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Let's have a bloody good cry. 
And always remember the longer you live, 
The sooner you'll bloody well die. 

(from an old Irish ballad) 

From the standpoint of most people's interests and perspectives, little 
need be added to the simple and elegant statement above. From the special 
perspective of a student of evolution, the statement seems a trifle paroch­
ial, and some qualifications and additions seem justified. It seems parochial 
in three respects, whIch we will call the dimensional, the ontogenetic, and 
the phylogenetic. 

By dimensional parochialism we mean that the usual view of mortality 
rates focuses on those pertaining to animals of the order of 101 to 102 kg. 
Variation in this narrow range is trivial compared to that between the sizes 
over which organisms vary, from less than a nanogram to hundreds of tons. 
Over these many orders of magnitude there is a simple relationship between 
size and the death rates and birth rates that jointly determine demography: 
the smaller the size the greater the rates. The exact relation can be read 
from data summarized by Bonner (1957) and Sheldon, Prakash, and Suttcliffe 
(1972), who documented the size dependence of productivity. Their data show 
that the potential doubling time for an organism, with mass (~ measured in 
grams is about 100m·2'days. Since all such populations, in fact, remain 
finite, we assume that their environments have the capability of removing 
them as fast as they are produced, removing the small organisms faster than 
the large. A formulation for population doubling time must work equally well 
for cohort half life. 

The immense diversity in sizes and attendant mortality rates of organ­
isms were produced by evolution. Natural selection almost always favors lower 
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mortality, but at any given moment in the history of life, it favored larger 
size for some organisms, smaller for others. We assume that this is the main 
way in which natural selection has shaped rates of birth and death, as an 
incidental consequence of selection for size. The prevailing average rates at 
particular sizes are scaling problems resolvable by physical principles such 
as surface-volume relations. It is for variation within a size category that 
we need the biological principle of natural selection. 

The usual view of human mortality is ontogenetically parochial in its 
adult chauvinism. Children, at least in their early years, currently have 
higher mortality rates than adolescents or young adults. With the markedly 
higher mortality at all ages, which prevailed for most of human evolution, 
almost no one would survive to adult ages of higher mortality than those of 
the first few years. Mean or median life expectancy for a two-year-old could 
be greater than for either a newborn or a patriarch. The truth of our opening 
statement, on the relation between length of life and imminence of death, may 
be technically questionable even for modern populations. We suspect that if 
we gathered the necessary data and calculated an annual mortality rate for 
the first ten minutes of life, we might find it higher than that of centen­
arians. If you are a baby in your first minute of extra-ut~rine life, the 
longer you live the more remote your death is likely to be. 

Perspectives are often phylogenetically parochial in their concentration 
on a single species. Ours is a species much closer to the upper than the 
lower end of the size scale. Our intuitive perspective relates to large 
organ5.sms, with life expectancies in years, rather than the hours or days 
characteristic of much of the size spectrum. We are also an unusual species 
in the close similarity of size, and therefore mortality, of young and adult. 
The 15-fold increase in size between neonate and adult is trivial compared to 
the size contrast in other organisms between different stages in the develop­
ment of a single individual. Consider the difference between a redwood seed 
and the mature tree. Among unitary animals (those without vegetative prolif­
eration), it may be that the bluefin tuna is an extreme example of ontogen­
etic size change. A large adult may have about a billion times the mass of a 
newly hatched larva. Ontogenetic size changes imply ontogenetic changes in 
the mortality rates characteristic of the sizes of the different stages. 
Students of marine fish populations commonly find per-day losses among larvae 
that exceed per-year losses among adults. The narrowly limited size change in 
human development means that we exp~rience only a narrow range of mortality 
rates, compared to such organisms as the redwood or tuna. 

