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Much recent work has focused on the transition from G. R. Price’s (1970, Nature 
227, 52&521) formula for allele frequency change to an inclusive fitness condition 
for the selective advantage of a certain behaviour. In case there is any kind of asym- 
metry between the sexes, the analysis must keep track of the two sexes separately, 
and this leads to a number of different forms of the expression for inclusive fitness. 
In this paper I gather these forms together and note the assumptions needed to 
make each valid. I also show how inclusive fitness should be formulated when the 
behaviour of the actor is controlled by another individual. I illustrate the inclusive 
fitness approach with a sex allocation example in a haplodiploid population with a 
local breeding structure. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Even with one-locus models of behaviour, the calculation of allele 
frequency changes can be quite complicated, especially if fitness depends 
upon the genotype, not only of the individual, but of his neighbours. Other 
complicating factors include unusual genetic systems or modes of 
parenting, different behaviour of the sexes, and strong selection. 

An elegant expression for allele frequency change is found in Price’s 
(1970) covariance formula. Since that work, a number of papers 
(Hamilton, 1970; Price, 1972; Charlesworth, 1980; Seger, 1981; 
Uyenoyama, 1984; Grafen, 1985, 1986; Queller, 1985; Wade, 1985; Frank, 
1986a, b, c; and Taylor, 1988) have used this formula to study the selective 
advantage of a certain behaviour, often in the form of an inclusive fitness 
condition (Hamilton, 1964, 1972). My purpose is to synthesize and extend 
this work and to pay particular attention to the formulation in the case 
that individuals of different sexes have different roles, either behaviourally, 
or genetically. I also introduce a small extension of the notion of related- 
ness to include the identity of the individual controlling the behaviour of 
the actor. 

I will suppose we have an infinite population with a periodic life history; 
I shall refer to one period (whih may or may not be a generation) as a 

145 
0040-5809/88 53.00 

Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



146 PETER D. TAYLOR 

cycle, and I assume cycles are non-overlapping. At a certain point in the 
cycle, individuals of one or both sexes engage in a particular behaviour, 
and the objective of the model is to find the equilibrium level of this 
behaviour. As examples, I have in mind levels of altruistic behaviour, dis- 
persal rates, and sex allocation. To illustrate my results I shall provide an 
inclusive fitness argument of a sex allocation model of Bulmer (1986) for a 
geographically structured population. 

The mathematical formulation will be somewhat different in the case of 
behaviour before mating (behaviour of offspring) and behaviour after mating 
(behaviour of mated females). Also the second case will have two subcases: 
in which the behaviour affects the fitness through offspring of different 
sexes equally or differently. Sex allocation questions are an important 
example of the second subcase, but there are also others: for example, if a 
mother alters the dispersal probability of her daughters, this may effect the 
fitness of her offspring of both sexes, but differently. 

In Section 2 I discuss Price’s formula; in Section 3 I look at the impor- 
tant notion of the reproductive value of each sex; and in Section 4 
I postulate a certain form of the fitness function, generally valid under 
weak selection, and show that this leads to a formulation of Price’s 
equation in terms of relatedness coefficients. Price’s formula is then seen to 
be equivalent to the inclusive fitness deviation of a mutant individual. In 
Section 5 I discuss how relatedness is calculated, and in Section 6 I present 
the sex allocation example. 

2. THE COVARIANCE FORMULA 

In this section I derive the basic covariance formula for allele frequency 
change, first following the original derivation of Price (1970), and then in a 
way that keeps separate track of offspring of each sex. 

Imagine a number of alleles at a single locus, and assign to each allele a 
“score” (the terminology of Grafen, 1985). The score q of an individual is 
then the average score of the gametes which created him, and for us, q will 
be a random variable over the population. That is, different individuals will 
have different q values, and the sample space of this random variable can 
be regarded as the set of all individuals. An important special case has just 
two alleles, a “normal” allele with score 0 and a “mutant” allele with score 
1, and an individual’s score is then the frequency of the mutant allele in his 
genotype and is called his genotypic value. 

In the formation of the next generation, let the average score of an 
individual’s gametic contribution to his offspring be q + dq. Under fair 
meiosis, the expectation of dq over the whole population will be 0. Let W 
be the litness of an individual, also a random variable over the population. 
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For us, W is a measure of the relative number of offspring contributed to 
the next cycle, but note that W must count full offspring, so that if a female 
has three mates, each mate gets credited with a third of her offspring. 
Finally, let Q denote the average individual score over the population. 

Currently, Q = E(q), the expected value of q, and after one cycle, Q 
becomes Q’ = E((q + dq) W)/E( W). The change in Q is 

E(qW Jwqw dQ=Q'-Q= E(W) + - - E(q). Et W (2.1) 

Under fair meiosis, or more precisely, under the assumption that Wand dq 
are uncorrelated, the middle term is 0, and 

(2.2) 

which is Price’s (1970) formula for allele frequency change. I point out that 
even when W and dq are correlated, (2.2) is still valid with an altered 
definition of fitness. An example of this is found in Uyenoyama’s (1984a) 
study of the evolution of parthenogenesis. But for my purposes it is best to 
make the assumption that W and dq are uncorrelated. 

