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Abstract -A cryptographic scheme for controlling access to
information within a group of users organized in a hierarchy was
proposed in [1]. The scheme enables a user at some level to com-
pute from his own cryptographic key the keys of the users below
him in the organization.

In such a system there exists the possibility of two users collabo-
rating to compute a key to which they are not entitled. This paper
formulates a condition which prevents such cooperative, attacks
and characterizes all key assignments which satisfy the condition.
The key generation algorithm of [1] is infeasible when there is

a large number of users. This paper discusses other algorithms
and their feasibility.

Index Terms -Access control, canonical assignment, coopera-
tive attack, cryptographic key, hierarchy, key generation algo-
rithm, partially ordered set.

I. INTRODUCTION

A scheme based on cryptography was proposed in [1] for
controlling access to information in an organization

where hierarchy is represented by a poset. An algorithm was
given which enables a member of the organization at some
level of the hierarchy to derive from his own cryptographic
key the keys of members below him in the hierarchy, and
consequently to have access to information enciphered under
those keys. Another important property of the algorithm is
that it provides security against two or more users of the
system collaborating to compute a key to which they are not
entitled.
The purpose of this paper is first to show that the key

generation algorithm of [1] becomes inefficient when the
number of users is large, and then to describe an improved
algorithm and discuss its optimality.

II. CRYPrOGRAPHY AND HIERARCHY ACCESS

Assume a communication system where every user be-
longs to one of a number of disjoint security classes Ui,
i E S, and periodically receives data from an authority U0.
The set of classes is partially ordered by the relation c where
Ui ' Uj for i, j in S means that users in Uj can have access
to information destined to users in Ui. By definition, every
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class Ui in the set is such that Ui ' U0. The problem is to
design a scheme such that an object x broadcast by U0 and
addressed to users in Urn is accessible to users in Ui if and
only if U_ ' Ui.
The cryptographic solution to this problem presented in [1]

goes as follows. The authority U0 generates a set of keys
{Ki: i E S} and distributes Ki (secretly) to all users in any Uj
for which Ui ' Uj. When U0 desires to broadcast a message
x for Urn, it first enciphers it under Km to obtain

x -E(Kr,x)

and then broadcasts [x', m]. Only users in possession of Km
will be able to retrieve x from

x = D(Km, x')

An important advantage of this solution is that it requires
only one copy of the data object x to be stored or broadcast
(in enciphered form). As pointed out in [1], however, its
disadvantage is the large number of keys held by each user.
The worst case occurs when some Uj is a maximum element
and users in Uj have to store the keys of all other users. To
avoid this problem, a system is used whereby Ki can be
feasibly computed from K1 if and only if Ui ' Uj.
The keys Ki are generated as follows. A public integer ti is

assigned to each -class Ui with the property

tj ti if and only if Ui ' Uj. (1)

The authority U0 chooses a random secret key Ko and a secret
pair of large prime numbers p and q, whose productM = pq
is made public. Then

Ki = Ko(mod M)

is communicated to Ui. If Ui ' Uj, then ti/tj is an integer by
(1), and Uj can compute K, by the formula

Ki = Ko = K'j(ti/'j) = K"'"i(mod M).

However, if Ui - Uj, then ti/tj is not an integer and this
computation is considered infeasible. This is discussed in [1]
and relies on the fundamental assumption behind the RSA
public key scheme: that it is difficult to extract roots modulo
M, if M is the product of two unknown primes.
The only remaining question is how to choose the integers

ti. Fig. 1 shows the Hasse diagram of a poset where the t,
associated with class Ui is indicated inside the node repre-
senting that class. This assignment clearly satisfies condition
(1), namely, that tj ti if and only if Ui < Uj. Unfortunately,
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Fig. 1. An assignment of ti to a poset.

such an ad hoc choice of ti suffers from a serious weakness:
two or more users belonging to different classes may be able
to successfully cooperate to discover a key to which they are
not entitled. Typically, in the example of Fig. 1, two users
from Ui and Uj withl( = Ko and Kj = K9 can easily find Ko
from the product

(Ki)-Kj = KK9 = KO(mod M)

and hence compute all the keys in the system! It is proved
in [1] that if a group of users who are not entitled to some
key Ki manages to compute a product of integer powers of
their keys and obtain K" = Ki(mod M), then ti must be an
integral combination of their tj's. Since any such integral
combination is a multiple of the gcd of these tj's, this attack
can be thwarted by ensuring that this gcd does not divide ti.