AGE AND MORTALITY AMONG HUMAN ADULTS 

The rest of this presentation will be dimensionally, ontogenetically, 
and phylogenetically parochial. From adolescence on, a human age cohort 
experiences an ever rising mortality rate, and our intent here is to explore 
the possibility of deducing, from basic evolutionary postulates, a quant­
itative description of this change. Medawar's (1952) was the first valid 
statement of the relationship between age and selection for the maintenance 
of viability. We believe that the validity and fruitfulness of Medawar's 
theory was convincingly established by comparative evidence cited in his 
paper and later in Williams (1957). Experimental work has more recently added 
new confirmation (Bell, 1984; Charlesworth, 1984; Luckinbill et aI, 1984; 
Rose, 1983). 

The logic of the theory got detailed mathematical development by 
Hamilton (1966), but neither he nor anyone else has produced a conclusion in 
the form of an explicit II- = f(x), with J.L being the mortality rate and X 
being age. We think it unlikely that any such formulation will be derived, 
because of mathematical difficulties that circumvent any attempt to use the 
theory in an axiomatic way. It may still be possible to use the theory to 
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generate theoretical demographies by computer simulation. Theoretical age 
structures would be of value, because it is normal scientific practice to 
compare expectations with observations, in order to check the validity of the 
reasoning used in generating the expectations. 

The observations needed, for checking the theorizing below, would be 
detailed and accurate demographic data on Stone-age populations. Such observ­
ations are not available, but we hope that our project can be rescued to some 
extent by a contrived alternative. Hamilton (1966) published demographic data 
on Chinese women living in Taiwan about 1906 to illustrate his account of the 
evolution of senescence. The data as published depart from average Stone-age 
demography in one conspicuous respect: the population was growing at a rapid 
rate, despite what would be considered heavy mortality by current standards. 
The mean condition for the Stone Age must have averaged very close to zero 
growth, or human numbers would not have stayed finite for so long. A growth 
rate of one percent per century would suffice for replacing the present 
population of the earth from a single pair in less than a quarter of the 
Pleistocene. 

We presume that Stone-age mortality rates averaged greater than those of 
the Taiwan population, and fertility rates lower. Lower fertility may have 
resulted from the same sorts of stresses that caused mortality, but also from 
the apparent tendency for mothers in hunter-gatherer societies to nurse their 
babies to a greater age than in agricultural societies. The Taiwan population 
would conform to the zero growth requirement if it had about a 0.239 increase 
in mortality rate and a 0.239 decrease in birth rate at all ages (Figure 1). 
With this demographic schedule, girls at birth would have an average expect­
ation of living to produce one daughter. At adolescence (age 15) about half 
would have died, and the remainder would now have an expectation of producing 
two daughters before the termination of reproduction by death or menopause or 
obstetrical malfunction. We would welcome suggestions as to what might be 
better than our derived curve (Figure 1) for use as data on Stone-age 
demography. 

The simplest plausible expectation for a schedule of mortality rates 
expected from natural selection would have mortality vary inversely according 
to each age's importance to fitness. Using ~ for age, 1. x for the probability 
of survival to~, Y x for reproductive value at Land fLx for instantaneous 
mortality at ~, the expectation is that 

fLx = kf.txVx 

Reproductive value at age ~ measures the mean future reproductive output for 
individuals of that age. The formulation implies some genetic assumptions, in 
particular that proportionately equal increases in mortality are equally 
likely to arise by mutation. A stage with a mortality rate of 0.010 per year 
would be as likely to change to 0.011 by mutation as one with 0.10 would be 
to change to 0.11. The same must hold for decreases, although the rate of 
occurrence of a given decrease is expected to be much less than that of a 
proportionately similar increase. Under these conditions the formulation 
describes an Evolutionarily Stable Strategy (ESS), a state which, once attained, 
could not be altered by selection for a different state. A different assump­
tion on the nature of the genetic variation may lead to a different ESS. For 
example, if mutational changes of equal absolute magnitud~ were equally 
frequent, the population would evolve semelparity, with a single bout of 
reproduction followed by death. 