Now I will redo the argument in a way that keeps track of the average 
score of the two sexes separately. Let Qj be the average score of sex j 
individuals (j= 1 for female and j= 2 for male), and let Qb be the average 
score of the gametes contributed by all sex j parents to sex i offspring. To 
put the two parental sexes together, we must know what is the relative con- 
tribution of each parent to the offspring. Let uii denote the proportion of 
genes a sex i offspring gets from his sex j parent. Then the average sex i 
score in the next cycle is 

Now I want to average the Qi to obtain an overall population average 
score Q, but I want to know whether this should be a weighted average, 
and if so, what should be the weights? And the correct answer is that sex- 
specific weights vi should be chosen so that, in the absence of selection, the 
overall measure Q should not change. In this case, Q; = Qj and so 

Q’=T UiQi=F via,Q’u=C (1 viag) Qj=Q 
j i 

and if the last equality is to hold for all Qi, we must have 

vi = 1 via+ 
I 

(2.4) 
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which says that the vector v is the left eigenvector of the matrix A = (ag) for 
the eigenvalue 1. (Note that the row sums of A are 1 and so A must have 
dominant eigenvalue 1, with constant right eigenvector. It follows that the 
dominant left eigenvector is positive, and that is what we take v to be, nor- 
malized so that the entries have sum 1.) We can regard ui as the relative 
reproductive value of the sex i subpopulation. If the population is at 
equilibrium, oi is the asymptotic probability that a random allele many 
generations in the future derives in the current generation from a sex i 
individual. 

The general formula for population-wide change in the score can now be 
written 

AQ=Q’-Q=z via,Q;-x u,Qj. 
ij i 

(2.5) 

I now look separately at the cases of selection before and after mating. To 
keep the notation simple, I assume henceforth that Aq is uncorrelated with 
fitness, and I will ignore the Aq terms. 

Selection before Mating 

I now consider the behaviour of the offspring before, or perhaps during, 
the mating process. I suppose that, while this behaviour may affect the 
number of future offspring of the individual, it will not affect his fitness 
through male offspring differently from his fitness through female offspring. 
The average score of sex j individuals is Qj = Ej(q), where Ej denotes expec- 
tation over all sex j individuals. By the above assumption, the same W will 
measure fitness of an individual through his future offspring of each sex, 
and 

(2.6) 

is independent of i. If this is put into (2.5), and (2.4) is used to get rid of the 
ati, we get 

covj(q, w, 
AQ=C vj E,(W) (2.7) 

i I 

which is an average of covariances over each sex. If, as if often the case, 
u, = v2 (more about this in Section 3), and the fitnesses are normalized so 
the average fitness over males and females is equal, then (2.7) reduces to 
the classic equation (2.2). 
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Selection after Mating 

I now consider the behaviour of mated females (or perhaps even, in 
monogamous situations, mated males), and it is convenient to alter our 
view so that the sample space of our random variables is not the set of 
individuals, but the set of mated females, or breeding pairs, or breeding 
events, whatever is appropriate to the type of behaviour under con- 
sideration. I denote by qj the score of the sex j parent (or average score 
under multiple mating), and by Wi the fitness of the mated female through 
sex i offspring. Then Qi = E(q,), and 

(2.8) 

and when this is put into (2.5) 

AQ=x vi 
r 

E(~;;gf)wJ - 1 vjqqj), 
I i 

(2.9) 

I now consider two subcases. The first is the case in which the behaviour 
does not affect offspring of different sexes differently. Then, just as in the 
derivation of (2.7), Wi = W is independent of i, and so also is Qb, and (2.9) 
becomes 

AQ= EE vjClj w) Cov(q, w 
Et WI E(W) ’ 

(2.10) 

where q denotes an average parental score: 

You can think of q as the expected score of a mythical offspring that is 
made so a proportion vi of his genes come from his sex j parent. 

The second case is the one in which behaviour affects fitness through 
offspring of each sex differently. Typical of this case is sex allocation 
behaviour, but this also includes parental manipulation of offspring of a 
particular sex. In this case, to get (2.5) to look like a covariance, we have 
to introduce 

the expected sex i offspring score. Then (2.9) becomes 

(2.12) 
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where I have used (2.4) to replace uj in the last term. Using (2.1 l), we get, 

AQ=x vi cov(Pi wi) 

I E(Wi) 

(2.13) 

in which the covariance is between fitness and offspring genotype. 
Equations (2.7), (2.10), and (2.13) are the standard sexual forms of the 

covariance equation. In the first, we have a population in which individuals 
of both sexes are interacting. Even if the behaviour to be studied occurs in 
only one sex, it may affect the fitness of the other, and the overall AQ is a 
weighted average of the covariance terms belonging to each sex. The next 
two forms really concern breeding behaviour, and our “individuals” are 
now mated females or breeding pairs. The simpler form (2.10) applies when 
the behaviour affects fitness through future offspring of both sexes equally. 
This assumption is also implicitly understood in (2.7). If this fails, we have 
to use (2.13) in which AQ is an average over the two sexes of the 
covariance of parental fitness through sex i offspring and offspring score. 

A special case of (2.13) is worth mentioning. If the genetics is diploid 
with standard mode of inheritance, then all ati and vi are equal to 4, and 
pi= q, the mean score of the breeding pair. In this case (2.13) can be 
written 

AQ=Cov(q, @I; w2), (2.14) 

where Fi= W,/E( Wi) is normalized fitness through sex i. Thus AQ 
becomes the covariance between average fitness and the average score of 
the breeding pair. This simple form is the reason diploid sex-allocation 
arguments are easier to make than haplodiploid. 

