, and Taylor 1988b) and so (3.14) is an impor- 
tant representation of AQ. The situation is summarized in the following 
theorem. 
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THEOREM 3. (The inclusive fitness theorem). Assuming cov’(G,, H,.) is 
positive, the inclusive fitness wI can be used to measure the effect of selection 
on the mutant allele, as follows: 

(1) The mutant frequency will increase if wI is positive and decrease if 
wI is negative. 

(2) If wI = 0, m* is an equilibrium point which is m-stable if dw,/dm 
is negative. 

Thus, the usual inclusive fitness analysis can identify the equilibrium 
points and check their m-stability, but not their S-stability. Note that 
Theorem 3 is a first-order result (in 6) and does not require the mutant 
allele to be rare. 

4. THE GENETIC MODEL: A STRUCTURED POPULATION APPROACH 

An important class of models concerns a population organized into 
discrete patches within which interactions are at random. As an example to 
keep in mind, consider a patch to be the set of all offspring of a group of 
Nmated females. The analysis keeps track of the mutant allele by 
classifying patches according to “mutant type,” determined by the distribu- 
tion of mutant alleles in the patch. This structured population approach 
has its own methods and notation, and my purpose here is to relate these 
to the covariance approach of the last section. In this section, I assume the 
mutant allele is rare; this provides us with a linear transition from one 
generation to the next (Eq. (4.3)). 

Let the mutant patch type be determined by the number of individuals 
of each mutant genotype on the patch. For example, for patches of sibs, if 
the number of offspring is large, the patches can be classified by parental 
(maternal and paternal) mutant genotype. I use the index k to keep track 
of different mutant patch types. I let uk be the frequency of patch type k, 
and qk be the frequency of the mutant allele in a type k patch. Then the 
overall mutant frequency is 

Q=q.u=&,u,, 
k 

(4.1) 

where the dot signifies the scalar product between the vectors q = (qk) and 
u = ( Uk). 

The covariance approach of Section 3 requires the calculation of 
cov(G,, H,,), where x and y are random individuals from the same patch, 
and, though I will not make use of this, it is interesting to see how this can 
be obtained from the above concepts. Within each patch, cov(G.,, H,,) = 0, 
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since x and y are independent of one another, and so the overall covariance 
is just the covariance of patch means across patches. The mean of G, over 
a type k patch is just qk and I let H, denote the mean of H,“. Then 

k 

where qk and Rk denote the means of qk and H, over the population. Now 
qk = Q, and so 

cov(Gx, 4) = 1 uk(qk - Q)ffk. (4.2) 

To calculate this we need to know the patch distribution vector u and I 
now turn to this question. 

Of course u may change from generation to generation, and I denote by 
U’ the distribution after one generation. Then U’ will depend on U, and I 
assume this dependence is differentiable. If the mutant is rare the 
dependence will be nearly linear; more precisely, 

u’ = Au + o(Q), (4.3) 

where A = A(m, 6) is the patch type transition matrix. In fact (4.3) is the 
linear term of the Taylor series of U’ as a function of u (when u = 0, U’ = 0) 
and the entries Of A are a,& = &&/&,, the number of extra type k patches 
next generation created by an extra type h patch this generation. 

Now note that, with error o(Q), 

AQ=q.(u’-u)=q[A(m,h)-1]u (4.4) 

for any U. If 6 = 0, the mutant allele is neutral and should not change in 
frequency, no matter what its distribution, and so AQ = 0 for all U. We 
deduce that 

q[A(m, 0) - I] = 0 (4.5) 

and hence that q is a left eigenvector of A(m, 0) for the eigenvalue A = 1. 
This will be important in a moment. 