There are several levels of difficulty in using the equation above for 
deriving the equilibrium demography expected from natural selection. The 
first is mathematical and results from complex recursive dependencies among 
the terms. Survival <1.) at age ~ depends on all previous values of fL' which 
in turn are functions of previous 1.-values. Reproductive value depends on all 
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Fig. 1. The solid line shows cohort attrition over time for Chinese women in 
Taiwan about 1906 (from Hamilton, 1966). The dashed line shows the 
result of dividing observed mortality rates and multiplying birth 
rates by 0.761. This change results in zero population growth and is 
proposed as an approximation to Stone-age demography. 

future mortality and birth rates. We see no hope for any precise analytical 
derivation of a theoretical age structure. A still more serious difficulty 
lie~ in the evolutionary irrelevance of any facile measure of reproductive 
valu~. A demographer normally measures the fertility of an age class by 
counting the number of babies that it produces. lruman reproduction requires 
tha~ babies not only be produced but nurtured and tended for many years. A 
woman past menopause is conventionally considered postreproductive, but she 
way still be contributing to the welfare of her descendants and other rela­
tives. If so she is acting in a way that enhances the proliferation of her 
Qwn genes. She is reproductive~y active from the standpoint of natural sel­
eQtion. We presume that it is for this reason alone that a woman may be able 
live beYQnd menopause. By con~entional measure, her X drops to zero at this 
stage and the woman drops dead, according to our rule for mortality rate. The 
fallacy here lies in the conventional formulation of reproductive value. 

Our solution to the problem of analytical intractability is to abandon 
mathemetics and rely on computer simulation (Appendix). OUr solution to the 
problem of defining reproduction is to see what can be accomplished by guess­
work. In our simulation the reproductive value declines each year as a func­
tion of the expected fertility of the previous year, but only by a fraction 
of the expected decline. In this way a woman still has some reproductive 
value left at menopause, a value that represents a guess as to how effective 
she then might be in enhanc~ng the survival of her own genes represented in 
relatives. If a plausible guess allows the generation of an age structure 
closely similar to that of our modified Taiwan data, the exercise shows that 
theory and observation are potentially compatible. If no plausible guess has 
that result, the finding is ~ore i~tructive. In the simUlation illustrated, 
we represent effects of kin selection by having the reproductive value of a 
woman at menopause equal to a thir4 of what it was at age fifteen. We think 
this an extreme assumption, and believe that a smaller value would be more 
realistic. 

It is a simple matter, with these rules of the game, to use trial-and­
error simulations (Appendix) to produce theoretical demographies consistent 
with the rules and with the requirement of zero population growth 
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Fig. 2. The dashed line repeats the reconstruction of Stone-age demography 
shown in Figure 1. The solid lines show the Stone-age demography 
predicted by our theory, and the demography expected of eternal 
youth purchased at the cost of developmental retardation (Tolkien's 
elves) • 

(Figure 2). Note that senescence in the theoretical curve is much more abrupt 
than in that based on the Taiwan data. A number of considerations bear on the 
interpretation ot this result. The theoretical curve is for a homogeneous 
cohort with optimal tradeoffs of viability among ages but with all fertility 
values and minimum mortality (age 15) uniformly altered from the Taiwan 
values so as to achieve zero population growth. The fitness homogeneity of 
the population is manifest in the low variability of life span. Any real 
Stone-age human cohort would be heterogeneous in fitness. Some girls at 
puberty would have great vigor of body and mind and a lofty social status. 
They would be expected to have much greater than average longevity and repro­
ductive performance. Others may be crippled or chronically ill outcasts with 
little likelihood of rearing even one child. 

Unfortunately, no degree of fitness heterogeneity is sufficient to ex­
cuse the discrepancy between theory and what we are using as observation 
(modified Taiwan age structure). It we simulate an extreme heterogeneity by 
giving half the cohort four times the fitness of the other half, but with the 
total having the same mean fitness as the homogeneous cohort, we still get 
only a small percentage of survivors beyond age sixty and none beyond age 
sixty-six. It must also be realized that the simulation uses what we regard 
as an unrealistically high reproductive value for a woman after menopause. 
Lower values result in earlier and more abrupt attrition. 