3. REPRODUCTIVE VALUE 

Here I will briefly discuss the sex-specific reproductive value vector v 
defined in Section 2 as the dominant left eigenvector of the parent-offspring 
matrix A. I have mentioned that in an equilibrium population, ui can be 
interpreted as the asymptotic probability that a random gene from the 
distant future derives from an individual of sex i. The way to see this is to 
notice that this probability must be the left eigenvector of A for the eigen- 
value 1. This interpretation of v goes back to Oster, Eshel, and Cohen 
(1977), Benford (1978), and Stubblelield (1980). 

Under the standard mode of inheritance, the vi are well known. In a 
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diploid population, all av are 4 and so are the ui, and the weighted averages 
in Section 2 become straight averages. In a haplodiploid population, 

A= t f  [ 1 1 0 

and v = (2, 1)/3, as was pointed out by Price (1970), Hamilton (1972) 
Charlesworth (1980b), and Pamilo and Crozier (1982). 

Thus asymmetric genetics can cause v to be non-trivial, but it is impor- 
tant to note that asymmetric parenting can have the same effect. For exam- 
ple, consider the following cycle of partially overlapping generations. The 
g, generation mates at random to produce g,. But gb, which starts the 
cycle again, is formed by random mating of g, together with some of the g, 
males, who may survive to mate a second time. If the father of a random gb 
offspring is g, with probability s and g, with probability 1 -s, then under 
diploidy, the parent-offspring matrix for the cycle is 

and v = (2 -s, 2 + s)/4. If s = 0 we have the standard diploid result, but 
otherwise, the g, males have gained some reproductive value over the 
females because of the possibility of contributing directly to g&. Examples 
of this type have been discussed in sex allocation models by Seger (1983), 
Stubblelield (1986), and Grafen (1986). A similar situation obtains with 
partial worker-laying of male eggs in eusocial colonies (Charnov, 1978; 
Benford, 1978). 

The notion of reproductive value is useful more generally when con- 
tributions from different types of individuals must be combined. A good 
example is the case of age structure (Charlesworth, 1980b); indeed it was 
for this purpose that the term was first used (Fisher, 1930). A good recent 
discussion of reproductive value in models such as this one is found in 
Grafen (1986). 

4. RELATEDNESS 

The fitness W of an individual will, in general, depend on his own 
behaviour, the behaviour of his neighbours, and the average beheviour of 
the whole population. This direct or “neighbour-modulated” (Cavalli- 
Sforza and Feldman, 1978; Maynard Smith 1982) form of fitness is the 
expression we must begin with, because an inclusive fitness formulation will 
only be applicable if W has a special additive form. If this special form 
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obtains, the covariances in Section 2 can be made into relatedness 
coefficients, and the formulae for AQ can be interpreted as inclusive fitness 
deviations. 

The form required is that W should depend additively on the phenotypes 
of the individual and his neighbours. In fact this is rarely the case, even in 
simple models. What is often true, however, is that if behavioural 
deviations (or more precisely their consequences on fitness) between 
different genotypes are small, then W will be approximately linear; more 
precisely, it will be linear to first order in the behavioural deviations. This 
will hold if W is a differentiable function of the behavioural deviations. 

Suppose the behaviour of an individual is specified by a parameter t, 
which may measure the probability of performing some act, or the intensity 
of a certain activity, or the proportion of resources allocated to one activity 
instead of another. Let a specific value to denote normal behaviour, and let 
the phenotype H, of the individual x measure his deviation from normal, so 
that the behavioural parameter of x is t, = t, + H,6, where 6 is the 
deviation of fully mutant individual. 

Selection before Mating 

To study the effect of the behaviour on fitness, I treat the two cases 
separately and look first at the case of selection before mating, in which 
both sexes may be present. I will call the individual who expresses the 
behaviour the actor x, and an individual whose fitness is affected a recipient 
y. Even if members of both sexes exhibit the behaviour, we will, at least at 
the beginning, want to look at behavioural deviations in each sex 
separately, and, to be specific, I will consider the case of a female actor. 
Deviations in female behaviour may affect the fitness of both sexes 
(perhaps differently), and I will also focus on one sex at a time and suppose 
the recipient is male. 

In general the fitness WY of y could depend on all H, values in the 
population. In practice, it will depend on a (small) finite number of H, and 
perhaps on the population-wide average R,, and I assume that this is the 
case. If we normalize so that W,” = 1 when 6 = 0, and expand WY in a 
Taylor series about 6 = 0, we get 

W,. = 1 + 6 c sXYHX + &-+I, + o(6), (4.1) 
i 

where .sXY is the fitness effect of x on y and is the differential effect of x’s 
behaviour on y’s fitness per unit increase in t. 

If we let G, denote the genotypic value of y, then the male covariance 
term in (2.7) can be written, to first order in 6, 

Cov(G,, WY) = Cov G,, 1 sxvHx c ) 6. (4.2) 
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It is useful to classify the interactions between x and y by phenotypic effect, 
and use an index k to keep track of the different possible values of s. Then, 
breaking the sum up into pieces with the same s = sk, (4.2) becomes 

(4.3) 

where n2k is the number of Sk interactions per male, and the COVaIianCe iS 

conditional on k. 
Now if we shift our scheme of accounting and group interactions by 

actor x rather than by recipient y, then (4.3) becomes 

2 c nikSk Covk(G,, Wh 

2 k 

(4.4) 

where nik iS the number Of Sk interactions per female, and Ti iS the propor- 
tion of sex i This is often written as 

(4.5) 

where the sum is over all y who interact with a fixed x, and the covariance 
is over the set of interactions with a constant sXY value. When (4.2) is put 
into the expression (2.7) for LIQ, it must be divided by average male fitness 
E( W,,). Since E( FVY) = 1 + O(6), from (4.1), and (4.2) is already of order 6, 
we will get (2.7) to first order in 6, by setting E( IV,) = 1. 