Equation (4.3) implies that, with an error of o(Q), the mutant allele dis- 
tribution is multiplied by A each generation, and eventually u will converge 
to the dominant right eigenvector of A(m, 6), which I call u(m, 6), nor- 
malized so that q . u(m, 6) = Q. From this point on, the effect of each 
generation of selection will be to multiply u by the dominant eigenvalue 
A(m, 6) of A, and (4.4) becomes, with error o(Q), 

AQ=q[A(m,6)- l)] u(m,d)=(A-l)Q. (4.6) 
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This is the same LIQ that we calculated in (3.9) and this formula is 
diflicult to work with for just the same reason as before: the eigenvalue 
A(m, 6) is hard to calculate, and this is because the asymptotic distribution 
u(m, 6) is difficult to find. However, we get the same neutral approximation 
result as before. The eigenvector u(m, 0), which is the asymptotic distribu- 
tion of a neutral mutant, has eigenvalue n(m, 0) = 1, and for this reason is 
often easy to calculate. If we use this instead of u(m, 6) in (4.4) what we 
get is exactly what we have called A”Q, and so the analogue of (3.10) is, 
with error o(Q), 

A”Q = q[A(m, 6) -I] u(m, 0). (4.7) 

Now to relate (4.4) and (4.7), we differentiate (4.4) to get, with 
error o(Q), 

aAQ -=q$l+q(A-I); a6 

and at 6=0, 

aAQ L’A aA”Q 
-=q,,u=,,, as 

(4.8) 

(4.9) 

using (4.5). This gives us another proof of Theorem 2 (1) for the case of a 
rare mutant. 

If we differentiate (4.8) again we find that, at 6 = 0, 

6*AQ a2AoQ aA au 
a62= ad* +2qabas (4.10) 

with error o(Q). From the 6* term of (3.10) and (3.12), we see that the last 
term of (4.10) is an alternative expression for 2 C nicisi/wo and, as before, 
its existence is the reason that A”Q is unable to analyze J-stability. If the 
distribution of the mutant allele is independent of 6, then au/&? = 0, and 
the last term of (4.10) vanishes, giving us an alternative proof of 
Theorem 2 (2). 

8. DISCUSSION 

The Two Stability Conditions 

Theorem 1 presents the differential forms (2.3) and (2.4) of the two 
stability conditions, and we discover an important mathematical difference 
between them in terms of the function W(m, 6): m-stability is first-order in 
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6, and b-stability is second-order. The practical consequence of this in any 
particular analysis is that m-stability is a lot easier to verify than S-stability, 
because the first-order coefficient is typically the easier to calculate. Part 
of the reason for this has to do with the difficulty of finding out the 
distribution of the mutant allele when 6 # 0 and is discussed in Sections 3 
and 4. 

Conditions (2.3) and (2.4) are certainly not equivalent, and one can 
easily find functions lV(m, 6) with equilibrium points at which each holds 
without the other. Whether one can find biologically interesting examples 
of this type is another question. In all the examples I have looked at, 
m-stable equilibrium points have always turned out to be b-stable. Since 
h-stability is the harder of the two conditions to verify, a result which 
provided general conditions under which m-stability would imply 
J-stability would be of some practical significance. This point is discussed 
at the end of Section 2. 

One might ask what happens to equilibria which are &stable but not 
m-stable. The answer is that, although at the exact equilibrium point all 
rare local mutants are penalized, the overall population m value should 
drift sideways (by some unspecified genetic or environmental mechanism), 
and then mutants which take it farther away will be favoured. The end 
result will be the establishment either of a stable equilibrium at another 
point, or of a polymorphic equilibrium which might straddle the original 
point. On the other hand, at an m-stable equilibrium which is not b-stable, 
selection pressure will keep m from drifting, but will allow the spread of 
mutants with 6 > 0 or 6 < 0 or both. This results in a polymorphic popula- 
tion which is not described by the function W(m, 6). 

Extension to Polymorphic Equilibria 

There should be a natural extension of the stability conditions to equi- 
libria in which there are two or more values of m present in the population. 
For example, suppose there are two normal phenotypes m, and m2 of 
frequency p, and p2, respectively, controlled at a single locus. First of all, 
the pi must be at a stable “ecological” equilibrium, and the condition for 
this will typically depend on the underlying genetics. Given this, we want 
to form conditions for the evolutionary stability of the mi. In the simple 
case in which the phenotypes are determined by two alleles a and A, with 
A dominant, we consider mutant alleles which are mutant forms of either 
A or a, and, in each case, only one of the mi will be altered at a time, and 
the other can be held fixed. For each i, the fitness W(m,, 6) is a function 
of only two variables, as before, and the local stability conditions are 
formed as in (2.3) and (2.4). But there are still difficulties in calculating 
cov(G,, Hy) in (3.9) because HY will depend, not only on the frequency G, 
of the mutant allele in y, but on which non-mutant alleles happen to be 
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present, and this will be correlated with x’s genotype. So different mutant 
genotypes must be considered separately, and this can lead to difficulties, 
and may require the population structure approach of Section 4. 