The outcome of our simulation is not surprising. Our formula for relat­
ing mortality to reproductive value and survival is a formula for explosive 
positive feedback. Declining survival and reproductive value cause increase 
in mortality rate which causes a greater decline in survival and reproductive 
value in the next year and so on in an ever steeper cycle until mortality 
shows a catastrophic increase in a single year and the cohort vanishes. It 
should also be noted that all fertility values used in the simulation are 
empirically based on the data from Taiwan. In future work we plan to simulate 
fertility senescence along with viability senescence. Fertility can be ex­
pected to show the same sort of sudden collapse as viability, because it also 
would have a positive-feedback relation with survival. A more sudden decline 
in fertility would increase the rate of decline in viability and produce an 
even steeper end to the cohort than appears in Figure 2. 
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We conclude that our simulation does not give a realistic picture of 
what we are using as primitive human demography, despite the use of numerical 
constants chosen to be unfairly favorable to a match between theory and ob­
servation. Either there is some flaw in our reasoning or the modified Taiwan 
data are grossly unrepresentative of primitive human populations. Perhaps the 
most probable error is conceptual, our simple assumption of an equal likeli­
hood for proportionately equal mutational changes at different ages. This 
implies an absolute equivalence between developmental and absolute ti~, 
which would be clearly unrealistic for development through a broad range of 
sizes. Developmental processes can be expected to take place much more 
rapidly in the small sizes early in life than later on. 

In defense of our genetic assumption we can point out that there are no 
important size changes in human development after age fifteen. Moreover, 
there are many examples of morphogenetic change at constant absolute rates 
during adulthood in many mammals. Those with an annual cycle of change in 
coat color, gonads, or secondary sexual characters would be obvious examples. 
We do not really view these observations as justifying the use of our simple 
model of the genetics of mortality rates. Our simulation (Appendix) assumes 
that, for instance, a mutation that lowers mortality by one percent in the 
tenth year only, is neither more nor less likely to arise than one that would 
lower it by one percent in the twentieth only. There is no reason to rule out 
the possibility that the twentieth and twenty-first year together would be 
the developmental equivalent of the tenth. Annual cycles of morphogenesis at 
similar rates could be exceptional, and not indicative of a general tendency 
for rates of development to remain uniform during adulthood. Resolution of 
this difficulty may have to await a more advanced understanding of 
developmental constraints on the evolutionary process. 

DEMOGRAPHY OF TOLKIEN'S ELVES 

The elves of Middle Earth, accoding to J. R. R. Tolkien in The 
Silmarillion and several prior works, were essentially human in most 
respects. A difference that Tolkien stressed was the elves' eternal youth. As 
adults they suffered no deterioration of adaptive performance with increasing 
age. This major biological advantage must have evolved at some compensating 
cost, otherwise they would have rapidly displaced their competitors. The co­
existence of elven and human populations in approximate equilibrium for many 
centuries shows that neither could have had a net competitive advantage over 
the other. 

It is clear from Tolkein's works that elves had a normal childhood in 
most respects, but he is silent on its duration. This raises the possibility 
that their freedom from senescence was purchased at the cost of developmental 
retardation. If this were the only cost, its magnitude must have been very 
nearly whatever is needed to reduce elven fitness to human fitness. The 
required retardation in development can be found with simulations using, 
throughout elven adulthood, the previously determined adolescent minimum of 
mortality and third-decade maximum of birth rate, with various degrees of 
prolongation of childhood and of childhood mortality rates. This method shows 
that an approximate doubling of the childhood years would give elves the 
required zero population growth. 