So far we have considered the effect of the behaviour on male fitness. We 
also expect an effect on the female population, and the same analysis 
applies. 

If we let z denote a typical female recipient, and make the same 
assumptions on W,, we get a similar expression for Cov(G,, W,). As 
above, we set E( W,) = 1, and plug these into (2.7) to get, to first order in 6, 

where 

R Cov(G,, Hx) 
x’z= Cov(G,, H,) 

(4.7) 
R Cov(G,, Hx) 

x--t’ = Cov(G,, H,) 
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are the coefficients of relatedness, to an actor x, of a random male and 
female recipient, respectively, with a given phenotypic effect. The coefficient 
of the second term on the right can be interpreted as the ratio of the 
reproductive value of a single male to that of a female. Hamilton (1972) 
combines this with the relatedness coefficient R to produce what he called a 
complete or “life-for-life” coefftcient of relatedness, but when the genetics or 
the life history are at all complicated, it is better to keep these components 
separate. 

The right-hand side of (4.6) is called the inclusive fitness of the 
behavioural deviation. It is calculated by taking a random actor and adding 
up the effects of her behaviour on the fitness of all recipients, each effect 
weighted by the relative reproductive value of the recipient and by his 
relatedness to the actor. If the mutant allele tends to cause a positive 
phenotypic value, then we expect Cov(G,, H,) > 0, and the inclusive fitness 
will have the same sign as AQ/6, and will thus tell us whether selection 
favours positive or negative 6; if inclusive fitness is positive, selection will 
act to increase t and if negative, selection will act to decrease t. The related- 
ness coefficients (4.7) are in standard use and were shown by Michod and 
Hamilton (1980) to be equivalent to a number of other forms. The step 
from (4.3) to (4.4) constitutes the transition from direct or neighbour- 
modulated fitness to inclusive fitness (Maynard Smith, 1983). 

Selection after Mating 

If interactions occur after mating, the situation is the same as if all 
individuals were the same sex, except that actor and recipient are mated 
females and genotypic value G, = C v,q, is a weighted average of the scores 
of a female and her mate. 

Case 1. Sex allocation unaffected by selection. In this case we can 
follow the above analysis with a single sex and the inclusive fitness has the 
form 

AQ/d = 1 sx$xey, Cov(Gx, Hx) y 

where 

R CNG,, ff,) 
x-y = Cov(G,, H,) 

(4.8) 

(4.9) 

is relatedness between mated females. 
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Case 2. Sex allocation affected by selection. In this case the behaviour 
of x may affect the fitness of y differently through daughters and sons. The 
analog of (4.1) is the fitness of y through offspring of sex i, 

Wyi= 1 + 6 C Sxyi H, + 6c,B, + o(d), (4.10) 

where s+ is the fitness effect of x on y through sex i offspring. 
Again we follow the above analysis, but now work from (2.13). Since 

E( WYi) = 1 + O(6), (2.13) can be written, to first order in 6, 

AQ =I ui Cov(Gyi, wyi) 

where GYi is the genotypic value of y’s sex i offspring. As before, the 
inclusive fitness of the behavioural deviation is 

AQ/a 
= 1 1 0iS.xyiR.x -yi 

Cov(Gxv f-f,) y ; 

where 

R 
CoW,i, Hx) 

x+yi= Cov(G,, H,) 

(4.12) 

(4.13) 

is the relatedness of y’s sex i offspring to x. 

This case, in which the number or quality of offspring of each sex is 
affected differently by the behaviour, has a more complex inclusive fitness 
formulation than the previous cases, and involves relatedness of offspring 
to parent, essentially because, in the calculation of allele frequency change, 
you have to count separately the effect of the behaviour on the offspring of 
each sex. 

In the case of diploidy with standard inheritance, the formulation is 
simplified, and we need only use coefficients of relatedness between 
mated females. In this case, both vi = 4, and for both i, Cov(G,,, H,) = 
Cov(G,, H,), and (4.12) becomes (4.8) with sXY the average of the sXyi, and 
R X+y, the relatedness between mated females, given by (4.9). 

5. CALCULATION OF R 

In order to calculate R we have to know how phenotype depends on 
genotype, and the general result is that R is easier to calculate if this depen- 
dence is linear. A familiar example is the case in which H, depends only on 

65313412-5 
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G, and is 0, h, or 1, depending on whether G, is 0, 4, or 1. In this case the 
dependence is linear only if h = 4, the case of additive gene action. 

In general H, may depend on the genotypes of individuals other than x, 
for example, a neighbour, a sister, or the mother of x, depending on how 
the behaviour of x is controlled. Seger (1981, Section 5) presents an 
interesting example, in which x and y are pairs of sisters, and H, = 1, 4, or 
0 depending on whether G, is greater than, equal to, or less than G,. This 
is a case in which H, depends upon the genotype of two individuals, but in 
a non-linear way, and it is the non-linearity that makes the calculation 
difficult. 