Extension to Two-Parameter Models 

Suppose we have a two-parameter behavioural space, for example sex 
ratio r, and dispersal probability m, assumed to be controlled at two loci, 
and the fitness of a female depends on both her parameters. A 
monomorphic equilibrium is found by treating each parameter separately, 
and solving two equations of the form (2.2) in the two unknowns r and m. 
But the stability analysis will depend on what deviations we want to allow. 
If we are prepared to assume that mutants are rare enough, spatially or 
temporally, that mutants at one locus will never encounter mutants at the 
other, then we simply have two one-parameter problems. But otherwise, we 
must allow for the possibility that genes at the two loci will assort non- 
randomly (linkage disequilibrium), and because of the fitness interactions, 
this will create a problem in the analysis. 

The Genetic Models 

In Section 3 and 4, using two different approaches, I interpret the 
stability conditions in a one-locus genetic model in which fitness is taken 
to be the change of frequency dQ over one generation of a rare mutant 
allele. The importance of the covariance approach of Section 3 is that the 
calculations are often simpler, and the components in the expressions 
usually have biological significance. On the other hand, the population 
structure approach of Section 4 often provides the only way of finding out 
the mutant distribution with enough precision to check the d-stability. 

Theorem 2 tells us that the first-order (in 6) term of dQ can be 
calculated using the neutral distribution of the mutant allele. This is an 
important result for both approaches, because calculations are much easier 
with this distribution. This is especially true in the covariance approach of 
Section 3, where the neutral covariances in the 6 term of (3.12) can be 
calculated as relatedness coefficients. But the second-order term is not in 
general so easy to calculate, and the difficulties are displayed in the two 
parts of the h2 term of (3.12): in the first sum, the covariance involves 
quadratic terms in the phenotypic values, and in the second sum, we 
require knowledge of the actual (non-neutral) mutant distribution. 

In Section 4, with the assumption of a rare mutant, the distribution of 
the mutant allele is obtained as the dominant right eigenvector of the trans- 
ition matrix A, and this gives us an alternative approach to Theorem 2. In 
the neutral case, the corresponding eigenvaluc is i = 1, and the eigenvector 
is typically easy to obtain, but if 6 # 0 the calculation is often intractable, 
especially if A is of high dimension. As an example, if the patch type is 

65X36,2-2 
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determined by the genotype of N mated females, the dimension of A can 
grow quickly with N: if N = 1, there are 5 mutant patch types, and if N = 2, 
this number rises to 20. Examples of this approach can be found in 
Uyenoyama and Bengtsson (1981) and Uyenoyama (1984). 

The Inclusive Fitness Analysis 

The calculation of the neutral covariances which appear in the first-order 
term of (3.10) is most elegantly done using relatedness coefficients, and 
this leads to the inclusive fitness formulation (3.14) of the first-order 
term of dQ. A number of recent papers (Hamilton 1979, Michod 1979, 
Charlesworth 1980, Michod and Hamilton 1980, Seger 1981, Uyenoyama 
and Feldman 1981, Michod 1982, Karlin and Matessi 1983, Queller 1984, 
Uyenoyama 1984, Grafen 1985, and Taylor 1988b) have discussed the rela- 
tionship between genetic and inclusive fitness models, mainly in the context 
of altruistic behaviour, and this paper builds on these efforts. Theorem 3 
gives a precise statement of the extent to which inclusive fitness can be used 
to measure the change in frequency of the mutant allele, and in particular 
shows that wi can be used to determine m-stability. Two things must be 
emphasized: first that m-stability is a local condition (in 6) and Theorem 3 
will only be of practical consequence in models in which selection is weak. 
The second is that the other ESS condition, S-stability, cannot be tested 
with the usual inclusive fitness formulation. This has been pointed out by 
a number of authors, and examples of this in models of altruism are found 
in Uyenoyama (1984). 