The resulting elven age structure (Figure 2), after sexual ~aturity at 
about age 30, is simply determined by a constant exponential decay of each 
age cohort. Fertility increases gradually to its maximum after age 40 (as in 
the human population after age 20) and keeps this maximum value thereafter. 
It is clear that the elves utterly fail to conform to our postulated inverse 
proportionality between mortality and the product of survival and repro­
ductive value. They may well conform to models of tradeoffs between speed of 
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attainment of maturity and levels of adaptive performance after maturity 
(Taylor and Williams, 1984). 

The lesson for us from this simulation of elven life history is this: If 
our evolution had been somehow forbidden to use fitness tradeoffs between 
adult ages, but had instead favored age-independent adult fitness at the cost 
of slower development, and had achieved the same lifetime fitness under 
Stone-age conditions, we would now be like Tolkien's elves. Each of us would 
have taken about 30 years to produce the phenotype we actually reached in 15, 
but we would thereafter have a 15-year-old's mortality rate. We would live 
until struck by lightning, appendicitis, a terrorist, or other stress that 
might be lethal to a fifteen-year-old. 

Elves are not the only zoological example of freedom from senescence. 
Evolution effectively forbids senescence in any tissues that will be passed 
on in either sexual or asexual reproduction. So animals with limited life 
spans belong to potentially immortal populations, and genetically defined 
individuals from single zygotes can persist indefinitely in species with 
modular modes of development (Jackson and Coates, 1986). There may be coral 
colonies many millenia in age (Potts, 1984). 
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APPENDIX 

OUr Turbo Pascal program appears below. The output shown is for stone age 
equal to 0.761 and .s2§.i equal to 0.666. These values give zero population 
growth and the reproductive value of one (daughter) per newborn or per half 
adolescent (age 15). They also give the population structure that would re­
sult from everyone having average fitness but ideal tradeoffs in viability 
among adult ages. This ideal would be stabilized by natural selection if gen­
etic variation is as explained in the text. Values for stone age other than 
0.761 can be used to show the demography of groups of other-than-average fit­
ness, but the output will be realisti.c only if the age-15 repr value is made 
to equal the final girl sum. This compatibility can be achieved by successive 
approximation. The program of cOUrse could be used as a module in a larger 
program that finds the compatible pairs of values, simulates plausible 
patterns of fitness variation, &c. 

program dieoff (output); 

const 
start_age = 15; 
stop_age = 65; 
start_survival = 0.5; 
Taiwan_mortality = 0.0100; 

type 
age_range = start_age •• stop_age; 
column = array [age_range] of real; 

val' 
survival, mortality, repr_value, birthrate, girls, girl_sum 

column; {Sons don't count here for repr_value. } 
age : integer; 
last_age : integer; 
cost: real; {Cost would be 1.0 without aid to relatives. } 
stone_age : real; { This measures stone-age prospects, relative to 

those of Taiwan in 1906 } 
yesno : char; 
diskout, diskopen boolean; 
diskfi1e : text; 

procedure init_birthrate; { modified from Taiwan in 1906 (Hamilton, 1966) } 
const 

Taiwan_birthrate : 
0.0120, ,0.0260, 
0.1170, 0.1302, 
0.1733, 0.1733, 
0.1570, 0.1552, 
0.137B, 0.1320, 
0.0930, O.OBOO, 
0.0207, 0.0020, 
0.0000, 0.0000, 
0.0000, 0.0000, 
0.0000, 0.0000, 

val' 
age : integer; 
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column = ( 
0.0450, 0.0700, 
0.1640, 0.1720, 
0.1670, 0.1631, 
0.1515, 0.149l!, 
0.1290, 0.1250, 
0.0600, 0.0386, 
0.0003, 0.0001, 
0.0000, 0.0000, 
0.0000, 0.0000, 
0.0000, 0.0000, 

0.0036, 
0.0950, 
0.1733, 
0.1600, 
0.1420, 
0.1100, 
0.0320, 
0.0000, 
0.0000, 
0.0000, 
0.0000); 