Usually the behaviour of x is determined by the genotype of a single 
individual u who “controls” the behaviour of x, and who, of course, might 
be x himself. In this case H, will be a function of G,, and in cases in which 
it is desired to emphasize the identity of u, I propose that R be written as 
RL, and called “the relatedness of y to x from the point of view of u.” In 
the special case of additive gene action, in which H, depends aflinely on 
G,, R can be written 

&,,= 
COW,, G,) 
Cov(G,, GA’ (5.1) 

Now (5.1) can be quite difficult to calculate, especially if N is large. What 
we do in practice is to assume that selection is weak enough (6 small) that 
the genotypic distribution can be replaced by the neutral distribution 
(6 = 0). In this case 

(Michod and Hamilton, 1980), where fYu is called the coefficient of con- 
sanguinity between y and u (Crow and Kimura, 1970, p. 68) and is defined 
as the probability that random alleles from y and u are identical by 
descent, and these can be calculated from recursion relations. An example 
is given in Section 6. Elsewhere (Taylor, 1989) I investigate the extent 
to which this approximation will give correct equilibrium and stability 
conditions, and I summarize these results in Section 7. 

The form (5.1) is more general than may, at first, appear. If H, depends 
on the genotypes of two or more individuals, but in an afine way, a 
control individual u can be produced as a hypothetical offspring of these 
individuals, and the above formula applies. 

It is also worth pointing out that when the alleles are neutral, the coef- 
ficients of consanguinity can be calculated from the “condensed identity 
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state probabilities” di (Jacquard, 1974; Michod and Hamilton, 1980) which 
are independent of allele frequency, and so R is frequency. independent. Of 
course, in practice the alleles will not be neutral, but if selection 
is weak, R should be “almost” frequency independent and stable 
polymorphisms should exist only for very narrow ranges of the parameters. 
Thus, even when H, depends on the genotypes of individuals other than X, 
provided this dependence is afline (which in Seger’s 1981 example it is not), 
R should be frequency independent when the alleles are neutral. 

6. A SEX ALLOCATION MODEL 

As an example of an inclusive fitness argument, I now consider a sex 
allocation model in an infinite population which breeds on discrete patches, 
with partial migration among patches. I suppose there are N mated females 
on each patch, and the offspring mate at random on the patch and then 
disperse with probability d to a random patch, incurring a penalty c, which 
I shall regard as a viability cost, and then, on each patch, the native and 
immigrant mated females compete for the N breeding spots to start the 
cycle again. The problem is to find the equilibrium sex ratio for these 
mated females. 

The question of dispersal rates in such a population has been studied by 
Hamilton and May (1977) with a game theoretic model, by Metro (1982, 
1983) with a one-locus genetic model, and by Frank (1986~) and Taylor 
(1988) with inclusive fitness models. 

The sex allocation problem was first discussed by Bulmer (1986). The 
local competition for mates among the males provides a force for female 
bias (Hamilton, 1967; Taylor and Bulmer, 1980), but the local competition 
for breeding sites among females (when d < 1) creates an opposite force, 
and it is not at first clear which is stronger. Bulmer (1986) constructed a 
one-locus genetic model with weak selection and haploid, diploid, and 
haplodiploid genetics, and various dominance assumptions; and for small 
values of N he found a moderately female-biased sex ratio, quite insensitive 
to the dispersal rate. He was prevented from making calculations for large 
values of N because of the large size of the transition matrix: for n = 10, A 
has 3003 rows and columns. Frank (1986a, b), using an approach similar 
to mine, has provided an inclusive fitness model for this population under 
diploidy. 

In this section I use the inclusive fitness equation (4.12) for selection after 
mating, with the assumptions of maternal control of sex allocation, 
additive gene action, and singly mated females, to find the ESS sex ratio in 
a diploid and a haplodiploid population. For N= 2 and 3, I obtain, as 
expected, Bulmer’s results. Bulmer also considered the companion problem 
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in which dispersal (with sex-specific probabilities) precedes mating. The 
calculation of the relatedness coefficients in this case is more complicated 
(Taylor, 1988), and here I restrict attention to dispersal after mating. There 
are two parts to the calculation, one to obtain the fitness parameters sXYi of 
(4.10) and the other to obtain the relatedness coefficients. 

Fitness 

A deviant mated female will affect her own fitness and the fitness of other 
females on the same patch, and the effect will differ in the two offspring 
sexes. So consider a patch with a single deviant female x. Let the normal 
sex ratio be ti (proportion of sex i offspring) and suppose x has sex ratio 
ti + ~3~. Of course, the ti sum to 1 and the di sum to zero, but by keeping the 
two offspring sexes separate, we will more clearly identify the selective 
forces acting on each. It will be convenient to use the language of gains and 
losses as if both 6, and 6, are positive. 

I will present the argument in a rather intuitive style; but its correctness 
can easily be checked with a more rigorous formulation. It will be useful to 
note that, after the dispersal phase, in which a proportion of d females 
emigrate but only a proportion of 1 - c of these find another patch, the 
probability that a random female is native to her current patch is 

k= 
l-d l-d 

1 -d+ (1 -c)d=n- (6.1) 

I measure reproductive success in units of breeding individuals. Since the 
number of patches is constant, a normal breeding female on a normal 
patch can expect 1 unit through her offspring of each sex. It is convenient 
to measure separately the direct effect ai of the extra offspring (on x’s 
fitness) and the indirect effect bj on the RS of all offspring on the patch 
(including those of x). In the notation of Section 4, sXXi= a,+ bi and 
sXYi = bi, if y is a patchmate of x. 