In order to meet this new condition, it is suggested in [1]
that the ti's be computed from

(2)ti = H Pi
Uj=Uj

where {pJ} is a sequence of distinct primes chosen by U0. It is
easy to show that such an assignment satisfies condition (1).
Furthermore, collaborative attacks are not possible since the
fact that pi t ti implies

gcd (tj) t ti
Uj; u

and hence no group of users who are not entitled to it can

collaborate to find Ki. Fig. 2 shows the same poset as in
Fig. 1: underneath each node is the prime number associated
with it, and inside it is the corresponding ti value computed
as in (2).
As the small example of Fig. 2 shows, however, the prob-

lem with assignment (2) is that the ti's can get quite big even

for a small number of classes, thus slowing down the key
computations. To illustrate this point, assume that the primes
pi assigned are the N smallest primes. If each of these primes
is assigned to a class, then any Ui with no subordinate will
have the property

ti= HPi
j i

6
2

2-5-13 2-3-7

0 0
3 5

2-3-5lll3 2-3-5-7 l3 2-3-5 7 l1
.0 -0 0
7 11 13

Fig. 2. An assignment with pi shown below and ti shown above node i.

In the worst case, pi = 2, and ti is equal to the product of the
first N - 1 odd primes, which for N = 20 is already
In general, the size of the Nth prime is O(N ln N), and hence
ti is O((N ln N )N).

In the remainder of this paper we address the problem of
finding ti's whose size is smaller than those obtained from
(2). For ease of notation we restrict attention to the set S
giving it the partial order inherited from the Ui:

i j if and only if Ui Uj.
The problem can now be stated: given an arbitrary poset
{S, -} with a maximum element, find an assignment of in-
tegers {ti: i E S} which in some sense is small and which
satisfies

a) tj ti if and only if i ' j,
b) gcdpki tj t ti.

III. THE CANONICAL ASSIGNMENT

It would at first appear that for any given poset there are
many diverse sets of ti's that satisfy properties a) and b).
However, we shall show that any such set contains what we
shall call a canonical set of ti's which also exhibits the two
necessary properties. Furthermore, any effort to keep the ti's
as small as possible will also lead to a canonical set.
A canonical set is defined in a manner similar to that of (2).

A prime power ni is first assigned to every node i, and the ti's
are computed as the lowest common multiple of the nj from
nodes not below node i. But unlike (2), where the ni's were
distinct primes, we will allow various powers of the same
prime to be assigned so there will be cases where njIni. A
well-designed mechanism for assigning the ni's is needed to
preserve property a).
The following algorithm produces a canonical assignment

{ti} to nodes. The poset is first decomposed into disjoint
chains. (A chain is a totally ordered subset.) Each chain is
assigned a distinct prime. For each node i, we define

ni = pm

where i is the mth node from the top in the chain whose prime
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is p. Once all ni's are thus determined, the ti's are computed
from the formula

ti = lcm nj.
jii

The algorithm is illustrated in Fig. 3. Of course, for any
given poset there will be many canonical assignments de-
pending on the decomposition into chains and the assignment
of primes to the chains.
We now prove two theorems. Theorem 1 shows that the

above canonical construction satisfies a) and b) (it is easy to
verify that (3) below is satisfied), and Theorem 2 shows that
any assignment satisfying a) and b) "contains" a canonical
assignment.
Theorem 1: Suppose S is a partially ordered set with an

assignment of a prime power ni to each i in S satisfying

ni nj => i 'j . (3)
If ti = lcmj$i nj, then {ti} satisfies a) and b).

Proof: We first show ni ti. By assumption ni = pm
for some prime p, and ti is the lcm of a set of numbers, none
of which is divisible by ptm (by 3), so ti cannot be divisible by
pm

To show a) suppose i jj. Then {k % j} C {k 5 i}, and
so

lcm nk lcm nk,
k$j kvi

which means tj ti. Conversely, if i : j, then ni tj (by defini-
tion of ti), and hence tj t ti, since ni t ti.
Now we show {ti} satisfies b). If i % j, then ni Itj (by

definition of tj), hence ni divides the gcd of all such tj. Since
ni t ti, we deduce b).

For the purposes of the next theorem let us call an assign-
ment {ti} satisfying a) and b) minimal if whenever {si} is
another assignment satisfying a) and b) with si ti for all i,
then si = ti. Clearly, any assignment {ti} satisfying a) and b)
has a minimal such assignment {si} with si ti.

Theorem 2: Any minimal assignment {ti} is canonical.
That is, there is a decomposition of S into disjoint chains, and
an assignment of distinct primes to these chains, so that for
each node i, ti = lcmj i nj where we set ni = pm when i is
the mth (from the top) node in the chain whose prime is p.