{15} 
{16 •• 20} 
{21. .25} 
{26 •• 30} 
{31 •• 35} 
{36 •• 40} 
{41 •• 451 
{46 •• 50} 
{51 •• 55} 
{56 •• 60} 
{61 •• 65} 



begin {init_birthrate} 
for age := start_age to stop_age do 

birthrate[age] := stone_age * Taiwan_birthrate[age]; 
end; {init_birthrate} 

procedure make_table; 
begin {make_table} 

init_birthrate; 
survival [start_age] := start_survival; 
mortality[start_age] := Taiwan_mortality / stone_age; 
repr_value[start_age] := 1.0; { expected number of future daughters per} 
girls [start_age] := 0.0; { half woman at age 15 } 
girl_sum[start_age] := 0.0; 
age := start_age; 
repeat 

age : = age+1; 
repr_value[age] := { approximately} 

(repr_value[age-1]) - cost * survival[age-1] * birthrate[age-1]; 
if mortality[age-1] > 5.0 
then survival[age] := 0.0 
else survival[age] := survival[age-1] * exp( -mortality[age-1] ); 
if survival[age] > 0.0 
then mortality[age] := 

(mortality[age-1] * survival[age-1] * repr_value[age-1]) / 
(survival[age] * repr_value[age]) 

else mortality[age] := 1.0; 
girls[age] := survival[age-1] * birthrate[age-1]; 
girl_sum[age] := girl_sum[age-1] + girls[age]; 
last_age := age; 

until (age = stop_age ) or (survival[age] <= 0.0) or 
(repr_value[age] <= 0.0); 

end; {make_table} 

procedure write_table; 
begin {write_table} 

clrscr; 
writeln(Icost = I, cost:6:4, I, stone_age = I, stone_age:6:4 ); 
writeln(' X lex) mu(x) Vex) b(x) g(x) G(x)'); 
if diskout then begin 

writeln(diskfile,'cost = " cost:6:4, " stone_age = " stone_age:6:4 ); 
wr1teln(d1skf11e,' X lex) mu(x) Vex) b(x) g(x) G(x)'); 

end; 
for age := start_age to last_age do begin 

writeln( age:2,' " survival[age]:6:4, 
, " mortality[age]:6:4, 

" repr_value[age]:6:4, , " 
, " birthrate[age]:6:4,' " girls[age]:6:4, 
, " girl_sum[age]:6:4); 

if diskout then writeln( diskfile, age:2,' " survival[age]:6:4, 
" mortality[age]:6:4, 
" repr_value[age]:6:4, , " 

, " birthrate[age]:6:4,' " girls[age]:6:4, 
" girl_sum[age]:6:4); 

if (age - start_age + 1) mod 20 = 0 then begin 
gotoxy( 20, 24 ); 
write('Press any key to continue'); 
repeat until keYPl'essed; 
window(1,3,80,25); clrscr; 
window(1,1,80,25); gotoxy(1,3); 

end; 
end; 
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if last_age < stop_age then begin 
writeln( 'Simulation terminated at age ',last_age:2, 

, because survival or repro value reached 0.'); 
if diskout then writeln( diskfile, 

'Simulation terminated at age ',last_age:2, 
, because survival or repro value reached 0.'); 

end; 
end; {write_table} 

begin {main} 
diskopen := false; 
assign(diskfile,'die.out'); 
repeat 

clrscr; 
write('Enter a value for "cost": '); 
readln(cost); 
write('Enter a value for "stone_age": '); 
readln(stone_age); 
write('Log this run to disk? [yIn]:'); 
read(kbd,yesno); 
diskout := (yesno = 'Y') or (yesno = 'y'); 
if diskout and not diskopen then begin 

rewrite(diskfile); 
diskopen := true; 

end; 
make_table; 
write_able; 
write('Do another run? [yIn]:'); 
read(kbd,yesno); 

until (yesno <> 'Y') and (yesno <> 'y'); 
close(diskfile); 

end. {main} 

SAMPLE OUTPUT [X is age in years, l!!l survivorship, mu(x) mortality rate, 
BLKL fertility (births of daughters) and ~ cumulative daughters.] 
The output is for cost = 0.666 and stone age = 0.761. 
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x lex) mu(x) vex) b(x) g(x) G(x) 