I first calculate the ai. The deviant female x has her normal number of 
sex i offspring multiplied by 1 + hi/t, and, to zeroth order in di, each of 
these will have normal reproductive success of 1; so to first order in 6i, 
these extra offspring add 8Jt, to x’s fitness. Thus 

ai = di/ti. (6.2) 

I now count the effect of the extra offspring on the reproductive success 
of all regular patch offspring. My accounting will always be to first order in 
the di. There are three categories: 

The negative effect u of the extra males on male RS. There are a fixed 
number of mating spots for males, and the extra males will displace exactly 
as many regular males, who therefore lose d2/t2 units. Thus o! = 8*/f*. 



INCLUSIVE FITNESS WITH TWO SEXES 159 

The negative effect /I of the extra females on female RS. As above, 6i /t, 
units are lost by regular females somewhere, but note that since the only a 
proportion k of all reproductive success is won by natives, the extra females 
will gain only k6,/t I of these units at home, and here they will displace 
regular natives with probability k, so the net loss to natives is /I = k*8,/t,. 

The positive effect y of the extra females on male RS. The extra females 
provide 6,/t, units through extra matings for the regular native males. But 
other native males, mated to native females who are displaced by these 
extra females, will lose /I units, so the net gain is only y = (1 -k*) 6,/t,. 

Thus the net gain through females and males is 

6, = -b= -k*S,/t, 

6, = --tl + y = -&/t2 + (1 - k2) 6,/t,. 
(6.3) 

If we plug these into (4.12) and set dQ =0 with 6, = -6, we get the 
equilibrium condition 

t2 v2r2 - v2R2 
r,=vg,-vIR,k+v2R2(1-k*)’ (6.4) 

where ri = R, j xi is the relatedness to x of her own sex i offspring, and 

N-l 
&=- 

N 
R .x-y;+; K-+.xi 

is the relatedness to x of a random sex i offspring on the same patch (which 
will be her own with probability l/N and that of a patchmate y with 
probability (N- 1)/N). In this form, the equilibrium condition displays the 
different kinds of effects of the extra offspring: through male RS in the 
numerator and through female RS in the denominator. The first term in 
each records the positive direct effect of the extra offspring, and the second 
term records the negative indirect effects on relatives of the same sex. The 
third term in the denominator records the net positive indirect effect of the 
extra females on related males. 

Relatedness 

I calculate the relatedness with (5.2), using the coefficients of con- 
sanguinity. First note that the coefficients in (6.4) are all relatednesses of a 
patch offspring to a mated female, with control as the “female part” of the 
mated female, so they all have the same denominator, the coefficient of 
consanguinity between a mated female and her female part. Thus we can 
replace the coefficients by their numerators: the ri by fi, the coefficient of 
consanguinity between a female and her sex i offspring, and the Ri by Fi, 
the coefficient of consanguinity between a female and a random sex i 
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offspring on her breeding patch. I now calculate the f, and F, from 
recursion relations. 

In the diploid case the calculations are simpler, and I do that first. I let f 
denote the inbreeding coefficient of the offspring and g the coefficient of 
consanguinity between two offspring born on the same patch. In an 
equilibrium population, the values of these coefficients for the next 
generation can be expressed in terms of the values for this generation by 
the equations f' = g and 

The two terms on the right correspond to the cases in which the offspring 
are sibs and not sibs. This equation can be expected to hold only if the 
number of offspring of each parent is large. These two equations are solved 
by setting f ’ = f and g’ = g, and we get 

f=g= 1 
4N-3-4(N-1)P 

The coefficients of consanguinity are 

fi=(l+f+&zW F;=g. 

The second one uses the male-female symmetry under diploidy: the coef- 
ficient between a female and a random offspring is the same as that 
between her mate and the offspring, and so is the same as that between 
their child and the offspring, again provided the number of offspring is 
large. If we put these into (6.4) and simplify, we get the equilibrium 
proportion of males to be 

(6.7) 

It is interesting that the sex ratio does not depend on the dispersal 
probability d. For the case d = 1 of complete dispersal, (6.7) was obtained 
by Hamilton (1967, 1979) and by Taylor and Bulmer (1980). For arbitrary 
d the result was obtained by Bulmer (1986) for the case N= 2, and for 
general N by Frank (1986b). Bulmer’s results show that, without the 
assumption of additive gene action, there is a slight dependence of t, on d. 

I look now at the case of haplodiploidy. The g coefficient defined above 
must now be replaced by three different coefficients. Let g, be the coef- 
ficient of consanguinity between two individuals of sex i and sex j, born on 
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the same patch, and let f be the inbreeding coefficient of a female. Then, at 
equilibrium, f= g,, and 

1 l+f +N-1 2 
g22=z L-1 2 N k g,,. 