Proof: Let di = gcdj;i tj. By b), d t ti, so there is a
prime p for which pm t ti where m is the number of times
p occurs in the factorization of di. Let ni = pm and si =
lcmj$i nj. We first show si ti. It is enough to show nj ti when-
ever j $; i, and this follows since nj dj (by definition of nj)
and dj ti (by definition of dj) when i jj. We now show {si}
satisfies a) and b). By Theorem l it is enough to show the ni's
satisfy (3). If j :; i, then nj si, and hence nj ti (since si ti).
It follows that ni t nj, for otherwise ni ti, a contradiction.
Our assumption that {ti} is minimal now allows us to con-
clude that si = ti.

It remains to show the existence of the decomposition. The
subsets of the decomposition will be sets of nodes with a
common prime. To show that any such subset is in fact totally
ordered, suppose i and j are two nodes for which ni = ptm and
n = pk, with m ' k. Then ni nj, and (3), shown above to
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Fig. 3. One possible chain decomposition showing ni below and ti above

node i.

hold, implies i 2 j. So each subset is totally ordered with
larger i having ni with smaller powers of the prime. Now the
canonical assignment with the same decomposition and set of
primes has a set of ni's which divide the current values, so the
canonical ti's also divide the current values, so our assump-
tion of minimality allows us to conclude that {ti } is canonical.

IV. OPrIMIZATION ISSUES

We now address the question of how, given a poset, an
optimal canonical assignment might be obtained. What con-
situtes optimality will in part be determined by the uses we
wish to make of the communication system (traffic patterns,
etc.), and different objective functions will give rise to differ-
ent canonical assignments. We remark that for almost any
reasonable objective function, once we have a decomposition
of the poset into chains, the optimal assignment will be deter-
mined by assigning the smallest primes to the longest chains.
So our problem, for a given objective function, is one of
finding the optimal decomposition. Exhaustive enumeration
of all decompositions is an exponential process, however,
and is clearly infeasible. We will, therefore, be interested in
cases in which this problem can be shown to be equivalent to
a known problem with a feasible algorithm, i.e., one whose
running time is polynomial in iS I.
As a first example we consider the problem of minimizing

the total number of primes used. This is the problem of
finding a decomposition of a poset into a minimal number
of chains, which was shown by Dantzig and Hoffman [2]
to be equivalent to a linear programming problem of
"transportation" type for which all basic feasible solutions
are integral. Thus, Khachiyan's algorithm [6] will solve this
problem in polynomial time. Alternatively, the problem can
be formulated as a network flow problem [5] and can be
solved with a flow-augmenting path algorithm requiring at
most O(JS 3) steps [4]. It is known [5] that these representa-
tions also provide proofs of a theorem of Dilworth [3] that the
number of chains in a minimal decomposition is equal to the
maximum number of incomparable elements.
As a second objective function to be minimized, consider
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Fig. 4. Poset for Example 1.

[Icm ni]. (4)

It is interesting to point out here that if a new node b is created
with b . i for all i E S, then

tb = 1cm hi
iSb

= 1cm ni,
iES

and hence minimizing the objective function (4) is equivalent
to minimizing the integer associated with the least element of
the poset (if such an element exists). We also note that
minimizing this objective function is not equivalent to
minimizing the objective function discussed above, namely,
the number of chains in a chain decomposition of the poset,
as illustrated by the following example.
Example 1: Consider the poset in Fig. 4. There are two

ways of decomposing this poset into a minimum number of
chains as shown in Fig. 5. Both decompositions yield

lcm ni = 2 34 = 2592.

However, the decomposition depicted in Fig. 6 (which does
not minimize the number of chains) is better in terms of our
second objective function as it yields

lcm ni = 27 * 3 - 5 = 1920.

From this example, it is clear that a special (polynomial-time)
algorithm is needed to minimize our second objective func-
tion. The desirability of matching small primes with long
chains suggests the following heuristic algorithm.
Algorithm: Longest Chain

Step 1: Find the longest chain {il, , ikl} in the poset.
Step 2: Assign to this chain the smallest available prime p

(which now becomes unavailable).
Step 3: Remove nodes il, , ik from the poset.
Step 4: If the poset is not empty, go to Step 1.

Although its.running time is O(IS 12), it should be emphasized
that this algorithm is just an heuristic. The example below
shows the algorithm may fail to minimize either of the above
objective functions.
Example 2: Consider the poset in Fig. 7. The longest

chain algorithm will find the decomposition in three chains
shown in Fig. 8, which yields

lcm ni = 25 * 3 * 5 = 480.
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0 0

/ /

0 (1~~0
(a)o/ (b)

Fig. 5. Two ways of decomposing the poset in Fig. 4 into a minimum
number of chains.