Care must be taken with the inclusive fitness formulation if fitness inter- 
actions involve individuals of both sexes, and there are parental asym- 
metries in the passing of genes to offspring. Then the relatednesses must be 
weighted with reproductive values. This question has been discussed in 
Taylor ( 1988b, 1990). 

Assumptions of Additivity 

This equivalence between genetic and inclusive fitness models is at first 
puzzling. Inclusive fitness arguments are often so simple because they 
simply add up the fitness effects (weighted by relatedness coefficients) of a 
single mutant individual, but this can only be valid if fitness effects between 
individuals are additive. Where is the assumption of additivity in the above 
result? The answer is that this is contained in the assumption that the PV, 
are differentiable functions of the my, for differentiable functions are always 
additive to first order, and the eqmvalence only holds to first order in the 
behavioural deviations. Models in which fitness interactions are non- 
additive, such as warning call behaviour (perhaps one caller is as good as 
two), can be converted to models of this type by thinking in terms of a 
continuous variable such as the probability m of making the call. Then, in 
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an m-population with some mutant behaviour, the probability of getting 
a call in a certain group will, to first, depend additively on the mutant 
deviations. 

There are two other places in the above development in which assump- 
tions of additivity arise. Price’s covariance formula, in the form given 
above, requires average offspring genotypic value to depend additively on 
parental genotypic value, and this is effected by my assumption of 
Mendelian assortment of alleles. Also, the relatedness coefficient (3.16) is 
only given by the easily computable pedigree coefficient of relationship 
(Pamilo and Crozier 1982), defined in terms of identity of genes by descent, 
when H.,. in (3.16) can be replaced by G,., and one way to make this 
happen is to assume Hy depends linearly on G,,. This is essentially an 
assumption of additive gene action within an individual. Michod and 
Hamilton (1980) and Taylor (1988b) have further discussions of this 
matter. 

Terminology 

There are some matters of notation and terminology that I find 
perplexing. One has to do with the notions of m- and a-stability. They seem 
to me to describe the two aspects of stability that I think are fundamental 
in these one-parameter models, but I am not sure what to call them. The 
problem with my terminology is that it involves the names of the variables. 
I have considered the terms “normal-stability” and “mutant-stability” but 
I am not happy with these. 

Another issue has to do with whether the actor A or the recipient B 
should come first in subscript notation. This question arises not only for 
relatedness coefficients, but for fitness effects, and I feel the same conven- 
tion should govern each. The classical literature lists the actor first. Thus 
Hamilton’s (1964, 1972) relatedness coefficients are written rAB or b,, and 
his (1970) “effects” of A’s action on B’s fitness are denoted s,,,~. And there 
is a sense in which this is natural, and corresponds to the way we think and 
talk: when an actor has an effect, then the act comes first and the effect 
comes second. Also, sAB is naturally described as the effect of A on B. In 
Taylor (1988b), I followed the notation of Uyenoyama (1984) and wrote 
my relatedness coefficients as R, _ B with the arrow emphasizing the effect 
of A on B, and I wrote my effects as sAB. 

But there are good arguments for the opposite convention. Pamilo and 
Crozier (1982) note that since the relatedness coefficient is, in simple cases, 
the coefficient of regression of G, on G, [this happens when gene action 
is additive or when A is outbred (Michod and Hamilton 1980, Grafen 
1985)], the regression notation which puts B first should be followed. And 
considering effects, if the effect of A on B is defined, as in (3.4), as hvB/drn,,, 
then the “matrix” of effects is the Jacobian matrix of the vector function 
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w = (w,) of m = (m,), and the entries of this matrix are conventionally writ- 
ten with the dependent variable indexing the rows and the independent 
variable the columns. This suggests that B should come first. In any case, 
it is this latter scheme that I have adopted in this paper. It would be nice 
to see some general agreement for one convention or the other. 
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