These equations solve to give 

f=g,,=i 
2N- 1 - k*(N- 1) 

g22 = D ’ 

where 

Under haplodiploidy, 

f,=(l+f+&12Y4 

f-2=(1 +fW 

F, = g,, 
F2 = g,,, 

where we use the fact that a random gene in a mother is the same as the 
gene in a random son. If we put these into (6.4), with ui =202, and 
simplify, we get the equilibrium proportion of males to be 

t 
2 

=N- 1 k4(N- l)-k2(5N-3)+4N-2 
2N k4(N- l)-k2(5N-2)+4N- 1 (6.9) 

independent of gene frequency. In Table I some calculated values for N = 3 
and N = 10 are given. The sex ratio is seen to have a definite female bias, 

TABLE I 

Equilibrium Sex Ratio f2 Calculated from (6.9) for Bulmer’s (1986) Model of Dispersal 
after Mating with Haploidiploid Genetics and Dispersal Cost c = 0 

N 
Patch size 0.01 

Probability of dispersal d 
0.1 0.5 1 

2 0.2085 0.2096 0.2130 0.2143 
3 0.2964 0.2978 0.3016 0.3030 

10 0.4351 0.4358 0.4378 0.4385 
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stronger for smaller N, and to be rather insensitive to changes in d. The 
values for N= 3 are identical to those obtained by Bulmer (1986) for 
additive gene action. 

For the case d = 1 of complete dispersal, we put k = 0 and get 

obtained by Hamilton (1979) and Taylor and Bulmer (1980). The case 
d = 0 of no dispersal is of interest, because in this case the patches are 
isolated populations of finite size and the equilibrium sex ratio is f2 = 4. 
If we put d = 0 (which means k = 1) into (6.9) we get the indeterminant 
form 8. Taking the limit as k approaches 1, we get 

t 
2 

JN- 1)(3N- 1) 
6N2 

(6.11) 

obtained empirically by Bulmer (1986). It is interesting that the limit of t2 
as d approaches 0 is not the same as, and is in fact less than, the value of t2 
at d = 0. For example, for N = 4 (6.11) gives t, to be g. The slightest 
possibility of sending out an occasional migrant causes the equilibrium sex 
ratio to jump from 4 down to just about f. 

7. DISCUSSION 

The sex allocation problem discussed in Section 6 provides a good 
example of the power of the inclusive fitness approach in the modelling of 
behaviour. The calculations required for the exact genetic model for this 
problem are apparently analytically intractible; the inclusive fitness 
calculations require care, but are certainly feasible. It is important to notice 
just what is required for the inclusive fitness approach to work. 

The formulae for gene frequency change AQ, given in Section 2 in 
various formulations, are transformed into final formulae for equilibrium 
behaviour, such as (6.9) in two important steps. The first step provides the 
inclusive fitness formualtions of Section 4, and the second step calculates 
the relatedness coefficients. In both steps, important simplifying 
assumptions are made. 

First, in order to achieve the inclusive fitness formulations, it is necessary 
to assume that the fitness of an individual y depends additively on the 
behavioural deviations of his associates x, and while this may occasionally 
be strictly true, in most cases of interest, it is true only when selection is 
weak; more precisely, it is usually true only to first order in the behavioural 
deviation 6. 
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Second, we have to calculate the relatedness coefficients, and in models 
of any complexity, this is considerably easier if the phenotypic value H, is 
the genotypic value of some “control” individual, who may be x himself. 
This is an assumption of additivity of gene action, similar to the 
assumption (4.1) of additive fitness, but on a different level (within, rather 
than between, individuals). With this in hand, we then have to be able to 
calculate covariances between genotypic values, and for this we have to 
know the full distribution of genotypes, and that can be difficult to get hold 
of, especially when the population has a local structure with large group 
sizes. What is required is to find the equilibrium frequency of all the dif- 
ferent types (genotypic composition) of groups, and of course this will 
change as selection acts. In practice, what we do, is to assume S = 0. In this 
case, the mutant allele is selectively neutral, the genotypic distribution will 
reach an equilibrium, and covariances can be calculated from recursive 
formulae. Of course, we expect this assumption of selective neutrality to be 
reasonable, only if selection is weak. 

Thus, overall, we have an assumption of additive gene action within an 
individual, and an assumption of weak selection which we use in two dif- 
ferent ways, one to get a nice but approximate form of the fitness function 
and the other to calculate approximations to the covariances. Having made 
these approximations, will the evolutionary equilibrium state that we 
calculate (e.g., (6.9)) be correct? Elsewhere (Taylor, 1989) I have shown 
that the answer is yes. We get the same equilibrium points as if we had 
used the full fitness function and the exact covariances. Let me emphasize 
what I mean by an equilibrium point here: If we regard dQ as a function of 
6, then the equilibrium condition is that it be stationary, that is, that it 
have zero derivative in 6. 

The question of the stability of the equilibrium is more complicated, for 
there are a number of different types of stability that can be studied. The 
classic formulation of stability for sex allocation problems, found in 
Fisher’s (1930) original argument, is to suppose the population sex ratio 
changes by a small amount and to require that mutants which alter their 
sex ratio in the direction of the equilibrium are more lit. An ESS with this 
extra stability condition has been called by Eshel (1983) a continuously 
stable state, or CSS, and it is shown in Taylor (1989) that the inclusive 
fitness calculation, with the above approximations, is capable of correctly 
identifying this type of stability. I remark that in the example of Section 6, 
the inclusive fitness function does predict this type of stability. Indeed, the 
inclusive fitness function gives AQ in the form 

AQ = (DEN) 61/tl+ (NUM) d&z, 

where NUM and DEN are the numerator and denominator of the right 



164 PETER D. TAYLOR 

side of (6.4). The equilibrium condition is DEN/t, = NUM/t, and if t, is 
increased above its equilibrium value (and t2 is decreased) a negative value 
of 6, (and a positive 6,) will give a positive LIQ, and a mutant strategy 
which moves the sex ratio back towards equilibrium will be selected. On 
the other hand, the standard ESS condition involves looking at the second- 
order terms in 6, and these are usually lost in the inclusive fitness for- 
mulation (Taylor 1989). 