0

0/

0 0

Fig. 6. A decomposition of the poset in Fig. 4 minimizing the second
objective function.

0

0F .o/ s

Fig. 7. Poset for Exa'mple-2.
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Fig. 8. Decomposing the poset of Fig. 7 into three chains by the longest
chain algorithm.
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However, a better decomposition for both objective functions
exists. This is shown in Fig. 9; it is composed of only two

Fig. 9. A better decomposition of the poset of Fig. 7 for both
objective functions.
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chains and yields

lcm ni = 24 * 33 = 432.
i

The existence of an algorithm for decomposing S into chains
so as to minimize the objective function (4), and whose run-
ning time is a polynomial in IS|, remains an open problem.

Finally, we turn to an estimate and comparison of the size
of the numbers arising in the assignment schemes of
Sections II and IIT. First, we examine a canonical assign-
ment. To obtain an estimate, we have taken a poset with a
simple layered structure: there are L layers, each with k
(k > 1) times as many elements as in the layer above, and
every element is ' all elements in any strictly higher layer.
With one element in the top layer, the total number of ele-
ments isN = (kL - 1)/k - 1. Using the longest chain algo-
rithm, we get approximately (k may not be an integer)
kL- kLll chains of length 1 for every 1, 1 ' 1 ' L. Using
the smallest primes for the longest chains and assuming the
nth prime is of size n ln(n), it is straightforward to find an
expression for the size S2 of the objective function (4), the
lcm of all prime powers used. We get

L-1

S2 - f1 (k' ln kl)(L-1)(k-I)kl-.
1=0

(5)

An asymptotic estimate (which ignores the Ink' in the
base) gives logk S2 - N(L - (k + 1)/(k - 1)), and since
L logk N(k - 1), we have

k 1 lnIn S2 N[ln N + ln(k 1)- k+1I kj. (6)

Recall that, under the assignment of Section II, there was one
prime used for every user, and the lcm of all numbers used
was

N

SI Hn ln n, (7)
n=l

which gives the asymptotic estimate

ln S1 N ln N. (8)

So for both Si it is the case that the number of decimal digits
in the lcm per user (measured by (log1o Si)/N) grows like
ln N.

To get a better comparison for small k and N - 100, we
have calculated values of (log1o SI)/N using (5) and (7),.and
tabulated these in Tables I and II. It is seen that the number
of digits in Si per user grows linearly with ln N, for both i
(with k fixed for i = 2), but for N up to 200, the canonical
assignment gives fewer digits for k ' 3. For example, for
k = 2 (each level twice the size of the next one up) and 127
users, the canonical assignment needs 64 primes, and S2 has
(127) (1.66) = 210 decimal digits. On the other hand, for
N = 127, SI has about 285 digits. The canonical assignment
is only a slight improvement. This is to be expected. For
k = 2, fully half of all the chains used in our canonical
assignment are of length one, each requiring a new prime,
and of the remainder, half are of length 2, etc. Posets for

TABLE I
ESTIMATE OF SIZE OF NUMBERS REQUIRED IN AN ASSIGNMENT OF A NEW PRIME

TO EACH USER
# users # decimal digits in S1 # digits per user

N log1 0s1
50 86 1.72

100 212 2.12

200 499 2.49

TABLE 2
ESTIMATE OF SIZE OF NUMBERS REQUIRED FOR A CANONICAL

ASSIGNMENT USING THE LONGEST CHAIN ALGORITHM IN A POSET WITH A
LAYERED STRUCTURE

I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Layers # Users

L N

# Primes

Used

k=1 .5 9 75 26

10 113 38

11 171 57

1 2 257 86

k=2.0 6 63 32

7 127 64

8 255 1 28

k=2.5 5 64 39

6 1 62 98

7 406 244

k=3 4 40 27

5 121 81

6 364 243

# decimal digits

in S2
log10s2

76

141

251

435

80

210

519

95

321

1005

54

235

923

# decimal

digits

per user

1.02

1.24

1.46

1 .69

1.28

1.66

2.04

1 .48

1 .98

2.47

1 .34

1 .95

2.54

which the layer sizes grow arithmetically rather than geo-
metrically can be expected to require much smaller numbers
under a canonical assignment.

Finally, we mention a couple of open problems. It is not
easy, with our schemes, to see how a new user could be
accommodated without a key change throughout most of the
system. Are there reasonable ways to handle this? Secondly,
perhaps one can identify different types of posets, of which,
for example, the layered structure of the last example would
be one, and attempt to find optimal algorithms for each type.
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