15 0.5000 0.0131 1.0000 0.0027 0.0000 0.0000 
16 0.4935 0.0133 0.9991 0.0091 0.0014 0.0014 
17 0.4869 0.0135 0.9961 0.0198 0.0045 0.0059 
18 0.4804 0.0138 0.9897 0.0342 0.0096 0.0155 
19 0.4738 0.0142 0.9787 0.0533 0.0165 0.0320 
20 0.4671 0.0146 0.9619 0.0723 0.0252 0.0572 
21 0.4603 0.0152 0.9394 0.0890 0.0338 0.0910 
22 0.4534 0.0159 0.9121 0.0991 0.0410 0.1320 
23 0.4463 0.0167 0.8822 0.1248 0.04119 0.1769 
24 0.l!389 0.01770.8451 0.13090.05570.2326 
25 0.4312 0.0189 0.8068 0.1319 0.0574 0.2900 
26 0.4231 0.0202 0.7690 0.1319 0.0569 0.3469 
27 0.4146 0.0217 0.7318 0.1319 0.0558 0.4027 
28 0.11058 0.0233 0.6954 0.1271 0.0547 0.4574 
29 0.3964 0.0251 0.6610 0.1241 0.0516 0.5089 
30 0.3866 0.0270 0.6283 0.1218 0.0492 0.5581 
31 0.3763 0.0293 0.5969 0.1195 0.0471 0.6052 
32 0.3654 0.0317 0.5670 0.1181 0.0450 0.6502 
33 0.3540 0.0345 0.5382 0.1153 0.0432 0.6933 
34 0.3420 0.0376 0.5111 0.1137 0.0408 0.7342 



X 1. {X ) mu{x) v{x) b{x) g{x) G{x) 

35 0.3294 0.0411 0.4852 0.1081 0.0389 0.7730 
36 0.3162 0.0450 0.4614 0.1049 0.0356 0.8086 
37 0.3022 0.0495 0.4394 0.1005 0.0332 0.8418 
38 0.2876 0.0545 0.4191 0.0982 0.0304 0.8721 
39 0.2724 0.0603 0.4003 0.0951 0.0282 0.9004 
40 0.2565 0.066.9 0.3831 0.0837 0.0259 0.9263 
41 0.2399 0.0743 0.3688 0.0708 0.0215 0.9478 
42 0.2227 0.0825 0.3575 0.0609 0.0170 0.9647 
43 0.2051 0.0920 0.3485 0.0457 0.0136 0.9783 
44 0.1870 0.1026 0.3422 0.0294 0.0094 0.9877 
45 0.1688 0.1150 0.3386 0.0244 0.0055 0.9932 
46 0.1505 0.1300 0.3358 0.0158 0.0041 0.9973 
47 0.1321 0.1488 0.3342 0.0015 0.0024 0.9996 
48 0.1138 0.1727 0.3341 0.0002 0.0002 0.9998 
49 0.0958 0.2053 0.3341 0.0001 0.0000 0.9999 
50 0.0780 0.2521 0.3341 0.0000 0.0000 0.9999 
51 0.0606 0.3244 0.3341 0.0000 0.0000 0.9999 
52 0.0438 0.4487 0.3341 0.0000 0.0000 0.9999 
53 0.0280 0.7028 0.3341 0.0000 0.0000 0.9999 
54 0.0139 1.4191 0.3341 0.0000 0.0000 0.9999 
55 0.0034 5.8659 0.3341 0.0000 0.0000 0.9999 
56 0.0000 1.0000 0.3341 0.0000 0.0000 0.9999 

Simulation terminated at age 56 because survival or repro value reached O. 
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