The relatedness coefficient R defined in (4.7) originated with Hamilton 
(1964), and since that time, probably dating from Crozier (1970), has been 
redefined, generalized, varied, and consolidated (Michod and Hamilton, 
1980). One important extension (Uyenoyama, 1984b; Queller, 1985) 
regards the phenotype H as a genetically determined character and replaces 
the genetic score G by the additive genotypic value A for the character H 
(what Falconer, 1960, calls the breeding value). For the simple one-locus 
two-allele case of this paper, A is aflinely related to G, and the definitions 
are equivalent, but the use of A has a natural extension to multi-allele and 
multi-locus models (Uyenoyama et al., 1981; Uyenoyama, 1988). 

One important thing to note about the coefficient, 

R 
COW,, H,) 

x-y = Cov(G,, H,) 

is that it is not symmetric in x and y. This was first emphasized by Crozier 
(1970), and again by Hamilton (1972) and Crozier and Pamilo (1980), 
who proposed that it should be called the relatedness of y to x, in confor- 
mance with the language of regression (if H, = G, it is the regression coef- 
ficient of G, on G,), to emphasize the asymmetry. The way to think of it is 
as the weighting that x as an actor gives to y as a ‘producer of gametes 
relative to himself. This formulation emphasizes both the x - y asymmetry 
and the G-H asymmetry. 

To calculate R,, ,, we must specify how H, is to depend on genotype, 
and in the usual case H, will be simply a function of G,. But if the 
behaviour of x is controlled by another individual u, then we expect H, to 
be a function of G,, and I have propoied that this be emphasized with the 
notation R = Rf: _ y. In this case R should be regarded as the weighting that 
u, as the controller of x’s behaviour, gives to y relative to x as producers of 
gametes. This formulation is unusual, but it is useful, both conceptually 
and computationally. An example is found in Taylor (1988) which com- 
pares the optimal dispersal rates of offspring from their natal patch under 
the assumptions of offspring and maternal control of dispersal behaviour. A 
conventional inclusive fitness approach might be to build two models, one 
with a mutant offspring, and one with a mutant mother, but a more unified 
and elegant formulation is to do both cases with a mutant offspring, but to 
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use different relatednesses between offspring: in one case u is x and in the 
other, u is the mother of x. 

The two formulae for R in Section 5 illustrate the distinction between 
what are commonly called relatedness and relationship. Equation (5.1) com- 
pares covariances of genotypic values and (5.2) compares probabilities of 
genetic identity by descent. The first is the relatedness of y to x, and the 
second is what Pamilo and Crozier (1982) call the pedigree coefficient of 
relationship of y to x. Thus relatedness measures genetic similarity and 
relationship measures common ancestry (Grafen, manuscript), Crozier 
(1970) Seger (1981) and Grafen, (1985) discuss the difference between 
relatedness and relationship, and emphasize that it is relatedness that 
should be used in inclusive fitness calculations, and this is what can be con- 
cluded from Sections 2 and 4. The result discussed in Section 5 is that 
under certain conditions relationship can be used to measure relatedness. 
The condition needed for (5.2) to be the same as (5.1) is that two random 
alleles taken from the two individuals in question must be either identical 
by descent, or, probabilistically, must look like two alleles taken at random 
from the whole population. This often holds in models of an infinite 
population with a simple local structure and selectively neutral alleles, at 
equilibrium. In finite population models, the result is more problematical, 
and a discussion of the difficulties is found in Seger ( 1981) and Grafen 
(1985). 

Finally I look in a general way at inclusive fitness. The inclusive fitness 
of a behavioural deviation should be thought of as an accounting of the 
extra number of IBD copies of genes in the “control” u (of the “actor’s” 
behaviour) projected into the future population as a result of the deviation. 
Typically it is written as a sum over all individuals y whose fitness is 
affected (“recipients”). Each summand is actually the product of four 
things, and it is instructive to record the “units” of each of these. I will 
write a typical summand as 

(“i)(llTi)(fyu)(s,y), (7.1) 

where y is a recipient of sex i. The reproductive value ui measures the 
relative contribution of the sex i subpopulation to the asymptotic gene pool 
of the population, and so its units are genes per subpopulation. Second, Ti 
is the number of individuals of sex i (at the time of the interaction) so its 
units are individuals per subpopulation. Third, f,,” is the probability that a 
random pair of genes from y and u are identical by descent, so it is a 
measure of the quality of y’s gametes relative to those of U, and so its units 
are “good” genes per gene where “good” is measured relative to the genes 
of U. Multiplying the first three terms together, we get units of good genes 
per individual, through y. Finally, s,,, measures extra fitness of y (which is 
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really extra “individuals”) per unit change in the behavioural parameter p, 

and so the four terms together have units of extra good genes per unit 
change in behaviour. 

In practice, it is usual to normalize (7.1) making things relative to the 
actor x. Thus, if x is of sex j, ui and Ti are divided by uj and Tj, and fYU is 
divided by f,, to give R;-Y as in (5.2). The expression we finally get is 
found in (4.6). 
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